
1 / 28

Storage

Storage



2 / 28

Storage

Motivation

• so far, we only talked about CPU caches and DRAM
• both are volatile (data is lost on power failure)
• traditional persistent storage:

I disk
I tape

• modern persistent storage:
I solid state drive (flash)
I storage class memory
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Moving Mountains of Data
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Storage Class Memory (SCM)

• also called non-volatile memory (NVM), NVRAM, persistent memory
• semiconductor-based technologies: Phase Change Memory (PCM), ReRAM, etc.
• promises:

I similar performance as DRAM
I byte-addressability
I persistence

• not yet commercially available, but Intel has announced NVM-DIMMs
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SCM Data Access

• connected like DRAM DIMMs (PCIe is too slow)
• mapped into address space of application
• automatically benefits from CPU caches and can be used as a (slower but cheaper) form of

RAM (without re-writing software)
• How to utilize its persistence?

I since writes are cached, they are not immediately persisted
I write order is also a problem
I solution: explicit write back instruction: void _mm_clwb(void const* p)
I hardware guarantees that once a cache line is written back from cache, it is persisted

• SCM-aware data structures are an active research topic
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31

Game Changer? Non-Volatile Memory (NVRAM)

ADVANTAGES

 … does not consume energy if not used

 … is persistent, byte-addressable

 … x-times denser than DRAM

DRAWBACKS

 … has higher latency than DRAM
- Read latency ~2x slower than DRAM

- Write latency ~10x slower than DRAM

 Number of writes is limited

m

Estimates provided by David Wang (Samsung)
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Solid State Drive

• based on semiconductors (no moving parts)
• NAND gates
• available as SATA- or PCIe/M.2- attached devices (NVMe interface)
• e.g., Intel P3700:

I 2.8/1.9 GB/s sequential read/write bandwidth
I 450K/150K random 4KB read/write IOs/s (requires many concurrent accesses)
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SSD Data Access

• data is stored on pages (e.g., 4KB, 8KB, 16KB), access is through the normal OS block
device abstraction (i.e., read, write)

• physical properties:
I pages are combined to blocks (e.g., 2MB)
I it is not possible to overwrite a page, it is necessary to erase a block first
I erasing is fairly expensive

• these properties are usually not exposed
• SSDs implement a flash translation layer (FTL) that emulates a traditional read/write

interface (including in-page updates)
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Cost Scaling for SCM Market Adoption

Note: Technology transition cadence assumed 18 months for all technologies
ReRAM & 3DXP greenfield fabs, NAND & DRAM existing fabs

* DRAM data source: IDC ASP forecast with 45% GM assumed
** 13 nm: assumes EUV @ 1.4x i-ArF capex cost, 2160 w/day
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Managing Larger-than-RAM Data Sets

• traditional databases use a buffer pool to support very large data sets:
I store everything on fixed-size pages (e.g., 8KB)
I pages are fixed/unfixed
I transparently handles arbitrary data (relations, indexes)

• traditional systems are very good at minimizing the number of disk IOs
• however, in-memory systems are much faster than disk-based systems (as long as all data

fits into RAM)
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Canonical Buffer Management
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• Effelsberg and Härder, TODS 1984
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Managing Larger-Than-Memory Data Sets

• paging/mmap
I no control over eviction (needed for OLTP/HTAP systems)

• Anti Caching
I each tuple has a per-relation LRU list
I move cold tuples to disk/SSD
I indexes refer to hot and cold tuples

• Siberia
I record tuple accesses in a log
I identify cold tuples from log (offline)
I move cold tuples to disk or SSD
I in-memory index only stores hot (in-memory) tuples
I bloom (or adaptive range) filter for cold tuples

• buffer managers
I have full full control over eviction
I handle arbitrary data structures (tables, indexes, etc.) transparently
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Hardware-Driven Desiderata

• fast and cheap PCIe-attached NVMe SSDs
(1/10th of the price and bandwidth of DRAM)

⇒ store everything (relations, indexes) on pages (e.g., 16 KB)
• huge main memory capacities

⇒ make in-memory accesses very fast
• dozens (soon hundreds?) of cores

⇒ use smart synchronization techniques
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Pointer Swizzling
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Replacement Strategy (1)
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1. select random page as a potential candidate for eviction
2. cooling pages are organized in a FIFO queue (e.g., 10% of all pages are in cooling state)
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Replacement Strategy (2)
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Scalable Optimistic Synchronization Primitives

• no hash table synchronization for accessing hot pages
• per-page optimistic latches
• epoch-based memory reclamation and eviction
• global latch for cooling stage and I/O manager
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Putting It All Together
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Evaluation

• 10 core Haswell EP
• Linux 4.8
• Intel NVMe P3700 SSD
• storage managers compared (no logging, no transactions, 16 KB pages):

I LeanStore: B-tree on top of buffer manager
I in-memory B-tree: same B-tree without buffer management
I BerkeleyDB: B-tree on top of traditional buffer manager
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How Large Is the Overhead? (Single-Threaded)
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How Well Does It Scale?
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What Happens If The Data Does Not Fit Into RAM?
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TPC-C Ramp Up With Cold Cache
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Replacement Strategy Parameter
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Conclusions

• in-memory performance is competitive with the fastest main-memory systems
• transparent management of arbitrary data structures (e.g., B-trees, hash tables,

column-wise storage)
• scales well on multi-core CPUs
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