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Motivation

▸ Why should people use relational database systems? 

▸ This is a strange question in our field (DBMS research) 

▸ Obviously everyone should use RDBMSs! 

▸ But for many people it is not so obvious 

▸ So why should you actually use a RDBMS?



The Good

▸ Database systems offer ACID properties 

▸ Consistency, reliability 

▸ Integrity checks 

▸ Advanced query optimizers 

▸ Fast and flexible query execution (SQL) 

▸ Takes care of data layout for you (in theory)



The Bad

▸ Schema needs to be defined beforehand 

▸ Annoying at start of a project when there are many 
schema changes 

▸ Database systems are difficult to setup 

▸ Even PostgreSQL will take you an hour if you are new 

▸ …and then you still need to learn SQL!



The Ugly

▸ Database systems are expensive 

▸ Oracle costs $17.5K per processor 

▸ For the standard edition!



Motivation

▸ These problems lead to the rise of NoSQL systems 

▸ Thankfully (almost) everyone now realizes this was 
a bad idea* 

▸ But these problems are still valid 

▸ Lead to many people using inferior* technology

* In my completely unbiased opinion as RDBMS researcher
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Data Science

▸ Data science seems like a prime target for RDBMS 

▸ After all, it has “data” in the name! 

▸ Data scientists work with data 

▸ Thus they need to manage that data! 

▸ Yet, many data scientists do not use RDBMS…



Data Science

▸ Instead of using RDBMS, they have invented their 
own solutions 

▸ They manage data using flat files 

▸ CSV files, binary, HDF5, parquet… 

▸ They created their own libraries for DBMS ops 

▸ dplyr, pandas, DataFrames



Data Science

▸ Flat File Management - what is the problem? 

▸ Manually managing files is cumbersome 

▸ Loading and parsing e.g. CSV files is inefficient 

▸ File writers typically do not offer resiliency 

▸ Files can be corrupted 

▸ Difficult to change/update 

▸ It does not scale!



Data Science

▸ The reason people use it:

# load a CSV file into a DataFrame 
df <- read.csv("input.csv", sep="|") 
# write a CSV file to a DataFrame 
write.csv(df, sep="|") 



Data Science

▸ Start by using flat files because they are easy 

▸ But then never switch! 

▸ At CWI: 

▸ Genetics researchers asked us how they could speed 
up their data loading 

▸ …their data was 1TB of CSV files 

▸ …that they loaded every time they ran an analysis 

▸ Our answer: use a RDBMS!



Data Science

▸ dplyr, pandas, DataFrames - what is the problem? 

▸ For those unfamiliar: these libraries are basically 
query execution engines

lineitem %>% group_by(l_returnflag, l_linestatus) %>%  
    summarise(sum_qty=sum(l_quantity)) 

SELECT SUM(l_quantity) 
FROM lineitem 
GROUP BY l_returnflag, l_linestatus; 

dplyr

SELECT * 
FROM part JOIN partsupp ON (p_partkey=ps_partkey) 
WHERE p_size=15 AND p_type LIKE '%BRASS'; 

dplyr part %>%  filter(p_size == 15, grepl(".*BRASS$", p_type)) %>%  
    inner_join(partsupp, by=c("p_partkey" = "ps_partkey"))  



Data Science

▸ dplyr, pandas, DataFrames - what is the problem? 

▸ The problem is that they are very poor query engines! 

▸ Materialize huge intermediates 

▸ No query optimizer 

▸ Not even for basics like filter pushdown 

▸ No support for out of memory computation 

▸ No support for parallelization 

▸ Unoptimized implementations for joins/aggregations



Data Science

▸ Data scientists need the functionality RDBMSs offer 

▸ But they opt not to use RDBMSs 

▸ Often this leads to problems down the road 

▸ When the data gets bigger… 

▸ When a power outage corrupts their data…

Can we save these lost souls and unite 
them with the RDBMS?



DuckDB 
an Embeddable Analytical RDBMS



SQLite

▸ Problem: Databases are difficult to use 

▸ What is the easiest to use database? 



SQLite

▸ SQLite is an embedded database 

▸ No external server management 

▸ It has bindings for every language 

▸ Database is stored in a single file (not directory)

* https://www.sqlite.org/famous.html



SQLite

▸ SQLite is great 

▸ It is public domain and very easy to use 

▸ It is secretly the most used RDBMS in the world 

▸ Runs on every phone, browser and OS* 

▸ It even runs inside airplanes!

* https://www.sqlite.org/famous.html



SQLite

▸ SQLite has one problem: designed for OLTP 

▸ Row store (basically a giant B-tree) 

▸ Tuple-at-a-time processing model 

▸ Does not utilise memory to speed up computation 

▸ Query optimizer is very limited 

▸ Great for OLTP, not so good for analytics



DuckDB

▸ DuckDB: The SQLite for Analytics 

▸ Core Features 

▸ Simple installation 

▸ Embedded: no server management 

▸ Single file storage format 

▸ Fast analytical processing 

▸ Fast transfer between R/Python and RDBMS



DuckDB

▸ Why “Duck” DB? 

