
1 / 42

Transactional Information Systems:

Theory, Algorithms, and

the

Practice of

Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

“

Teamwork is essential. It allows you to blame someone else.

”

(Anonymous)

© 2002 Morgan Kaufmann

ISBN 1

-

55860

-

508

-

8

2 / 42

Part III: Recovery

•

11 Transaction Recovery

•

12 Crash Recovery: Notion of Correctness

•

13 Page

-

Model Crash Recovery Algorithms

•

14 Object

-

Model Crash Recovery Algorithms

•

15 Special Issues of Recovery

•

16 Media Recovery

•

17 Application Recovery

3 / 42

Recall: Funds Transfer Example

Observation:

failures may cause inconsistencies

,

require recovery for

“

atomicity

”

and

“

durability

”

void main () {

/* read user input */

scanf (

“

%d %d %d

”

, &sourceid, &targetid, &amount);

/* subtract amount from source account */

EXEC SQL Update Account

Set Balance = Balance

-

:amount Where Account_Id = :sourceid;

/* add amount to target account */

EXEC SQL Update Account

Set Balance = Balance + :amount Where Account_Id = :targetid;

EXEC SQL Commit Work; }

4 / 42

Also Recall: Dirty Read Problem

P1

Time

P2

r (x)

1

x := x + 100

2

w (x)

3

4

r (x)

5

x := x

-

100

failure & rollback

6

7

w (x)

cannot rely on validity

of previously read data

Observation:

transaction rollbacks could affect concurrent transactions

5 / 42

Chapter 11: Transaction Recovery

•

11.2 Expanded Schedules

•

11.3 Page

-

Model Correctness Criteria

•

11.4 Sufficient Syntactic Conditions

•

11.5 Further Relationships Among Criteria

•

11.6 Extending Page

-

Model CC Algorithms

•

11.7 Object

-

Model Correctness Criteria

•

11.8 Extending Object

-

Model CC Algorithms

•

11.9 Lessons Learned

“

And if you find a new way, you can do it today.

You can make it all true. And you can make it undo.

”

(Cat Stevens)

6 / 42

Expanded Schedules with Explicit Undo Steps

Approach:

•

schedules with aborts are expanded by

making the undo operations that implement the rollback explicit

•

expanded schedules are analyzed

by means of serializability arguments

Dirty

-

read problem:

s =

r

1

(x) w

1

(x)

r

2

(x)

a

1

w

2

(x) c

2

Dirty

-

read in expanded schedule:

s' =

r

1

(x) w

1

(x)

r

2

(x)

w

1

-

1

(x) c

1

w

2

(x) c

2

→

∉

CSR

7 / 42

Examples

Expansion?

s =

r

1

(x) w

1

(x)

r

2

(y)

w

1

(y)

w

2

(y)

a

1

r

2

(z)

w

2

(z) c

2

How to handle active trasactions, as in

s =

w

1

(x)

w

2

(x)

w

2

(y)

w

1

(x)

?

8 / 42

Definition 11.1 (Expansion of a Schedule):

For a schedule s the

expansion

of s, exp(s), is defined as follows:

•

steps of exp(s):

•

t

i

∈

commit(s)

⇒

op(t

i

)

⊆

op(exp(s))

•

t

i

∈

abort(s)

⇒

(op(t

i

)

–

{a

i

})

∪

{c

i

}

∪

{w

i

-

1

(x) | w

i

(x)

∈

t

i

}

⊆

op(exp(s))

•

t

i

∈

active(s)

⇒

op(t

i

)

∪

{c

i

}

∪

{w

i

-

1

(x) | w

i

(x)

∈

t

i

}

⊆

op(exp(s))

•

step ordering in exp(s):

•

all steps from op(s)

∩

op(exp(s)) occur in exp(s) in the same order as in s

•

all inverse steps of an aborted transaction occur in exp(s)

after the original steps in s and before the commit of this transaction

•

all inverse steps of active transactions occur in exp(s)

after the original steps of s and before the commits of these transactions

•

the ordering of inverse steps is

the reverse of the ordering of the corresponding original steps

Formal Definition of Expanded Schedules

Example 11.2:

s =

w

1

(x)

w

2

(x) w

2

(y)

w

1

(y)

⇒

exp(s) =

w

1

(x)

w

2

(x) w

2

(y)

w

1

(y)

w

1

-

1

(y)

w

2

-

1

(y) w

2

-

1

(x)

w

1

-

1

(x)

c

2

c

1

9 / 42

Chapter 11: Transaction Recovery

•

11.2 Expanded Schedules

•

11.3 Page

-

Model Correctness Criteria

•

11.4 Sufficient Syntactic Conditions

•

11.5 Further Relationships Among Criteria

•

11.6 Extending Page

-

Model CC Algorithms

•

11.7 Object

-

Model Correctness Criteria

•

11.8 Extending Object

-

Model CC Algorithms

•

11.9 Lessons Learned

10 / 42

Definition 11.2 (Expanded Conflict Serializability):

A schedule s is

expanded conflict serializable

if its expansion, exp(s),

is conflict serializable.

