Main-Memory Databases
Motivation

Hardware trends

- Huge main memory capacity with complex access characteristics (Caches, NUMA)
- Many-core CPUs
- SIMD support in CPUs
- New CPU features (HTM)
- Also: Graphic cards, FPGAs, low latency networking, . . .

Database system trends

- Entire database fits into main memory
- New types of database systems
- New algorithms, new data structures

“The End of an Architectural Era.
(It’s Time for a Complete Rewrite).”
Recap: Database Workloads

Analytics

- Long-running
- Access large parts of the database
- Often use scans
- Read-only
- Example: “Average order value per year and product group?”

Transaction processing

- Short running
- (Multiple) point queries + simple control flow
- Insert/Update/Delete/Read data
- Example: “Increment account x by 10, decrement account y by 10”

Universal DBMS used for both (but not concurrently).
OLTP

Universal DBMS were optimized for 1970’s hardware

- Small fraction of DB in memory buffer
- Hide and avoid disk access at any cost

Today

- Even enterprises can store entire DB in memory
- Transaction are often “one-shot”
- Transactions execute in a few ms or even µs
OLTP (2)

Main sources of overhead

- ARIES-style logging
- Locking (2PL)
- Latching
- Buffer Management

Useful work can be as low as $\frac{1}{60}$th of instructions.¹ Modern systems avoid this overhead (see slide 9).

¹Harizopoulos et al. – OLTP Through the Looking Glass, and What We Found There
Physical Data Layout in Main Memory

Lightweight:
- Buffer Manager removed
- No need for segments
- No need for slotted pages

Store data in simple arrays. But: Row-wise or column-wise?
Physical Data Layout in Main Memory (2)

Row Store:
- Beneficial when accessing many attributes
- For OLTP

Column Store:
- Excellent cache utilization
- Sometimes individually sorted
- Compression potential
- Vectorized processing
- For OLAP

Hybrid Row/Column Stores possible
New Systems (Examples)

OLTP-only:
- VoltDB/H-Store
- Microsoft Hekaton

OLAP-only:
- Vectorwise
- MonetDB
- DB2 BLU

Hybrid OLTP and OLAP:
- SAP HANA
- HyPer
New Systems: OLTP (Examples)

Challenge:
- Avoid overhead
- Guarantee ACID

Approaches:
- Buffer Management: Removed
- Logging
 - H-Store/VoltDB: Log shipping to other nodes
 - Hekaton: Lightweight logging (no index structures)
- Locking:
 - H-Store/VoltDB: Serial execution (on private partitions)
 - Hekaton: Optimistic MVCC
- Latching
 - H-Store/VoltDB: Not necessary
 - Hekaton: Latch-free data structures
New Systems: Hekaton

- Integrated in SQL Server
- Code Generation
- Only access path: Index (Hash or B(w)-Tree)
- Latch-Free Indexes
- MVCC
New Systems: OLAP

- Vectorwise: Vectorized Processing
- HyPer: Query Compilation (cf. Chapter *Code Generation*)
New Systems: Hybrid OLTP and OLAP

Traditionally:

- Mixing OLTP and OLAP leads to performance decline
- ETL architecture
- 2 systems, stale data

New Systems

- SAP HANA
 - Split DB into read-optimized main and update-friendly delta
 - OLAP queries read main, OLTP transactions read delta and main
 - Periodically merge main and delta

- HyPer: Virtual memory snapshots
HyPer: Virtual Memory Snapshots

OLTP Data

A C
B D
E G
F H
HyPer: Virtual Memory Snapshots
HyPer: Virtual Memory Snapshots
HyPer: Virtual Memory Snapshots

OLTP Data

OLAP Queries

- forked OLAP-Snapshot
- update C to C*
- copy-on-write

OLTP Tx
HyPer: Virtual Memory Snapshots

OLTP Data

forked OLAP-Snapshot

OLAP Queries

read C
read H

OLTP Tx

C*
A
B
C*
D
E
F
G
H
In-Memory Index Structures

- In-memory hash indexes
 - Simple and fast
 - Growing is very expensive
 - Do not support range queries

- Search Trees
 - BSTs are cache unfriendly
 - B-Trees better (even though designed for disk)

- Radix-Trees ("Tries")
 - Support range queries
 - Height is independent from number of entries
Radix Trees

Properties:
- Height depends on key length, not number of entries
- No rebalancing
- All insertion orders yield same tree
- Keys are stored in the tree implicitly

Search:
- Node is array of size 2^s
- s bits (often 8) are used as an index into the array
- s is a trade-off between lookup-performance and memory consumption

Radix Tree

Adaptive Radix Tree
Adaptive Radix Trees

Four node types:

- **Node4**: 4 keys and 4 pointers at corresponding positions:

```
key | child pointer
---|---------------
0  | 2 3 255       
```

```
0 2 3
a  b  c  d
```

- **Node16**: Like Node4, but with 16 keys. SIMD searchable.

