Transaction Systems

Exercise Session 01

Linnea Passing
linnea.passing@tum.de
www-db.in.tum.de

April 24, 2017
This is a theory class about transaction processing and recovery. Hands-on alternatives at our chair:

- Database Implementation For Modern Hardware (Prof. Neumann, implement your own micro-DBMS)
- Einsatz und Realisierung von Datenbanksystemen (Prof. Kemper, German, use cases and non-relational DBMS)

- e-book available @ ub.tum.de
- 4 lendable copies @ Chemistry library
- 1 non-lendable copy @ Informatics library

Material from class and exercise sessions: www-db.in.tum.de
Exercise sessions cover examples, extra proofs, corner cases, discussion of last week’s homework, . . .

Weekly home assignments

- To be downloaded from our website
- Due Friday 3pm, submit via e-mail
- 20-ish points per sheet
- I will ask someone to present their homework
- *Individual* home assignments
- Optional, but . . .
- . . . 0.3 bonus if you achieve 75% and your grade is between 1.3 and 4.0
Admin/Info (3)

- **Written exam**
 - 90 minutes
 - Date, time, location: tbd
 - Announcement and registration via TUMonline
 - Exam period: usually 4 weeks long, starting in the last lecture week
 - No resit (Wiederholungsprüfung)!
 - Example tasks will be shown in last exercise session
Today’s Plan

- Admin/Info ✓
- Q&A
- Review: What you should remember from your Database introductory class
- Activity
- Homework
Review: What you should remember from your Database introductory class

- Credits: Dr. Andrey Gubichev, 2013
Notation

- Data objects: $x, y, z \ldots$
- Operations of the transaction T_i:
 - Read x: $r_i(x)$
 - Write z: $w_i(z)$
 - abort a_i
 - commit c_i
Formal definition of Transaction

Transaction T_i is a partial ordering of operations with the relation $<_i$ such that:

1. $T_i \subseteq \{r_i[x], w_i[x] \mid x \text{ is a Data object}\} \cup \{a_i, c_i\}$
2. $a_i \in T_i$, iff. $c_i \not\in T_i$
3. If t_i is a_i or c_i, then for all other operations p_i: $p_i <_i t_i$
4. If $r_i[x]$ and $w_i[x] \in T_i$, then either $r_i[x] <_i w_i[x]$ or $w_i[x] <_i r_i[x]$
Graphical representation

- Transaction can be represented as directed acyclic graph (DAG):

\[
\begin{align*}
r_2[x] & \rightarrow w_2[z] & \rightarrow c_2 \\
r_2[y] & \rightarrow w_2[z]
\end{align*}
\]

- \(r_2[x] \prec_2 w_2[z] \), \(w_2[z] \prec_2 c_2 \), \(r_2[x] \prec_2 c_2 \), \(r_2[y] \prec_2 w_2[z] \), \(r_2[y] \prec_2 c_2 \)

- Transitive relationships are implicit.
Histories (Schedules)

- More than one transaction can be executed
- This can be described as a *history (schedule)*: how different transactions are executed next to each other
- Since different operations of different transactions sometimes may be executed in parallel, a history is a partial order
Conflicting operations can not be executed in parallel, i.e. they have to be ordered.

Two operations are in conflict, if they both work on the same data item and at least one of them is write operation.

\[
\begin{array}{c|cc}

&T_i & \\
\hline
T_j & r_i[x] & w_i[x] \\
\hline
r_j[x] & \neg & \\
\hline
w_j[x] & \neg & \neg
\end{array}
\]
Definition of History

- Let $T = \{T_1, T_2, \ldots, T_n\}$ be a set of transactions
- A history H of T is a partial order with the relation $<_H$, such that
 - $H = \bigcup_{i=1}^n T_i$
 - $<_H \supseteq \bigcup_{i=1}^n <_i$
 - For any two conflicting operations $p, q \in H$ the following holds: $p <_H q$ or $q <_H p$
Example of history

\[H = r_3[y] \rightarrow w_3[x] \rightarrow w_3[y] \rightarrow w_3[z] \rightarrow c_3 \]

\[r_2[x] \rightarrow w_2[y] \rightarrow w_2[z] \rightarrow c_2 \]

\[r_1[x] \rightarrow w_1[x] \rightarrow c_1 \]
A history H is serial if for any two transactions T_i and T_j in it ($i \neq j$), all operations of T_i are ordered in H before all operations of T_j or vice versa.