XCSR

denotes the class of expanded conflict serializable schedules.

Expanded Conflict Serializability (XCSR)

Example 11.4:

•

s =

r

1

(x) w

1

(x)

r

2

(x)

a

1

c

2

⇒

exp(s) =

r

1

(x) w

1

(x)

r

2

(x)

w

1

-

1

(x)

c

1

c

2

s' =

r

1

(x) w

1

(x) a

1

r

2

(x) c

2

⇒

exp(s') =

r

1

(x) w

1

(x)

w

1

-

1

(x) c

1

r

2

(x) c

2

∈

XCSR

∉

XCSR

Example 11.5:

•

s =

w

1

(x)

w

2

(x) a

2

a

1

⇒

exp(s) =

w

1

(x)

w

2

(x)

w

2

-

1

(x)

c

2

w

1

-

1

(x)

c

1

∉

XCSR

Lemma 11.1:

•

XCSR

⊂

CSR

11 / 42

Definition 11.3 (Reducibility):

A schedule s is

reducible

if its expansion, exp(s), can be transformed into

a serial history by finitely many applications of the following rules:

•

commutativity rule (CR):

if p, q

∈

op(exp(s)) s.t. p < q and (p, q)

∉

conf(exp(s)) and

if there is no step o

∈

op(exp(s)) with p < o < q,

then the order of p and q can be reversed.

•

undo rule (UR):

if p, q

∈

op(exp(s)) are inverses of each other (i.e., of the form p=w

i

(x) and

q=w

i

-

1

(x)) and if there is no other step o in between p and q,

then the pair of steps p and q can be removed from exp(s).

•

null rule (NR):

if p

∈

op(exp(s)) has the form p=r

i

(x) s.t. t

i

∈

active(s)

∪

abort(s),

then p can be removed from exp(s).

•

ordering rule (OR):

two commutative, unordered operations can be arbitrarily ordered.

Reducibility (RED)

12 / 42

Examples in RED and outside RED

Example 11.6:

s =

r

1

(x) w

1

(x)

r

2

(x) w

2

(x) a

2

a

1

⇒

exp(s) =

r

1

(x) w

1

(x)

r

2

(x) w

2

(x) w

2

-

1

(x) c

2

w

1

-

1

(x) c

1

∈

RED

∼

r

1

(x) w

1

(x)

r

2

(x) c

2

w

1

-

1

(x) c

1

by UR

∼

w

1

(x)

c

2

w

1

-

1

(x) c

1

by NR

∼

w

1

(x) w

1

-

1

(x)

c

2

c

1

by CR

∼

c

2

c

1

by UR

Example 11.8:

s =

w

1

(x)

w

2

(x) c

2

c

1

with prefix s' =

w

1

(x)

w

2

(x) c

2

s is in RED, but s' is not

Example 11.7:

s =

w

1

(x)

r

2

(x)

c

1

c

2

s is in RED, since reduction yields s' =

w

1

(x)

c

1

r

2

(x) c

2

13 / 42

Definition 11.9 (Prefix Reducibility):

A schedule s is

prefix reducible

if each of its prefixes is reducible.

PRED denotes the class of all prefix

-

reducible schedules.

Prefix

-

Reducibility (PRED)

Theorem 11.1:

•

PRED

⊂

RED (Lemma 11.2)

•

XCSR

⊂

RED

•

XCSR and PRED are incomparable

14 / 42

Activity: Why Histories are [not] in PRED?

