Mark Raasveldt & Hannes Muhleisen

DuckDB
an Embeddable Analytical RDBMS

W About Me

» Mark Raasveldt

» PhD Student @ CWI in Amsterdam

» Database Architectures group

» Supervised by Hannes Muhleisen and Stefan Manegold

» Me & Hannes made DuckDB

. Hannes =3 Me &&& Stefan §& s ol

W Outline

» Motivation for Using Database Systems
» Data Science and Database Systems

» DuckDB: Systems Overview

Motivation for
Using Database Systems

W Motivation

» Why should people use relational database systems?

» This is a strange question in our field (DBMS research)

» Obviously everyone should use RDBMSs!

» But for many people it is not so obvious

» So why should you actually use a RDBMS?

W The Good

» Database systems offer ACID properties
» Consistency, reliability

» Integrity checks

» Advanced query optimizers

» Fast and flexible query execution (SQL)

» Takes care of data layout for you (in theory)

W The Bad

» Schema needs to be defined beforehand

» Annoying at start of a project when there are many
schema changes

» Database systems are difficult to setup
» Even PostgreSQL will take you an hour if you are new

» ...and then you still need to learn SQL!

The Ugly

» Database systems are expensive

» Oracle costs $17.5K per processor

» For the standard edition!

Section |

Database Products

Oracle Database

Standard Edition 2

Enterprise Edition

Personal Edition

Mobile Server

NoSQL Database Enterprise Edition

Enterprise Edition Options:
Multitenant

Real Application Clusters
Real Application Clusters One Node
Active Data Guard
Partitioning

Real Application Testing
Advanced Compression
Advanced Security

Label Security

Database Vault

OLAP

Advanced Analytics

Named User Plus

200
230
230
230
230

230
230

Oracle Database

Software Update
License & Support

77.00
209.00
101.20

44

77.00
101.20
44.00
50.60
50.60
50.60
50.60
66.00
50.60
50.60
101.20
101.20

Processor

License

17.500

ﬂ 47,500

23,000
10,000

17,500
23,000
10.000
11,500
11,500
11,500
11,500
15,000
11,500
11,500
23,000
23,000

Prices in USA (Dollar)

Software Update
License & Support

3,850.00
10,450.00
5,060.00
2,200.00

3,850.00
5,060.00
2.200.00
2,530.00
2,530.00
2,530.00
2,530.00
3,300.00
2,530.00
2,530.00
5,060.00
5,060.00

W Motivation

» These problems lead to the rise of NoSQL systems

» Thankfully (almost) everyone now realizes this was
a bad idea*

» But these problems are still valid

» Lead to many people using inferior* technology

* In my completely unbiased opinion as RDBMS researcher

Data Science
and
Database Systems

W Data Science

» Data science seems like a prime target for RDBMS
» After all, it has “data” in the name!
» Data scientists work with data

» Thus they need to manage that data!

» Yet, many data scientists do not use RDBMS...

W Data Science

» Instead of using RDBMS, they have invented their
own solutions

» They manage data using flat files
» CSV files, binary, HDF5, parquet...
» They created their own libraries for DBMS ops

» dplyr, pandas, DataFrames

W Data Science

» Flat File Management - what is the problem?

» Manually managing files is cumbersome
» Loading and parsing e.g. CSV files is inefficient
» File writers typically do not offer resiliency

» Files can be corrupted

» Difficult to change/update

» It does not scalel

W Data Science

» The reason people use it:

df <- read.csv("input.csv", sep="|[")

write.csv(df, sep="|")

W Data Science

» Start by using flat files because they are easy

» But then never switch!

» At CWI.:

» Genetics researchers asked us how they could speed
up their data loading

» ...their data was 1TB of CSV files
» ...that they loaded every time they ran an analysis

» Our answer: use a RDBMS!

W Data Science

» dplyr, pandas, DataFrames - what is the problem?

» For those unfamiliar: these libraries are basically
query execution engines

SUM(1_quantity)

lineitem
L_returnflag, l_linestatus;

dplyr lineitem %>% group_by(l_returnflag, l_linestatus) %>%
oY summarise(sum_gty=sum(l _quantity))

*
part partsupp (p_partkey=ps_partkey)
p_size=15 p_type '%BRASS ' ;

dplyr =P part %>% filter(p_size == 15, grepl(".*BRASS$", p_type)) %>%
o inner_join(partsupp, by=c("p_partkey" = "ps_partkey"))

W Data Science

» dplyr, pandas, DataFrames - what is the problem?

» The problem is that they are very poor query engines!

» Materialize huge intermediates
» NOo query optimizer
» Not even for basics like filter pushdown
» No support for out of memory computation
» No support for parallelization

» Unoptimized implementations for joins/aggregations

W Data Science

» Data scientists need the functionality RDBMSs offer
» But they opt not to use RDBMSs
» Often this leads to problems down the road

» When the data gets bigger...

» When a power outage corrupts their data...

Can we save these lost souls and unite
them with the RDBMS?

DuckDB

an Embeddable Analytical RDBMS

w

W SQLite

» Problem: Databases are difficult to use

» What is the easiest to use database?

