
1 / 28

Storage

Storage

2 / 28

Storage

Motivation

• so far, we only talked about CPU caches and DRAM
• both are volatile (data is lost on power failure)
• traditional persistent storage:

I disk
I tape

• modern persistent storage:
I solid state drive (flash)
I storage class memory

3 / 28

Storage

Moving Mountains of Data

Core

Register

Core

L1 Cache

Core

L2 Cache

Shared

L3 Cache
DRAM HDD

©2016 Western Digital Corporation or its affiliates. All rights reserved. 10

Source: Western Digital estimates

4 / 28

Storage

Storage Class Memory (SCM)

• also called non-volatile memory (NVM), NVRAM, persistent memory
• semiconductor-based technologies: Phase Change Memory (PCM), ReRAM, etc.
• promises:

I similar performance as DRAM
I byte-addressability
I persistence

• not yet commercially available, but Intel has announced NVM-DIMMs

5 / 28

Storage

SCM Data Access

• connected like DRAM DIMMs (PCIe is too slow)
• mapped into address space of application
• automatically benefits from CPU caches and can be used as a (slower but cheaper) form of

RAM (without re-writing software)
• How to utilize its persistence?

I since writes are cached, they are not immediately persisted
I write order is also a problem
I solution: explicit write back instruction: void _mm_clwb(void const* p)
I hardware guarantees that once a cache line is written back from cache, it is persisted

• SCM-aware data structures are an active research topic

6 / 28

Storage

31

Game Changer? Non-Volatile Memory (NVRAM)

ADVANTAGES

 … does not consume energy if not used

 … is persistent, byte-addressable

 … x-times denser than DRAM

DRAWBACKS

 … has higher latency than DRAM
- Read latency ~2x slower than DRAM

- Write latency ~10x slower than DRAM

 Number of writes is limited

m

Estimates provided by David Wang (Samsung)

7 / 28

Storage

Solid State Drive

• based on semiconductors (no moving parts)
• NAND gates
• available as SATA- or PCIe/M.2- attached devices (NVMe interface)
• e.g., Intel P3700:

I 2.8/1.9 GB/s sequential read/write bandwidth
I 450K/150K random 4KB read/write IOs/s (requires many concurrent accesses)

8 / 28

Storage

SSD Data Access

• data is stored on pages (e.g., 4KB, 8KB, 16KB), access is through the normal OS block
device abstraction (i.e., read, write)

• physical properties:
I pages are combined to blocks (e.g., 2MB)
I it is not possible to overwrite a page, it is necessary to erase a block first
I erasing is fairly expensive

• these properties are usually not exposed
• SSDs implement a flash translation layer (FTL) that emulates a traditional read/write

interface (including in-page updates)

9 / 28

Storage

10 / 28

Storage

11 / 28

Storage

C
os

t
($

/G
B
)

[L
og

S
ca

le
]

2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

~2x

~20x

DRAM

SCM

BiCS

©2016 Western Digital Corporation or its affiliates. All rights reserved. 24

Cost Scaling for SCM Market Adoption

Note: Technology transition cadence assumed 18 months for all technologies
ReRAM & 3DXP greenfield fabs, NAND & DRAM existing fabs

* DRAM data source: IDC ASP forecast with 45% GM assumed
** 13 nm: assumes EUV @ 1.4x i-ArF capex cost, 2160 w/day

12 / 28

Storage

Managing Larger-than-RAM Data Sets

• traditional databases use a buffer pool to support very large data sets:
I store everything on fixed-size pages (e.g., 8KB)
I pages are fixed/unfixed
I transparently handles arbitrary data (relations, indexes)

• traditional systems are very good at minimizing the number of disk IOs
• however, in-memory systems are much faster than disk-based systems (as long as all data

fits into RAM)

13 / 28

Storage

Canonical Buffer Management

P1

P2 ...

P2 P4 P3

hash table pageframe root: P1

...

P4 ...

