Transactional Information Systems:

Theory, Algorithms, and the Practice of
Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann
ISBN 1-55860-508-8

“Teamwork is essential. It allows you to blame someone else.” (Anonymous)

Part I: Background and Motivation

* 1 What Is It All About?
* 2 Computational Models

Chapter 1: What Is It All About?

* 1.2 Application Examples

* 1.3 System Paradigms
¢ 1.4 Virtues of Transactions
¢ 1.5 Architecture of Database Servers

¢ 1.6 Lessons Learned

“If I had had more time, I could written you a shorter letter”
(Blaise Pascal)

Application Examples

* OLTP, e.g., funds transfer
* E-commerce, e.g., Internet book store

* Workflow, e.g., travel planning & booking

OLTP Example: Debit/Credit

void main () {
EXEC SQL BEGIN DECLARE SECTION
int b /*balance*/, a /*accountid*/, amount;
EXEC SQL END DECLARE SECTION;
/* read user input */
scanf (“%d %d”, &a, &amount);
/* read account balance */
EXEC SQL Select Balance into :b From Account
Where Account_Id = :a;
/* add amount (positive for debit, negative for credit) */
b =b + amount;
/* write account balance back into database */
EXEC SQL Update Account
Set Balance = :b Where Account_Id = :a;
EXEC SQL Commit Work;

}

OLTP Example 1.1: Concurrent Executions

P1 Time P2

Select Balance Into :b,
From Account 1
Where Account_Id = :a
/* b,=0, a.Balance=100, b,=0 */
Select Balance Into :b,
2 From Account
Where Account_Id =:a
/% b,=100, a.Balancg:lOO, b,=100 */

b1 = b1-50
/* b,=50, a.Balance=100, b,=100 */
4 b, =b, +100
/* b,=50, a.Balance=100, b,=200 */
Update Account
Set Balance = :b, 5

Where Account_Id = :a
/* b,=50, a.Balance=50, b,=200 */
Update Account
6 Set Balance = :b
Where Account_zld =:a
/* b,=50, a.Balance=200, b,=200 */

OLTP Example 1.1: Concurrent Executions

P1 Time P2

Select Balance Into :b,
From Account 1
Where Account_Id = :a
/* b,=0, a.Balance=100, b,=0 */
Select Balance Into :b,
2 From Account
Where Account_Id =:a
/% b,=100, a.Balancg:lOO, b,=100 */

b1 =b1-50
/* b,=50, a.Balance=100, b,=100 */
4 b, =b, +100
/* b,=50, a.Balance=100, b,=200 */
Update Account
Set Balance = :b, 5

Where Account_Id = :a
/* b,=50, a.Balance=50, b,=200 */
Update Account
6 Set Balance = :b
Where Account_zld =:a
/* b,=50, a.Balance=200, b,=200 */

Observation: concurrency or parallelism may cause inconsistencies,
requires concurrency control for “isolation”

OLTP Example 1.2: Funds Transfer

void main () {
/* read user input */
scanf (“%d %d %d”, &sourceid, &targetid, &amount);
/* subtract amount from source account */

EXEC SQL Update Account

Set Balance = Balance - :amount Where Account_Id = :sourceid;
/* add amount to target account */ —
EXEC SQL Update Account

Set Balance = Balance + :amount Where Account_Id = :targetid;
EXEC SQL Commit Work; }

OLTP Example 1.2: Funds Transfer

void main () {
/* read user input */
scanf (“%d %d %d”, &sourceid, &targetid, &amount);
/* subtract amount from source account */

EXEC SQL Update Account

Set Balance = Balance - :amount Where Account_Id = :sourceid;
/* add amount to target account */ —
EXEC SQL Update Account

Set Balance = Balance + :amount Where Account_Id = :targetid;
EXEC SQL Commit Work; }

Observation: failures may cause inconsistencies,
require recovery for “atomicity” and “durability”

E-Commerce Example

Shopping at Internet book store:
* client connects to the book store's server and
starts browsing and querying the store's catalog
* client fills electronic shopping cart
* upon check-out client makes decision on items to purchase
* client provides information for definitive order
(including credit card or cyber cash info)
» merchant's server forwards payment info to customer's bank
credit or card company or cyber cash clearinghouse
» when payment is accepted,
shipping of ordered items is initiated by the merchant's server
and client is notified

E-Commerce Example

Shopping at Internet book store:
* client connects to the book store's server and
starts browsing and querying the store's catalog
* client fills electronic shopping cart
* upon check-out client makes decision on items to purchase
* client provides information for definitive order
(including credit card or cyber cash info)
» merchant's server forwards payment info to customer's bank
credit or card company or cyber cash clearinghouse
» when payment is accepted,
shipping of ordered items is initiated by the merchant's server
and client is notified

Observations: distributed, heterogeneous system
with general information/document/mail servers
and transactional effects on persistent data and messages

Workflow Example

Workflows are (the computerized part of) business processes,
consisting of a set of (automated or intellectual) activities
with specified control and data flow between them

(e.g., specified as a state chart or Petri net)

Conference travel planning:

* Select a conference, based on subject, program, time, and place.
If no suitable conference is found, then the process is terminated.