WSQLite

W SQLite

WSQLite

» SQLite is an embedded database
» No external server management
» It has bindings for every language

» Database is stored in a single file (not directory)

* https://www.sqlite.org/famous.html

W SQLite

WSQLite

» It is public domain and very easy to use

» SQLite is great
» It is secretly the most used RDBMS in the world
» Runs on every phone, browser and OS*

» It even runs inside airplanes!

* https://www.sqlite.org/famous.html

W SQLite

» SQLite has one problem: designed for OLTP

» Row store (basically a giant B-tree)
» Tuple-at-a-time processing model
» Does not utilise memory to speed up computation

» Query optimizer is very limited

» Great for OLTP, not so good for analytics

W DuckDB

» DuckDB: The SQLite for Analytics

» Core Features

DuckDB

» Simple installation

» Embedded: no server management
» Single file storage format
» Fast analytical processing

» Fast transfer between R/Python and RDBMS

w DuckDB

» Why "Duck” DB?

» Ducks are amazing animals
» They can fly, walk and swim
» They are resilient

» They can live off anything

» Also Hannes used to own a pet
duck

W DuckDB column-store

ate [storo il procuct fcustomer J price

aTeaTs

Vectorized Processing

» Vectorized processing model Table Result

> >

» DuckDB Internals

» Column-storage database

» MVCC for concurrency control
» ART index, used also for maintaining key constraints

» Combination of both cost/rule based optimizer

» We use the PostgreSQL parser
» Bindings for C/C++, Python and R

W DuckDB

» DuckDB uses a typical pipeline for query processing

Parser Binding Phase Planner Optimizer Physical Planner

SL BOUND UNOPTIMIZED OPTIMIZED PHYSICAL
- STATEMENT pmmmg LOGICAL PLAN LOGICAL PLAN pum PLAN

W DuckDB

» Life of a Query

COUNT ()
lineitem, orders
L_orderkey=0_orderkey

o orderstatus="X"
L tax > 50;

W DuckDB

Parser

SQL === STATEMENT

select_list
CROSS m
PRSI PRODUCT m

|_orderkey=o0_orderkey
AND o_orderstatus="X
AND L tax > 50;

where

COUNT (%)

lineitem, orders
L_orderkey=o0_orderkey
0_orderstatus=
1 tax > 50:

W DuckDB

Binding Phase

BOUND
STATEMENT

select_list
MEENEL

CROSS
CATALOG
PR PRODUCT

orders [1]

where

10.01=[1.0]
AND [1.1]="X

AND [0.1] > 50;
COUNT (%)

lineitem, orders
L_orderkey=o0_orderkey
0_orderstatus=
1 tax > 50:

W DuckDB
Planner
BOUND UNOPTIMIZED
STATEMENT mmmmg LOGICAL PLAN

AGGREGATE
COUNT(*)

FILTER
10.01=[1.0]
AND [1.1]="X
AND [0.1] > 30;

CROSS_PRODUCT

COUNT ()
lineitem, orders
GET[lineitem][0] GET[orders][1] L_orderkey=0_orderkey
0_orderstatus=
1 tax > 50:

Optimizer

UNOPTIMIZED OPTIMIZED
LOGICAL PLAN LOGICAL PLAN

AGGREGATE
COUNT(*)

JOIN
10.01=[1.0]

FILTER

[0.1]>50

GET[lineitem][0] GET[orders][1] COUNT ()

lineitem, orders
L_orderkey=o0_orderkey
0_orderstatus=
1 tax > 50:

Physical Planner
OPTIMIZED PHYSICAL
LOGICALPLAN e PLAN

SIMPLE_AGGREGATE
COUNT(*)

HASH_JOIN
L#0=R#0

SEQ_SCAN[lineitem] SEQ_SCANJorders] COUNT ()

lineitem, orders
L_orderkey=o0_orderkey
0_orderstatus=
1 tax > 50:

W DuckDB

» Query Execution

» DuckDB uses a vectorized pull-based model ("vector
volcano”)

» Each operator calls "GetChunk” on its child
operators to fetch an input chunk (= set of vectors)

» Scans fetch data from the base tables

Vectorized Processing

Table Result
> >

SIMPLE_AGGREGATE
COUNT(*)

HASH_JOIN
L#0=R#0 HT Build: Vectors flow
from right side into HT

SEQ_SCAN[orders]

SIMPLE_AGGREGATE
COUNT(*)

HASH_JOIN

L#0=R#0

After build is completed
chunks flow from left side

to root aggregate
FILTER
#1>50

SEQ_SCAN[lineitem]

W DuckDB

» DuckDB is free and open-source

» Currently in pre-release (v0.1)

DuckDB

» We have a website: www.duckdb.org

» Source Code: https://github.com/cwida/duckdb

» Feel free to try it

» And send us a bug report if anything breaks!

http://www.duckdb.org
https://github.com/cwida/duckdb

W DuckDB

» Lessons Learned for Building a RDBMS
» Use an existing SQL parser

» Writing a robust parser is difficult!

» PostgreSQL parser saved us so much time
» Write many, many tests

» Also steal tests from other systems!

» Read all of Thomas Neumann's papers