$$r_1[x] \rightarrow w_1[x] \rightarrow c_1 \rightarrow r_3[y] \rightarrow w_3[x] \rightarrow w_3[y] \rightarrow w_3[z] \rightarrow c_3 \rightarrow$$

$$\rightarrow r_2[x] \rightarrow w_2[y] \rightarrow w_2[z] \rightarrow c_2$$

Or:

$$r_1[x] w_1[x] c_1 r_3[y] w_3[x] w_3[y] w_3[z] c_3 r_2[x] w_2[y] w_2[z] c_2$$
Serializable histories

- Serial histories are nice and safe, but potentially slow
- We want to explore wider class of histories, yet they should be equivalent to some serial history.
- Such histories are called serializable

Two goals:
- Define what is equivalent
- How to test equivalence efficiently?
Conflict equivalence

- One possible way to define equivalence of histories
- Two histories H and H' are conflict equivalent ($H \equiv H'$), if:
 - They have the same set of not-aborted transactions (i.e., their operations)
 - They order conflicting operations in the same way
- The idea is to make sure the computed result is the same
Example

\[
\begin{align*}
 r_1[x] & \rightarrow w_1[y] \rightarrow r_2[z] \rightarrow c_1 \rightarrow w_2[y] \rightarrow c_2 \\
 \equiv & \quad r_1[x] \rightarrow r_2[z] \rightarrow w_1[y] \rightarrow c_1 \rightarrow w_2[y] \rightarrow c_2 \\
 \equiv & \quad r_2[z] \rightarrow r_1[x] \rightarrow w_1[y] \rightarrow w_2[y] \rightarrow c_2 \rightarrow c_1 \\
 \neq & \quad r_2[z] \rightarrow r_1[x] \rightarrow w_2[y] \rightarrow w_1[y] \rightarrow c_2 \rightarrow c_1
\end{align*}
\]
Another Example

\[H = r_3[y] \rightarrow w_3[x] \rightarrow w_3[y] \rightarrow w_3[z] \rightarrow c_3 \uparrow \]
\[H = r_2[x] \rightarrow w_2[y] \rightarrow w_2[z] \rightarrow c_2 \uparrow \uparrow \uparrow \]
\[r_1[x] \rightarrow w_1[x] \rightarrow c_1 \]

\[\equiv H' = r_1[x] w_1[x] c_1 r_3[y] w_3[x] w_3[y] w_3[z] c_3 r_2[x] w_2[y] w_2[z] c_2 \]
Conflict serializability

- Completed prefix $C(H)$ of history H consists of only committed transactions
- H is conflict serializable if $C(H)$ is conflict equivalent to some serial history H_s
Testing conflict serializability

- Conflict graph for history H:
 - Nodes: transactions from H
 - Edges: there is an edge T_i to T_j if there exist operations p_i and p_j in conflict and $p_i <_H p_j$.
- History H is serializable iff its conflict graph is acyclic.
Example

▶ History H

$$H = w_1[x] \rightarrow w_1[y] \rightarrow c_1 \rightarrow r_2[x] \rightarrow r_3[y] \rightarrow w_2[x] \rightarrow c_2 \rightarrow w_3[y] \rightarrow c_3$$

▶ Conflict graph for H

Conflict Graph = T_1

T_2

T_3
Example(2)

- H is serializable
- Possible orderings:

$$
H_s^1 = T_1 \mid T_2 \mid T_3
$$
$$
H_s^2 = T_1 \mid T_3 \mid T_2
$$

$H \equiv H_s^1 \equiv H_s^2$
Example (3)

\[
H = \begin{align*}
 r_1[x] & \rightarrow w_1[x] \rightarrow w_1[y] \rightarrow c_1 \\
 \uparrow \quad \uparrow \quad \uparrow \\
 r_2[x] & \rightarrow w_2[y] \rightarrow c_2 \\
 \downarrow \\
 r_3[x] & \rightarrow w_3[x] \rightarrow c_3
\end{align*}
\]

Conflict Graph = \(T_2 \uparrow \downarrow T_1 \)
Example (4)