* Check out the cost of the trip to this conference.

* Check out the registration fee for the conference.

* Compare total cost of attending the conference to allowed budget,
and decide to attend only if the cost is within the budget.

Workflow Example

Workflows are (the computerized part of) business processes,
consisting of a set of (automated or intellectual) activities
with specified control and data flow between them

(e.g., specified as a state chart or Petri net)

Conference travel planning:

* Select a conference, based on subject, program, time, and place.
If no suitable conference is found, then the process is terminated.

* Check out the cost of the trip to this conference.

* Check out the registration fee for the conference.

* Compare total cost of attending the conference to allowed budget,
and decide to attend only if the cost is within the budget.

Observations: activities spawn transactions on information servers,
workflow state must be failure-resilient,
long-lived workflows are not isolated

Example: Travel Planning Workflow

/ Budget:=1000;
Trials:=1;

Select
Conference

e

ConfFound]
ost:=0

[!ConfFound]

[CheckCoanee\

Compute

.................................

Check
Airfare

\CheckTravelCost /

/ Cost =
ConfFee +
TravelCost

[Cost < Budget]

%Eiost > Budget
Trials > 3

[Cost > Budget & Trials < 3] / Trials++

Example: Travel Planning Workflow

/ Budget:=1000;
Trials:=1;

Select
Conference

}Coanound]
Cost:=0

[!ConfFound]

[CheckCoanee\

Compute

.................................

Check
Airfare

\CheckTravelCost /

/ Cost =
ConfFee +
TravelCost

[Cost < Budget]

%Eiost > Budget
Trials > 3

[Cost > Budget & Trials < 3] / Trials++

Example: Travel Planning Workflow

/ Budget:=1000;
Trials:=1;

Select
Conference

}Coanound]
Cost:=0

[!ConfFound]

[CheckCoanee\

Compute

.................................

Check
Airfare

\CheckTravelCost /

/ Cost =
ConfFee +
TravelCost

[Cost < Budget]

%Eiost > Budget
Trials > 3

[Cost > Budget & Trials < 3] / Trials++

Example: Travel Planning Workflow

/ Budget:=1000;
Trials:=1;

Select
Conference

}Coanound]
Cost:=0

[!ConfFound]

[CheckCoanee\

Compute

.................................

Check
Airfare

\CheckTravelCost /

/ Cost =
ConfFee +
TravelCost

[Cost < Budget]

%Eiost > Budget
Trials > 3

[Cost > Budget & Trials < 3] / Trials++

Example: Travel Planning Workflow

/ Budget:=1000;
Trials:=1;

Select
Conference

}Coanound]
Cost:=0

[!ConfFound]

[CheckCoanee\

Compute

.................................

Check
Airfare

/ Cost =
ConfFee +
TravelCost

\CheckTravelCost /

[Cost < Budget]

%Eiost > Budget
Trials > 3

[Cost > Budget & Trials < 3] / Trials++

Example: Travel Planning Workflow

/ Budget:=1000;
Trials:=1;

Select
Conference

}Coanound]
Cost:=0

[!ConfFound]

Check
Airfare

[CheckCoanee\

Compute

.................................

\CheckTravelCost /

[Cost < Budget]

/ Cost =
ConfFee +
TravelCost

%Eiost > Budget
Trials > 3

[Cost > Budget & Trials < 3] / Trials++

Example: Travel Planning Workflow

/ Budget:=1000;
Trials:=1;

Select
Conference

}Coanound]
Cost:=0

[!ConfFound]

[CheckCoanee\

Compute

.................................

Check
Airfare

\CheckTravelCost /

[Cost < Budget]

/ Cost =
ConfFee +
TravelCost

%Eiost > Budget
Trials > 3

[Cost > Budget & Trials < 3] / Trials++

Example: Travel Planning Workflow

/ Budget:=1000;
Trials:=1;

Select
Conference

}Coanound]
Cost:=0

[!ConfFound]

[CheckCoanee\

Compute

.................................

