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W Motivation

» Why should people use relational database systems?

» This is a strange question in our field (DBMS research)

» Obviously everyone should use RDBMSs!

» But for many people it is not so obvious

» So why should you actually use a RDBMS?



W The Good

» Database systems offer ACID properties
» Consistency, reliability

» Integrity checks

» Advanced query optimizers

» Fast and flexible query execution (SQL)

» Takes care of data layout for you (in theory)



W The Bad

» Schema needs to be defined beforehand

» Annoying at start of a project when there are many
schema changes

» Database systems are difficult to setup
» Even PostgreSQL will take you an hour if you are new

» ...and then you still need to learn SQL!



The Ugly

» Database systems are expensive

» Oracle costs $17.5K per processor

» For the standard edition!
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W Motivation

» These problems lead to the rise of NoSQL systems

» Thankfully (almost) everyone now realizes this was
a bad idea*

» But these problems are still valid

» Lead to many people using inferior* technology

* In my completely unbiased opinion as RDBMS researcher



Data Science
and
Database Systems




W Data Science

» Data science seems like a prime target for RDBMS
» After all, it has “data” in the name!
» Data scientists work with data

» Thus they need to manage that data!

» Yet, many data scientists do not use RDBMS...



W Data Science

» Instead of using RDBMS, they have invented their
own solutions

» They manage data using flat files
» CSV files, binary, HDF5, parquet...
» They created their own libraries for DBMS ops

» dplyr, pandas, DataFrames



W Data Science

» Flat File Management - what is the problem?

» Manually managing files is cumbersome
» Loading and parsing e.g. CSV files is inefficient
» File writers typically do not offer resiliency

» Files can be corrupted

» Difficult to change/update

» It does not scalel



W Data Science

» The reason people use it:

df <- read.csv("input.csv", sep="|[")

write.csv(df, sep="|")




W Data Science

» Start by using flat files because they are easy

» But then never switch!

» At CWI.:

» Genetics researchers asked us how they could speed
up their data loading

» ...their data was 1TB of CSV files
» ...that they loaded every time they ran an analysis

» Our answer: use a RDBMS!



W Data Science

» dplyr, pandas, DataFrames - what is the problem?

» For those unfamiliar: these libraries are basically
query execution engines

SUM(1_quantity)

lineitem
L_returnflag, l_linestatus;

dplyr lineitem %>% group_by(l_returnflag, l_linestatus) %>%
oY summarise(sum_gty=sum(l _quantity))

*
part partsupp (p_partkey=ps_partkey)
p_size=15 p_type '%BRASS ' ;

dplyr =P part %>% filter(p_size == 15, grepl(".*BRASS$", p_type)) %>%
o inner_join(partsupp, by=c("p_partkey" = "ps_partkey"))



W Data Science

» dplyr, pandas, DataFrames - what is the problem?

» The problem is that they are very poor query engines!

» Materialize huge intermediates
» NOo query optimizer
» Not even for basics like filter pushdown
» No support for out of memory computation
» No support for parallelization

» Unoptimized implementations for joins/aggregations



W Data Science

» Data scientists need the functionality RDBMSs offer
» But they opt not to use RDBMSs
» Often this leads to problems down the road

» When the data gets bigger...

» When a power outage corrupts their data...

Can we save these lost souls and unite
them with the RDBMS?



DuckDB

an Embeddable Analytical RDBMS
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W SQLite

» Problem: Databases are difficult to use

» What is the easiest to use database?

WSQLite



W SQLite

WSQLite

» SQLite is an embedded database
» No external server management
» It has bindings for every language

» Database is stored in a single file (not directory)

* https://www.sqlite.org/famous.html



W SQLite

WSQLite

» It is public domain and very easy to use

» SQLite is great
» It is secretly the most used RDBMS in the world
» Runs on every phone, browser and OS*

» It even runs inside airplanes!

* https://www.sqlite.org/famous.html



W SQLite

» SQLite has one problem: designed for OLTP

» Row store (basically a giant B-tree)
» Tuple-at-a-time processing model
» Does not utilise memory to speed up computation

» Query optimizer is very limited

» Great for OLTP, not so good for analytics



W DuckDB

» DuckDB: The SQLite for Analytics

» Core Features

DuckDB

» Simple installation

» Embedded: no server management
» Single file storage format
» Fast analytical processing

» Fast transfer between R/Python and RDBMS



w DuckDB

» Why "Duck” DB?

