
DuckDB
an Embeddable Analytical RDBMS

Mark Raasveldt & Hannes Mühleisen

About Me

▸ Mark Raasveldt

▸ PhD Student @ CWI in Amsterdam

▸ Database Architectures group

▸ Supervised by Hannes Mühleisen and Stefan Manegold

▸ Me & Hannes made DuckDB

Hannes Me Stefan

Outline

▸ Motivation for Using Database Systems

▸ Data Science and Database Systems

▸ DuckDB: Systems Overview

Motivation for
Using Database Systems

Motivation

▸ Why should people use relational database systems?

▸ This is a strange question in our field (DBMS research)

▸ Obviously everyone should use RDBMSs!

▸ But for many people it is not so obvious

▸ So why should you actually use a RDBMS?

The Good

▸ Database systems offer ACID properties

▸ Consistency, reliability

▸ Integrity checks

▸ Advanced query optimizers

▸ Fast and flexible query execution (SQL)

▸ Takes care of data layout for you (in theory)

The Bad

▸ Schema needs to be defined beforehand

▸ Annoying at start of a project when there are many
schema changes

▸ Database systems are difficult to setup

▸ Even PostgreSQL will take you an hour if you are new

▸ …and then you still need to learn SQL!

The Ugly

▸ Database systems are expensive

▸ Oracle costs $17.5K per processor

▸ For the standard edition!

Motivation

▸ These problems lead to the rise of NoSQL systems

▸ Thankfully (almost) everyone now realizes this was
a bad idea*

▸ But these problems are still valid

▸ Lead to many people using inferior* technology

* In my completely unbiased opinion as RDBMS researcher

Data Science
and

Database Systems

Data Science

▸ Data science seems like a prime target for RDBMS

▸ After all, it has “data” in the name!

▸ Data scientists work with data

▸ Thus they need to manage that data!

▸ Yet, many data scientists do not use RDBMS…

Data Science

▸ Instead of using RDBMS, they have invented their
own solutions

▸ They manage data using flat files

▸ CSV files, binary, HDF5, parquet…

▸ They created their own libraries for DBMS ops

▸ dplyr, pandas, DataFrames

Data Science

▸ Flat File Management - what is the problem?

▸ Manually managing files is cumbersome

▸ Loading and parsing e.g. CSV files is inefficient

▸ File writers typically do not offer resiliency

▸ Files can be corrupted

▸ Difficult to change/update

▸ It does not scale!

Data Science

▸ The reason people use it:

load a CSV file into a DataFrame
df <- read.csv("input.csv", sep="|")
write a CSV file to a DataFrame
write.csv(df, sep="|")

Data Science

▸ Start by using flat files because they are easy

▸ But then never switch!

▸ At CWI:

▸ Genetics researchers asked us how they could speed
up their data loading

▸ …their data was 1TB of CSV files

▸ …that they loaded every time they ran an analysis

▸ Our answer: use a RDBMS!

Data Science

▸ dplyr, pandas, DataFrames - what is the problem?

▸ For those unfamiliar: these libraries are basically
query execution engines

lineitem %>% group_by(l_returnflag, l_linestatus) %>%
 summarise(sum_qty=sum(l_quantity))

SELECT SUM(l_quantity)
FROM lineitem
GROUP BY l_returnflag, l_linestatus;

dplyr

SELECT *
FROM part JOIN partsupp ON (p_partkey=ps_partkey)
WHERE p_size=15 AND p_type LIKE '%BRASS';

dplyr part %>% filter(p_size == 15, grepl(".*BRASS$", p_type)) %>%
 inner_join(partsupp, by=c("p_partkey" = "ps_partkey"))

Data Science

▸ dplyr, pandas, DataFrames - what is the problem?

▸ The problem is that they are very poor query engines!

▸ Materialize huge intermediates

▸ No query optimizer

▸ Not even for basics like filter pushdown

▸ No support for out of memory computation

▸ No support for parallelization

▸ Unoptimized implementations for joins/aggregations

Data Science

▸ Data scientists need the functionality RDBMSs offer

▸ But they opt not to use RDBMSs

▸ Often this leads to problems down the road

▸ When the data gets bigger…

▸ When a power outage corrupts their data…

Can we save these lost souls and unite
them with the RDBMS?

DuckDB
an Embeddable Analytical RDBMS

SQLite

▸ Problem: Databases are difficult to use

▸ What is the easiest to use database?

SQLite

▸ SQLite is an embedded database

▸ No external server management

▸ It has bindings for every language

▸ Database is stored in a single file (not directory)

* https://www.sqlite.org/famous.html

SQLite

▸ SQLite is great

▸ It is public domain and very easy to use

▸ It is secretly the most used RDBMS in the world

▸ Runs on every phone, browser and OS*

▸ It even runs inside airplanes!

* https://www.sqlite.org/famous.html

SQLite

▸ SQLite has one problem: designed for OLTP

▸ Row store (basically a giant B-tree)

▸ Tuple-at-a-time processing model

▸ Does not utilise memory to speed up computation

▸ Query optimizer is very limited

▸ Great for OLTP, not so good for analytics

DuckDB

▸ DuckDB: The SQLite for Analytics

▸ Core Features

▸ Simple installation

▸ Embedded: no server management

▸ Single file storage format

▸ Fast analytical processing

▸ Fast transfer between R/Python and RDBMS

DuckDB

▸ Why “Duck” DB?