▸ Ducks are amazing animals 

▸ They can fly, walk and swim 

▸ They are resilient  

▸ They can live off anything 

▸ Also Hannes used to own a pet 
duck



DuckDB

▸ DuckDB Internals 

▸ Column-storage database 

▸ Vectorized processing model 

▸ MVCC for concurrency control 

▸ ART index, used also for maintaining key constraints 

▸ Combination of both cost/rule based optimizer 

▸ We use the PostgreSQL parser 

▸ Bindings for C/C++, Python and R

Vectorized Processing
Table Result



DuckDB

SQL STATEMENT BOUND 
STATEMENT

Binding Phase Planner

UNOPTIMIZED 
LOGICAL PLAN

OPTIMIZED 
LOGICAL PLAN

Optimizer Physical Planner

PHYSICAL 
PLAN

▸ DuckDB uses a typical pipeline for query processing

Parser



DuckDB

▸ Life of a Query

SELECT COUNT(*) 
FROM lineitem, orders 
WHERE l_orderkey=o_orderkey 
      AND o_orderstatus='X' 
      AND l_tax > 50; 



DuckDB

SELECT COUNT(*) 
FROM lineitem, orders 
WHERE l_orderkey=o_orderkey 
      AND o_orderstatus='X' 
      AND l_tax > 50; 

SELECT 
STATEMENT

COUNT(*)
select_list

CROSS 
PRODUCT

lineitem

orders
from

where

l_orderkey=o_orderkey 
      AND o_orderstatus='X' 

      AND l_tax > 50;

SQL STATEMENT BOUND 
STATEMENT

UNOPTIMIZED 
LOGICAL PLAN

OPTIMIZED 
LOGICAL PLAN

PHYSICAL 
PLAN

Parser Binding Phase Planner Optimizer Physical Planner



DuckDB

SELECT 
STATEMENT

COUNT(*)
select_list

CROSS 
PRODUCT

lineitem [0]

orders [1]
from

where

[0.0]=[1.0] 
      AND [1.1]=‘X’ 

      AND [0.1] > 50;

SQL STATEMENT BOUND 
STATEMENT

Binding Phase Planner

UNOPTIMIZED 
LOGICAL PLAN

OPTIMIZED 
LOGICAL PLAN

Optimizer Physical Planner

PHYSICAL 
PLAN

Parser

CATALOG

SELECT COUNT(*) 
FROM lineitem, orders 
WHERE l_orderkey=o_orderkey 
      AND o_orderstatus='X' 
      AND l_tax > 50; 



DuckDB

GET[lineitem][0]

SQL STATEMENT BOUND 
STATEMENT

Binding Phase Planner

UNOPTIMIZED 
LOGICAL PLAN

OPTIMIZED 
LOGICAL PLAN

Optimizer Physical Planner

PHYSICAL 
PLAN

Parser

GET[orders][1]

SELECT COUNT(*) 
FROM lineitem, orders 
WHERE l_orderkey=o_orderkey 
      AND o_orderstatus='X' 
      AND l_tax > 50; 

CROSS_PRODUCT

FILTER 
[0.0]=[1.0] 

      AND [1.1]=‘X’ 
      AND [0.1] > 50;

AGGREGATE 
COUNT(*)



DuckDB

GET[lineitem][0]

SQL STATEMENT BOUND 
STATEMENT

Binding Phase Planner

UNOPTIMIZED 
LOGICAL PLAN

OPTIMIZED 
LOGICAL PLAN

Optimizer Physical Planner

PHYSICAL 
PLAN

Parser

GET[orders][1]
SELECT COUNT(*) 
FROM lineitem, orders 
WHERE l_orderkey=o_orderkey 
      AND o_orderstatus='X' 
      AND l_tax > 50; 

JOIN 
[0.0]=[1.0]

AGGREGATE 
COUNT(*)

FILTER 
[1.1]=‘X’

FILTER 
[0.1]>50



DuckDB

SEQ_SCAN[lineitem]

SQL STATEMENT BOUND 
STATEMENT

Binding Phase Planner

UNOPTIMIZED 
LOGICAL PLAN

OPTIMIZED 
LOGICAL PLAN

Optimizer Physical Planner

PHYSICAL 
PLAN

Parser

SEQ_SCAN[orders]
SELECT COUNT(*) 
FROM lineitem, orders 
WHERE l_orderkey=o_orderkey 
      AND o_orderstatus='X' 
      AND l_tax > 50; 

HASH_JOIN 
L#0=R#0

SIMPLE_AGGREGATE 
COUNT(*)

FILTER 
#1=‘X’

FILTER 
#1>50



DuckDB

▸ Query Execution 

▸ DuckDB uses a vectorized pull-based model ("vector 
volcano”) 

▸ Each operator calls “GetChunk” on its child 
operators to fetch an input chunk (= set of vectors) 

▸ Scans fetch data from the base tables

Vectorized Processing
Table Result



DuckDB

SEQ_SCAN[lineitem] SEQ_SCAN[orders]

HASH_JOIN 
L#0=R#0

SIMPLE_AGGREGATE 
COUNT(*)

FILTER 
#1=‘X’

FILTER 
#1>50

HT Build: Vectors flow 
from right side into HT



DuckDB

SEQ_SCAN[lineitem] SEQ_SCAN[orders]

HASH_JOIN 
L#0=R#0

SIMPLE_AGGREGATE 
COUNT(*)

FILTER 
#1=‘X’

FILTER 
#1>50

After build is completed 
chunks flow from left side 
to root aggregate



DuckDB

▸ DuckDB is free and open-source 

▸ Currently in pre-release (v0.1) 

▸ We have a website: www.duckdb.org 

▸ Source Code: https://github.com/cwida/duckdb 

▸ Feel free to try it 

▸ And send us a bug report if anything breaks!

http://www.duckdb.org
https://github.com/cwida/duckdb


DuckDB

▸ Lessons Learned for Building a RDBMS 

▸ Use an existing SQL parser 

▸ Writing a robust parser is difficult! 

▸ PostgreSQL parser saved us so much time 

▸ Write many, many tests 

▸ Also steal tests from other systems! 

▸ Read all of Thomas Neumann's papers