- **Node48**: Full 256 keys (index offset), point to up to 48 values:

```
child index | child pointer
---|---------------
0 1 2 3 | 255          
```

```
0 1 2 47
b  a  c  d
```

- **Node256**: Regular trie node, i.e. array of size 256

Additionally: Header with node type, number of entries.
Exploiting HTM for OLTP

- Intel’s Haswell introduced HTM (via cache coherency protocol)
- Allows to group instructions to transactions
- Can help to implement DB transactions, but
 ▶ Do not guarantee ACID by themselves
 ▶ Limited in size/time

⇒ Use HTM transactions as building blocks for DB transactions
Exploiting HTM for OLTP (2)

Goals:
- As fine-grained as 2PL, but faster
- As fast as serial execution, but more flexible

```plaintext
atomic-elide-lock (lock) {
    account[from] -= amount;
    account[to] += amount;
}
```
Implementing DB transactions with HTM

Use TSO + HTM for latching:

- Database transaction
 - Conflict detection: read/write sets via timestamps
 - Elided lock: serial execution
 - Request a new timestamp, record safe timestamp

- HTM transaction
 - Conflict detection: read/write sets in hardware
 - Elided lock: latch
 - Single tuple access
 - Verify/update tuple timestamps
 - ... (denne er en forlængelse af et diagram)

- HTM transaction
 - Conflict detection: read/write sets in hardware
 - Elided lock: latch
 - Single tuple access
 - Verify/update tuple timestamps
 - ... (denne er en forlængelse af et diagram)

- Release timestamp, update safe timestamp

- Relation and index structure layout must avoid conflicts
NUMA-Aware Data Processing

NUMA architectures:

- **Nehalem EX**
 - socket 0: 8 cores, 24MB L3
 - socket 1: 8 cores, 24MB L3
 - socket 3: 8 cores, 24MB L3
 - DRAM: 25.6GB/s

- **Sandy Bridge EP**
 - socket 0: 8 cores, 20MB L3
 - socket 1: 8 cores, 20MB L3
 - socket 2: 8 cores, 20MB L3
 - socket 3: 8 cores, 20MB L3
 - DRAM: 51.2GB/s

 - Inter-Socket Bandwidth:
 - socket 0 to socket 1: 12.8GB/s (bidirectional)
 - socket 1 to socket 3: 16.0GB/s (bidirectional)

- **Local access cheap**
- **Remote access expensive**
NUMA-Aware Data Processing: Hash Join

Phase 1: process T morsel-wise and store NUMA-Local Storage.

Phase 2: scan NUMA-Local storage area and insert pointers into HT.
Compaction

- OLTP & OLAP share the same physical data model
 - Fast modifications vs scan performance
 - Row store vs column store
- Modifications require snapshot maintenance
 - Use more memory
 - Congest memory bus
 - Stall transactions
Compaction: Hot/Cold Clustering

- Compression is applied asynchronously to cold part:
 - Dictionary encoding
 - Run-length encoding
 - Other schemes possible
- Compact snapshots through a mix of regular and huge pages
 - Keeps page table small
 - Clustered updates
 - No huge pages need to be replicated
Compaction: Hot/Cold Clustering

- **Cooling**
 - Hot & cold items mixed
 - Uncompressed
 - Small memory pages

- **Hot**
 - Working Set (hot data)
 - Uncompressed
 - Small memory pages

- **Cold**
 - Cold data items only
 - Not compressed yet

- **Frozen**
 - Cold & compressed data
 - Huge memory pages
 - Rarely accessed by OLTP
 - Immutable: Deleted and updated items are marked "invalid" and copied to Hot

"Invalid frozen items" data structure
Compaction: Hot/Cold Clustering

How to detect temperature without causing overhead?

1. Software: LRU lists, counters
2. Hardware: mprotect
3. Hardware: dirty and young flags