Check
Airfare

\CheckTravelCost /

/ Cost =
ConfFee +
TravelCost

[Cost < Budget]

%Eiost > Budget
Trials > 3

[Cost > Budget & Trials < 3] / Trials++

Introduction

* Application Examples

* System Paradigms

e Virtues of Transactions
¢ Architecture of Database Servers

e Lessons Learned

“If I had had more time, I could written you a shorter letter”
(Blaise Pascal)

3-Tier System Architectures

* Clients:
presentation (GUI, Internet browser)
* Application server:
* application programs (business objects, servlets)
* request brokering (TP monitor, ORB, Web server)
based on middleware (CORBA, DCOM, EJB, SOAP, etc.)
* Data server:
database / (ADT) object / document / mail / etc. servers

Specialization to 2-Tier Client-Server Architecture:
* Client-server with “fat” clients (app on client + ODBC)
* Client-server with “thin” clients (app on server, e.g., stored proc)

3-Tier Reference Architecture

o
Q
o,
0. “’
8

* o 04
°, o
. o
A3
o

o
0
o

Users %
Clients
Request \\ Reply
Application Application
Server p |oram
Request ‘ Reply I'
1 enc@l/ ed expczised
ta ata
Data = '
Objects
Server “ug’ oo B

Stored
Data
(Pages)

System Federations

Users %

Clients

Application (Q Q

e \ /

Data
Servers

= =

Introduction

* Application Examples

* System Paradigms

* Virtues of Transactions

¢ Architecture of Database Servers

e Lessons Learned

“If I had had more time, I could written you a shorter letter”
(Blaise Pascal)

ACID Properties of Transactions

* Atomicity:
all-or-nothing effect,
simple (but not completely transparent) failure handling
* Consistency-preservation:
transaction abort upon consistency violation
* Isolation:
only consistent data visible as if single-user mode,
concurrency is masked to app developers
* Durability (persistence):
committed effects are failure-resilient

Transaction programming interface (“ACID contract”)
* begin transaction

e commit transaction (“commit work™ in SQL)

* rollback transaction (“rollback work™ in SQL)

Requirements on Transactional
Servers

Server components:
* Concurrency Control
guarantees isolation
* Recovery:
guarantees atomicity and durability

* Performance:
high throughput (committed transactions per second)
short response time
* Reliability:
(almost) never lose data despite failures
* Availability:
very short downtime
almost continuous, 24x7, service

Introduction

* Application Examples
* System Paradigms

e Virtues of Transactions

e Architecture of Database Servers

e Lessons Learned

“If I had had more time, I could written you a shorter letter”
(Blaise Pascal)

Database System Layers

Clients oo
/ Requests, /
y
:: ZLanguage & Interface Layer 3
$ Request Query Decomposition &
-8 Execution§. Optimization Laver ¢ |
Database :: Threads Query Execution Layer
 SEy Sinsm s S
Server 2 Access Layer
E i Storage Layer E

Data
ccesses

Database

Storage Structures

Page Header ‘ Ben 55 Las Vegas ’

T Y ﬂ\:varding
Sue |23 seatle\"| A~ L/ RD

‘Joe\29 §San(Antonio

Database
Page

free space

[T l\ Slot Array

Extent
Table

Database

Extents —

Access Structures

Root Node
Bob Eve| \To\m
B+-tree
Adam| Bill B chk Eve| Hank| Jane| Jill| Tom
|

STV T T T T

Search tree interface:
* lookup <index> where <indexed field> = <search key>
* lookup <index> where <indexed field>

between <lower bound> and <higher bound>

Query Execution Plans
Select Name, City, Zipcode, Street

From Person
Where Age < 30 @ @

And City = "Austin"
RID Access

RID List

Intersection
Index Scan Index Scan Fetch Person
on Agelnde on CityInde Record

Projection

Index Scan
on CityInde

Record

Introduction

* Application Examples
* System Paradigms
* Virtues of Transactions

¢ Architecture of Database Servers

e Lessons Learned

“If I had had more time, I could written you a shorter letter”
(Blaise Pascal)

Lessons Learned

* Benefits of ACID contract:
* For users: federation-wide data consistency
* For application developers: ease of programming

* Server obligations:
* Concurrency control
* Recovery

	Chapter 1
	Application Examples
	System Paradigms
	Virtues of Transactions
	Architecture of Database Servers
	Lessions Learned