» Ducks are amazing animals
» They can fly, walk and swim
» They are resilient

» They can live off anything

» Also Hannes used to own a pet
duck




W DuckDB column-store
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Vectorized Processing

» Vectorized processing model Table Result

> >

» DuckDB Internals

» Column-storage database

» MVCC for concurrency control
» ART index, used also for maintaining key constraints

» Combination of both cost/rule based optimizer

» We use the PostgreSQL parser
» Bindings for C/C++, Python and R



W DuckDB

» DuckDB uses a typical pipeline for query processing

Parser Binding Phase Planner Optimizer Physical Planner

SL BOUND UNOPTIMIZED OPTIMIZED PHYSICAL
- STATEMENT pmmmg LOGICAL PLAN LOGICAL PLAN pum PLAN




W DuckDB

» Life of a Query

COUNT ()
lineitem, orders
L_orderkey=0_orderkey

o orderstatus="X"
L tax > 50;




W DuckDB

Parser

SQL ===  STATEMENT

select_list
CROSS m
PRSI  PRODUCT m

|_orderkey=o0_orderkey
AND o_orderstatus="X
AND L tax > 50;

where

COUNT (%)

lineitem, orders
L_orderkey=o0_orderkey
0_orderstatus=
1 tax > 50:




W DuckDB

Binding Phase

BOUND
STATEMENT

select_list
MEENEL

CROSS
CATALOG
PR PRODUCT

orders [1]

where

10.01=[1.0]
AND [1.1]="X

AND [0.1] > 50;
COUNT (%)

lineitem, orders
L_orderkey=o0_orderkey
0_orderstatus=
1 tax > 50:




W DuckDB
Planner
BOUND UNOPTIMIZED
STATEMENT mmmmg LOGICAL PLAN

AGGREGATE
COUNT(*)

FILTER
10.01=[1.0]
AND [1.1]="X
AND [0.1] > 30;

CROSS_PRODUCT

COUNT ()
lineitem, orders
GET[lineitem][0] GET[orders][1] L_orderkey=0_orderkey
0_orderstatus=
1 tax > 50:




Optimizer

UNOPTIMIZED OPTIMIZED
LOGICAL PLAN LOGICAL PLAN

AGGREGATE
COUNT(*)

JOIN
10.01=[1.0]

FILTER

[0.1]>50

GET[lineitem][0] GET[orders][1] COUNT ()

lineitem, orders
L_orderkey=o0_orderkey
0_orderstatus=
1 tax > 50:




Physical Planner
OPTIMIZED PHYSICAL
LOGICALPLAN e PLAN

SIMPLE_AGGREGATE
COUNT(*)

HASH_JOIN
L#0=R#0

SEQ_SCAN[lineitem] SEQ_SCANJorders] COUNT ()

lineitem, orders
L_orderkey=o0_orderkey
0_orderstatus=
1 tax > 50:




W DuckDB

» Query Execution

» DuckDB uses a vectorized pull-based model ("vector
volcano”)

» Each operator calls "GetChunk” on its child
operators to fetch an input chunk (= set of vectors)

» Scans fetch data from the base tables

Vectorized Processing

Table Result
> >




SIMPLE_AGGREGATE
COUNT(*)

HASH_JOIN
L#0=R#0 HT Build: Vectors flow
from right side into HT

SEQ_SCAN[orders]



SIMPLE_AGGREGATE
COUNT(*)

HASH_JOIN

L#0=R#0

After build is completed
chunks flow from left side

to root aggregate
FILTER
#1>50

SEQ_SCAN[lineitem]



W DuckDB

» DuckDB is free and open-source

» Currently in pre-release (v0.1)

DuckDB

» We have a website: www.duckdb.org

» Source Code: https://github.com/cwida/duckdb

» Feel free to try it

» And send us a bug report if anything breaks!


http://www.duckdb.org
https://github.com/cwida/duckdb

W DuckDB

» Lessons Learned for Building a RDBMS
» Use an existing SQL parser

» Writing a robust parser is difficult!

» PostgreSQL parser saved us so much time
» Write many, many tests

» Also steal tests from other systems!

» Read all of Thomas Neumann's papers