1)

w

1

(x) r

2

(x) a

1

a

2

2)

w

1

(x) r

2

(x) a

1

c

2

3)

w

1

(x) r

2

(x) c

2

c

1

4)

w

1

(x) r

2

(x) c

2

a

1

5)

w

1

(x) r

2

(x) a

2

a

1

6)

w

1

(x) r

2

(x) a

2

c

1

7)

w

1

(x) r

2

(x) c

1

c

2

8)

w

1

(x) r

2

(x) c

1

a

2

9)

w

1

(x) w

2

(x) a

1

a

2

10)

w

1

(x) w

2

(x) a

1

c

2

11)

w

1

(x) w

2

(x) c

2

c

1

12)

w

1

(x) w

2

(x) c

2

a

1

13)

w

1

(x) w

2

(x) a

2

a

1

14)

w

1

(x) w

2

(x) a

2

c

1

15)

w

1

(x) w

2

(x) c

1

c

2

16)

w

1

(x) w

2

(x) c

1

a

2

∈

PRED

∉

PRED

∉

PRED

∉

PRED

∈

PRED

∈

PRED

∈

PRED

∈

PRED

∉

PRED

∉

PRED

∉

PRED

∉

PRED

∈

PRED

∈

PRED

∈

PRED

∈

PRED

15 / 42

Chapter 11: Transaction Recovery

•

11.2 Expanded Schedules

•

11.3 Page

-

Model Correctness Criteria

•

11.4 Sufficient Syntactic Conditions

•

11.5 Further Relationships Among Criteria

•

11.6 Extending Page

-

Model CC Algorithms

•

11.7 Object

-

Model Correctness Criteria

•

11.8 Extending Object

-

Model CC Algorithms

•

11.9 Lessons Learned

16 / 42

Example

Consider

s =

w

1

(x)

r

2

(x) c

2

a

1

s is not acceptable (why?),

yet an SR scheduler would consider it valid (why?).

17 / 42

Sufficient Condition: Recoverability

Definition 11.5 (Recoverability):

A schedule s is

recoverable

if the following holds for all t

i

, t

j

∈

trans(s):

if t

i

reads from t

j

in s and c

i

∈

op(s), then c

j

< c

i

.

RC denotes the class of all recoverable schedules.

Example 11.10:

s

1

=

w

1

(x) w

1

(y)

r

2

(u) w

2

(x) r

2

(y) w

2

(y)

w

3

(u) c

3

c

2

w

1

(z) c

1

s

2

=

w

1

(x) w

1

(y)

r

2

(u) w

2

(x) r

2

(y) w

2

(y)

w

3

(u) c

3

w

1

(z) c

1

c

2

∈

RC

∉

RC

18 / 42

Sufficient Condition:

Avoidance of Cascading Aborts

Definition 11.20 (Avoiding Cascading Aborts):

A schedule s

avoids cascading aborts

if the following holds for all t

i

, t

j

∈

trans(s):

if t

i

reads x from t

j

in s, then c

j

< r

i

(x).

ACA denotes the class of all schedules that avoid cascading aborts.

Examples 11.10 and 11.11:

s

2

=

w

1

(x) w

1

(y)

r

2

(u) w

2

(x) r

2

(y) w

2

(y)

w

3

(u) c

3

w

1

(z) c

1

c

2

s

3

=

w

1

(x) w

1

(y)

r

2

(u) w

2

(x)

w

1

(z) c

1

r

2

(y) w

2

(y)

w

3

(u) c

3

c

2

s = w

0

(x, 1) c

0

w

1

(x, 2)

w

2

(x, 3) c

2

a

1

∈

ACA

∉

ACA

∈

ACA

19 / 42

Sufficient Condition: Strictness

Definition 11.7 (Strictness):

A schedule s is

strict

if the following holds for all t

i

, t

j

∈

trans(s):

for all p

i

(x)

∈

op(t

i

), p=r or p=w, if w

j

(x) < p

i

(x) then a

j

< p

i

(x) or c

j

< p

i

(x).

ST

denotes the class of all strict schedules.

Example 11.11 and 11.13:

s

3

=

w

1

(x) w

1

(y)

r

2

(u) w

2

(x)

w

1

(z) c

1

r

2

(y) w

2

(y)

w

3

(u) c

3

c

2

s

4

=

w

1

(x) w

1

(y)

r

2

(u)

w

1

(z) c

1

w

2

(x) r

2

(y) w

2

(y)

w

3

(u) c

3

c

2

∈

ST

∉

ST

20 / 42

Sufficient Condition: Rigorousness

Definition 11.8 (Rigorousness):

A schedule s is

rigorous

if it is strict and the following holds for all t

i

, t

j

∈

trans(s):

if r

j

(x) < w

i

(x) then a

j

< w

i

(x) or c

j

< w

i

(x).