• Effelsberg and Härder, TODS 1984

14 / 28

Storage

Managing Larger-Than-Memory Data Sets

• paging/mmap
I no control over eviction (needed for OLTP/HTAP systems)

• Anti Caching
I each tuple has a per-relation LRU list
I move cold tuples to disk/SSD
I indexes refer to hot and cold tuples

• Siberia
I record tuple accesses in a log
I identify cold tuples from log (offline)
I move cold tuples to disk or SSD
I in-memory index only stores hot (in-memory) tuples
I bloom (or adaptive range) filter for cold tuples

• buffer managers
I have full full control over eviction
I handle arbitrary data structures (tables, indexes, etc.) transparently

15 / 28

Storage

Hardware-Driven Desiderata

• fast and cheap PCIe-attached NVMe SSDs
(1/10th of the price and bandwidth of DRAM)

⇒ store everything (relations, indexes) on pages (e.g., 16 KB)
• huge main memory capacities

⇒ make in-memory accesses very fast
• dozens (soon hundreds?) of cores

⇒ use smart synchronization techniques

16 / 28

Storage

Pointer Swizzling

P2

P1

P4

pageframeroot

...

...

...

P3

17 / 28

Storage

Replacement Strategy (1)

cold
(SSD)

hot
(RAM)

cooling
(RAM)

swizzle

unswizzle

evict
load,

swizzle

1. select random page as a potential candidate for eviction
2. cooling pages are organized in a FIFO queue (e.g., 10% of all pages are in cooling state)

18 / 28

Storage

Replacement Strategy (2)

P3

P1

...

P8
P2

hot

P9

...

hotP6

...

hot

P4

...

hot
P5

3. it finds the swizzled child
 page P6 and unswizzles
 it instead

iterate

1. P4 is randomly selected
 for speculative unswizzling

2. the buffer manager iterates
 over all swips on the page ?

19 / 28

Storage

Scalable Optimistic Synchronization Primitives

• no hash table synchronization for accessing hot pages
• per-page optimistic latches
• epoch-based memory reclamation and eviction
• global latch for cooling stage and I/O manager

20 / 28

Storage

Epochs

FIFO
queue

cooling stage

hash table

global epoch

e9

e4 P8

e7 P2

epoch
management

thread-local epochs
e9
∞
e5

thread 1
thread 2
thread 3

P2

...

cooling

P8

...

cooling

21 / 28

Storage

Putting It All Together

FIFO
queue

root

OS

in-flight I/O operationscooling stage

P3

P1

...

P8
P2

hotP7

P8

...

cooling

P4

...

hot buffer pool

hash table hash table

P2

...

cooling P3

...

cold
(being loaded)

...
(more hot pages)

22 / 28

Storage

Evaluation

• 10 core Haswell EP
• Linux 4.8
• Intel NVMe P3700 SSD
• storage managers compared (no logging, no transactions, 16 KB pages):

I LeanStore: B-tree on top of buffer manager
I in-memory B-tree: same B-tree without buffer management
I BerkeleyDB: B-tree on top of traditional buffer manager

23 / 28

Storage

How Large Is the Overhead? (Single-Threaded)

0

20K

40K

60K

BerkeleyDB LeanStore B-tree Silo

TP
C

-C
 th

ro
ug

hp
ut

 [t
xn

s/
se

c]

in-memory onlybuffer managers

24 / 28

Storage

How Well Does It Scale?

0

200K

400K

600K

1 5 10 15 20
threads

TP
C

-C
 th

ro
ug

hp
ut

 [t
xn

s/
se

c]
in-memory B-tree

LeanStore

BerkeleyDB

25 / 28

Storage

What Happens If The Data Does Not Fit Into RAM?

BerkeleyDB

in-memory B-tree (+swapping)

LeanStore

0

200K

400K

600K

0 20 40 60
time [sec]

TP
C

-C
 th

ro
ug

hp
ut

 [t
xn

s/
se

c]

26 / 28

Storage

TPC-C Ramp Up With Cold Cache

PCIe SSD

SATA SSD

disk
10

100

1000

10K

100K

1M

0 10 20 30 40
time [sec]

TP
C

-C
 th

ro
ug

hp
ut

 [t
xn

s/
se

c]

27 / 28

Storage

Replacement Strategy Parameter

uniform z=1 z=1.25 z=1.5 z=1.55 z=1.6 z=1.65 z=1.7 z=1.75 z=2

2 10 50 2 10 50 2 10 50 2 10 50 2 10 50 2 10 50 2 10 50 2 10 50 2 10 50 2 10 50

0.7

0.8

0.9

1.0

1.1

% of pages in cooling stage [log scale]

no
rm

al
iz

ed
 th

ro
ug

hp
ut

28 / 28

Storage

Conclusions

• in-memory performance is competitive with the fastest main-memory systems
• transparent management of arbitrary data structures (e.g., B-trees, hash tables,

column-wise storage)
• scales well on multi-core CPUs

	Storage