- H is serializable
- Possible orderings

$$H^1_s = T_2 | T_1 | T_3$$

$H \equiv H^1_s$
Example(5)

\[H = \begin{align*}
& w_1[x] \rightarrow w_1[y] \rightarrow c_1 \\
& r_2[x] \rightarrow w_2[y] \rightarrow c_2
\end{align*} \]

Conflict Graph = \(T_1 \leftrightarrow T_2 \)

- \(H \) is not serializable
Other properties of histories

- Recoverability
- Avoiding cascading aborts: ACA
- Strictness
First we define the reads-from relationship

Transaction T_i reads (data item x) from T_j, if

- $w_j[x] < r_i[x]$
- $a_j \not< r_i[x]$
- If there is $w_k[x]$ such that $w_j[x] < w_k[x] < r_i[x]$, then $a_k < r_i[x]$

Transaction can read from itself
Example

- **History** H

 $H = w_1[x] \rightarrow w_1[y] \rightarrow c_1 \rightarrow r_2[x] \rightarrow w_3[y] \rightarrow w_2[x] \rightarrow c_2 \rightarrow r_3[y] \rightarrow c_3$

- T_2 reads from T_1

- T_3 reads from itself
Recoverability

- History H is *recoverable*, if
 - For any TA T_i that reads from other TA T_j ($i \neq j$) and $c_i \in H$, the following holds: $c_j < c_i$
- Transactions should follow a certain commit-order
- For non-recoverable transactions, there are problems with C and D in ACID
Recoverability(2)

\[H = w_1[x] \ r_2[x] \ w_2[y] \ c_2 \ a_1 \]

- \(H \) is not recoverable
- Therefore:
 - When the results of \(T_2 \) stay, we have inconsistent data (\(T_2 \) has read the data from other aborted transaction) (not C)
 - If we discard \(T_2 \), then the results of committed transaction disappear (not D)
Cascading aborts

<table>
<thead>
<tr>
<th>Step</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
<th>T_4</th>
<th>T_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>$w_1[x]$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td>$r_2[x]$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td>$w_2[y]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td>$r_3[y]$</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$w_3[z]$</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>a_1 (abort)</td>
<td></td>
<td></td>
<td></td>
<td>$r_5[v]$</td>
</tr>
</tbody>
</table>
History **avoids cascading aborts**, if

- For any T_i that reads from the other TA T_j ($i \neq j$), the following holds: $c_j < r_i[x]$

- Transaction can read only from committed transactions
Strictness

- A History is \textit{strict}, if
 - For two operations \(w_j[x] < p_i[x] \) (where \(p_i[x] = r_i[x] \) or \(w_i[x] \))
 - the following holds: \(a_j < p_i[x] \) or \(c_j < p_i[x] \)
 - History is strict if no data item is read or overwritten until the transaction that wrote it last has ended
SR: serializable, RC: recoverable, ACA: avoids cascading aborts, ST: strict
Scheduler is the program that orders operations such that the resulting history is nice (serializable, recoverable)

- Possibilities after receiving operation:
 - Immediately execute
 - Reject
 - Delay

- Two strategies: pessimistic and optimistic
Pessimistic Scheduler

- Scheduler delays received operations
- When there are many operations, scheduler forms the best possible sequence
- Important representative: Lock-based scheduler
Optimistic Scheduler

- Scheduler tries to execute received operations ASAP
- Sometimes needs to recover from "bad" situations
Lock-based Synchronisation

- Main idea:
 - Every data item has associated lock
 - Before \(T_i \) can access the item, it has to obtain the lock
 - If another \(T_j \) has the lock, then \(T_i \) does not get the lock and has to wait until \(T_j \) releases the lock hat
 - Only one transaction can hold the lock of a data item

- How to guarantee serializability?
Two-Phase Locking Protocol

- **2PL**
- Two modes of locks:
 - S (shared, read lock)
 - X (exclusive, write lock)
- Lock compatibility:

<table>
<thead>
<tr>
<th>Lock requested</th>
<th>Lock held</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>no</td>
</tr>
<tr>
<td>S</td>
<td>✓</td>
</tr>
<tr>
<td>X</td>
<td>✓</td>
</tr>
</tbody>
</table>
Rules of locking