RG

denotes the class of all rigorous schedules.

Example 11.13 and 11.14:

s

4

=

w

1

(x) w

1

(y)

r

2

(u)

w

1

(z) c

1

w

2

(x) r

2

(y) w

2

(y)

w

3

(u) c

3

c

2

s

5

=

w

1

(x) w

1

(y)

r

2

(u)

w

1

(z) c

1

w

2

(x) r

2

(y) w

2

(y) c

2

w

3

(u) c

3

∈

RG

∉

RG

21 / 42

Situation

22 / 42

Relationships Among Schedule Classes

Theorems 11.2, 11.3, 11.4:

•

RG

⊂

ST

⊂

ACA

⊂

RC

•

RG

⊂

COCSR

•

CSR

∩

ST

⊂

PRED

⊂

CSR

∩

RC

Proofs?

23 / 42

Situation

24 / 42

Definition 11.9 (Log Recoverability):

A schedule s is

log recoverable

if the following properties hold:

•

s is recoverable

•

for all t

i

, t

j

∈

trans(s): if there is a ww conflict of the form w

i

(x) < w

j

(x) in s,

then

•

a

i

< w

j

(x) or c

i

< c

j

if t

j

commits,

•

or a

j

< a

i

if t

i

aborts.

LRC

denotes the class of all log recoverable schedules.

Log

-

Recoverability

1)

w

1

(x) r

2

(x) a

1

a

2

∈

PRED

2)

w

1

(x) r

2

(x) a

1

c

2

∉

PRED

3)

w

1

(x) r

2

(x) c

2

c

1

∉

PRED

4)

w

1

(x) r

2

(x) c

2

a

1

∉

PRED

5)

w

1

(x) r

2

(x) a

2

a

1

∈

PRED

6)

w

1

(x) r

2

(x) a

2

c

1

∈

PRED

7)

w

1

(x) r

2

(x) c

1

c

2

∈

PRED

8)

w

1

(x) r

2

(x) c

1

a

2

∈

PRED

Relationship to PRED for wr and ww conflicts:

1)

w

1

(x) w

2

(x) a

1

a

2

∉

PRED

2)

w

1

(x) w

2

(x) a

1

c

2

∉

PRED

3)

w

1

(x) w

2

(x) c

2

c

1

∉

PRED

4)

w

1

(x) w

2

(x) c

2

a

1

∉

PRED

5)

w

1

(x) w

2

(x) a

2

a

1

∈

PRED

6)

w

1

(x) w

2

(x) a

2

c

1

∈

PRED

7)

w

1

(x) w

2

(x) c

1

c

2

∈

PRED

8)

w

1

(x) w

2

(x) c

1

a

2

∈

PRED

25 / 42

Relationship Between LRC and PRED

Theorem 11.5:

•

PRED = CSR

∩

LRC

Proof sketch:

•

Lemma 11.3: If s

∈

CSR

∩

LRC, then all operations of uncommitted transactions

can be eliminated using rules CR, UR, NR, and OR.

•

PRED

⊇

CSR

∩

LRC:

Assume s

∈

CSR

∩

LRC.

After eliminating operations of uncommitted transactions by Lemma 11.31

(and preserving all conflict orders among committed transactions),

s is still CSR and so is every prefix of s. Thus s is in PRED.

•

PRED

⊆

LRC:

Assume s

∈

PRED but

∉

LRC. Consider a conflict w

i

(x) < w

j

(x). Since s

∉

LRC,

either a) t

j

commits but t

i

does not commit or commits after t

j

or b) t

i

aborts but t

j

does not abort or aborts after t

i

.

All cases lead to contradictions to the assumption that s is in PRED.

Similarly, assuming that s does not satisfy the RC property for situations

like w

i

(x) < r

j

(x) c

j

, leads to a contradiction.