▸ Ducks are amazing animals

▸ They can fly, walk and swim

▸ They are resilient

▸ They can live off anything

▸ Also Hannes used to own a pet
duck

DuckDB

▸ DuckDB Internals

▸ Column-storage database

▸ Vectorized processing model

▸ MVCC for concurrency control

▸ ART index, used also for maintaining key constraints

▸ Combination of both cost/rule based optimizer

▸ We use the PostgreSQL parser

▸ Bindings for C/C++, Python and R

Vectorized Processing
Table Result

DuckDB

SQL STATEMENT BOUND
STATEMENT

Binding Phase Planner

UNOPTIMIZED
LOGICAL PLAN

OPTIMIZED
LOGICAL PLAN

Optimizer Physical Planner

PHYSICAL
PLAN

▸ DuckDB uses a typical pipeline for query processing

Parser

DuckDB

▸ Life of a Query

SELECT COUNT(*)
FROM lineitem, orders
WHERE l_orderkey=o_orderkey
 AND o_orderstatus='X'
 AND l_tax > 50;

DuckDB

SELECT COUNT(*)
FROM lineitem, orders
WHERE l_orderkey=o_orderkey
 AND o_orderstatus='X'
 AND l_tax > 50;

SELECT
STATEMENT

COUNT(*)
select_list

CROSS
PRODUCT

lineitem

orders
from

where

l_orderkey=o_orderkey
 AND o_orderstatus='X'

 AND l_tax > 50;

SQL STATEMENT BOUND
STATEMENT

UNOPTIMIZED
LOGICAL PLAN

OPTIMIZED
LOGICAL PLAN

PHYSICAL
PLAN

Parser Binding Phase Planner Optimizer Physical Planner

DuckDB

SELECT
STATEMENT

COUNT(*)
select_list

CROSS
PRODUCT

lineitem [0]

orders [1]
from

where

[0.0]=[1.0]
 AND [1.1]=‘X’

 AND [0.1] > 50;

SQL STATEMENT BOUND
STATEMENT

Binding Phase Planner

UNOPTIMIZED
LOGICAL PLAN

OPTIMIZED
LOGICAL PLAN

Optimizer Physical Planner

PHYSICAL
PLAN

Parser

CATALOG

SELECT COUNT(*)
FROM lineitem, orders
WHERE l_orderkey=o_orderkey
 AND o_orderstatus='X'
 AND l_tax > 50;

DuckDB

GET[lineitem][0]

SQL STATEMENT BOUND
STATEMENT

Binding Phase Planner

UNOPTIMIZED
LOGICAL PLAN

OPTIMIZED
LOGICAL PLAN

Optimizer Physical Planner

PHYSICAL
PLAN

Parser

GET[orders][1]

SELECT COUNT(*)
FROM lineitem, orders
WHERE l_orderkey=o_orderkey
 AND o_orderstatus='X'
 AND l_tax > 50;

CROSS_PRODUCT

FILTER
[0.0]=[1.0]

 AND [1.1]=‘X’
 AND [0.1] > 50;

AGGREGATE 
COUNT(*)

DuckDB

GET[lineitem][0]

SQL STATEMENT BOUND
STATEMENT

Binding Phase Planner

UNOPTIMIZED
LOGICAL PLAN

OPTIMIZED
LOGICAL PLAN

Optimizer Physical Planner

PHYSICAL
PLAN

Parser

GET[orders][1]
SELECT COUNT(*)
FROM lineitem, orders
WHERE l_orderkey=o_orderkey
 AND o_orderstatus='X'
 AND l_tax > 50;

JOIN
[0.0]=[1.0]

AGGREGATE 
COUNT(*)

FILTER
[1.1]=‘X’

FILTER
[0.1]>50

DuckDB

SEQ_SCAN[lineitem]

SQL STATEMENT BOUND
STATEMENT

Binding Phase Planner

UNOPTIMIZED
LOGICAL PLAN

OPTIMIZED
LOGICAL PLAN

Optimizer Physical Planner

PHYSICAL
PLAN

Parser

SEQ_SCAN[orders]
SELECT COUNT(*)
FROM lineitem, orders
WHERE l_orderkey=o_orderkey
 AND o_orderstatus='X'
 AND l_tax > 50;

HASH_JOIN
L#0=R#0

SIMPLE_AGGREGATE 
COUNT(*)

FILTER
#1=‘X’

FILTER
#1>50

DuckDB

▸ Query Execution

▸ DuckDB uses a vectorized pull-based model ("vector
volcano”)

▸ Each operator calls “GetChunk” on its child
operators to fetch an input chunk (= set of vectors)

▸ Scans fetch data from the base tables

Vectorized Processing
Table Result

DuckDB

SEQ_SCAN[lineitem] SEQ_SCAN[orders]

HASH_JOIN
L#0=R#0

SIMPLE_AGGREGATE 
COUNT(*)

FILTER
#1=‘X’

FILTER
#1>50

HT Build: Vectors flow 
from right side into HT

DuckDB

SEQ_SCAN[lineitem] SEQ_SCAN[orders]

HASH_JOIN
L#0=R#0

SIMPLE_AGGREGATE 
COUNT(*)

FILTER
#1=‘X’

FILTER
#1>50

After build is completed 
chunks flow from left side 
to root aggregate

DuckDB

▸ DuckDB is free and open-source

▸ Currently in pre-release (v0.1)

▸ We have a website: www.duckdb.org

▸ Source Code: https://github.com/cwida/duckdb

▸ Feel free to try it

▸ And send us a bug report if anything breaks!

http://www.duckdb.org
https://github.com/cwida/duckdb

DuckDB

▸ Lessons Learned for Building a RDBMS

▸ Use an existing SQL parser

▸ Writing a robust parser is difficult!

▸ PostgreSQL parser saved us so much time

▸ Write many, many tests

▸ Also steal tests from other systems!

▸ Read all of Thomas Neumann's papers