- Every data item to be used by transaction T has to be locked with the corresponding lock mode
- Transaction can not request the lock that it already holds
- If the lock can not be granted, transaction has to wait
- After any lock is released by a transaction, no further locks can be obtained by this transaction (there are 2 phases)
- At the end of the transaction all the locks have to be released
Two Phases

Growing phase: locks are obtained but not released
Shrinking phase: locks will be released, no further lock can be obtained
Example

<table>
<thead>
<tr>
<th>Step</th>
<th>T_1</th>
<th>T_2</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>BOT</td>
<td>BOT</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>lockX[x]</td>
<td>lockS[x]</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>$r[x]$</td>
<td>$r[x]$</td>
<td>T_2 has to wait</td>
</tr>
<tr>
<td>4.</td>
<td>$w[x]$</td>
<td></td>
<td>T_2 resumes</td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td>T_2 has to wait</td>
</tr>
<tr>
<td>6.</td>
<td></td>
<td>lockS[y]</td>
<td>T_2 resumes</td>
</tr>
<tr>
<td>7.</td>
<td>lockX[y]</td>
<td>$r[x]$</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>$r[y]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>unlockX[x]</td>
<td>lockS[y]</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>$r[x]$</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>$w[y]$</td>
<td>unlockX[y]</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>unlockX[y]</td>
<td>$r[y]$</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td></td>
<td>commit</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td></td>
<td>commit</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td></td>
<td>unlockS[x]</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td></td>
<td>unlockS[y]</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td></td>
<td>unlockS[x]</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td></td>
<td>unlockS[y]</td>
<td></td>
</tr>
</tbody>
</table>
Strict 2PL

- The second phase is modified:
 - transaction holds all the write locks until the end (commit or abort)
Strong 2PL

- 2PL does not avoid cascading aborts
- The second phase is modified:
 - transaction holds all the locks until the end (commit or abort)
Strong 2PL(2)

The diagram illustrates the relationship between the number of locks (#Locks) and time over the growing phase. It shows an increase in the number of locks as time progresses through the growing phase, reaching a peak at EOT (End of Transaction).
Review: What you should remember from your Database introductory class

- Credits: Dr. Andrey Gubichev, 2013
Activity

- List the properties of the following schedules:
 - $H_1 = w_1[x] w_2[x] w_2[y] w_1[y] c_2 c_1$
 - $H_2 = w_1[x] r_2[y] r_1[x] c_1 r_2[x] w_2[y] c_2$
 - $H_3 = w_1[x] r_2[y] r_1[x] r_2[x] c_1 w_2[y] c_2$
 - $H_4 = w_1[x] r_2[y] r_2[x] r_1[x] c_2 w_1[y] c_1$

- Formally prove that all the schedules generated by the Strict 2PL scheduler are recoverable
Activity – Solution Sketch

- List the properties of the following schedules:
 - $H_1 = w_1[x] \ w_2[x] \ w_2[y] \ w_1[y] \ c_2 \ c_1$ (RC, ACA)
 - $H_2 = w_1[x] \ r_2[y] \ r_1[x] \ c_1 \ r_2[x] \ w_2[y] \ c_2$ (SR, RC, ACA, ST)
 - $H_3 = w_1[x] \ r_2[y] \ r_1[x] \ r_2[x] \ c_1 \ w_2[y] \ c_2$ (SR, RC)
 - $H_4 = w_1[x] \ r_2[y] \ r_2[x] \ r_1[x] \ c_2 \ w_1[y] \ c_1$ (−)

- Formally prove that all the schedules generated by the Strict 2PL scheduler are recoverable
 - RC can only be violated if $(Ti, Tj) \in$ reads-from and $i \neq j$
 - RC: T_i reads-from $T_j \implies c_j < c_i$
 - Proof by contradiction: Assume $c_i < c_j$ (or $c_i < a_j$)
 - Strict 2PL:
 - T_j reads-from $T_i \implies unlockX_j(x) < lockS_i(x) < r_i[x]$
 - Strict 2PL:
 - $unlockX_j(x) < lockS_i(x) < r_i[x] \implies c_j < lockS_i(x) < r_i[x]$
 - Definition of transactions: $c_j < r_i[x] \implies c_j < c_i$ \forall
 - Conclusion: Strict 2PL does not allow non-recoverable schedules, thus it allows only recoverable schedules
Homework

- Already uploaded to our website.