•

PRED

⊆

CSR

26 / 42

Situation

27 / 42

Chapter 11: Transaction Recovery

•

11.2 Expanded Schedules

•

11.3 Page

-

Model Correctness Criteria

•

11.4 Sufficient Syntactic Conditions

•

11.5 Further Relationships Among Criteria

•

11.6 Extending Page

-

Model CC Algorithms

•

11.7 Object

-

Model Correctness Criteria

•

11.8 Extending Object

-

Model CC Algorithms

•

11.9 Lessons Learned

28 / 42

Extending 2PL for ST and RG

Theorem 11.6:

Gen(SS2PL) = RG

Theorem 11.7:

Gen(S2PL)

⊆

CSR

∩

ST

29 / 42

Extending SGT for LRC

Approach:

•

defer commit

upon commit request of t

j

if there is a ww or wr conflict from t

i

to t

j

and t

i

is not yet committed

•

enforce cascading abort

for t

j

upon abort request of t

i

if there is a ww or wr conflict from t

i

to t

j

ESGT algorithm:

•

process w and r steps as usual and maintain serialization graph

with explicit labeling of edges that correspond to ww or wr conflicts

•

upon c

i

test if t

i

has a predecessor w.r.t. ww or wr edges in the graph;

if no predecessor exists then perform c

i

and resume waiting successors

•

upon a

i

test if t

i

has successor w.r.t. ww or wr edges in the graph;

if no successor exists then perform a

i

,

otherwise enforce aborts for all successors of t

i

Theorem 11.8:

Gen(ESGT)

⊆

CSR

∩

LRC

Remark:

similar approaches are feasible for other CC protocols

(including non

-

strict 2PL)

30 / 42

Chapter 11: Transaction Recovery

•

11.2 Expanded Schedules

•

11.3 Page

-

Model Correctness Criteria

•

11.4 Sufficient Syntactic Conditions

•

11.5 Further Relationships Among Criteria

•

11.6 Extending Page

-

Model CC Algorithms

•

11.7 Object

-

Model Correctness Criteria

•

11.8 Extending Object

-

Model CC Algorithms

•

11.9 Lessons Learned

31 / 42

Aborts in Flat Object Schedules

Definition 11.10 (Inverse operations):

An operation f' (x

1

', ..., x

m'

',

↑

y

1

', ...,

↑

y

k'

') with input parameters

x

1

' through x

m'

' and output parameters y

1

' through y

k'

' is the

inverse operation

of operation f (x

1

, ..., x

m

,

↑

y

1

, ...,

↑

y

k

) if

for all possible sequences

α

and

ω

of operations on a given interface,

the return parameters in the sequence

α

f (...) f' (...)

ω

are the same as in

α

ω

.

f' (...) is also denoted as f

-

1

(...).

With the notion of inverse operations, the concepts

of expanded schedules and PRED generalize to flat object schedules.

Examples 11.17 and 11.18:

s

1

=

withdraw

1

(a)

withdraw

2

(b) deposit

2

(c)

deposit

1

(c)

c

1

a

2

∈

PRED

⇒

exp(s

1

) =

withdraw

1

(a)

withdraw

2

(b) deposit

2

(c)

deposit

1

(c) c

1

reclaim

2

(c) deposit

2

(b) c

2

s

2

=

insert

1

(x)

delete

2

(x)

insert

3

(y)

a

1

a

2

a

3

∉

PRED

⇒

exp(s

2

) =

insert

1

(x)

delete

2

(x)

insert

3

(y)

delete

1

(x) c

1

insert

2

(x)

c

2

delete

3

(y) c

3

32 / 42

Example of Correctly Expanded

Flat Object Schedule

c

1

t

1

withdraw

11

(a)

r

111

(p)

w

112

(p)

t

2

withdraw

21

(b)

r

211

(p)

w

212

(p)

deposit

22

(c)

r

221

(p)

w

222

(p)

deposit

12

(c)

r

121

(p)

w

122

(p)

a

2

Expansion

reclaim

23

(c)

deposit

24

(b)

t

1

withdraw

11

(a)

r

111

(p)

w

112

(p)

t

2

withdraw

21

(b)

r

211

(p)

w

212

(p)

deposit

22

(c)

r

221

(p)

w

222

(p)

deposit

12

(c)

r

121

(p)

w

122

(p)

tree

-

reducible

33 / 42

Example of Incorrectly Expanded

Flat Object Schedule

t

1

withdraw

11

(a)

r

111

(p)

w

112

(p)

t

2

withdraw

21

(b)

r

211

(p)

w

212

(p)

deposit

22

(c)

r

221

(p)

w

222

(p)

deposit

12

(c)

r

121

(p)

w

122

(p)

c

1

a

2

Incorrect “expansion”

w

-

1

23

(p)

w

-

1

24

(p)

Important observation:

Page

-

level undo is, in general, incorrect for object

-

model transactions.

t

1

withdraw

11

(a)

r

111

(p)

w

112

(p)

t

2

withdraw

21

(b)

r

211

(p)

w

212

(p)

deposit

22

(c)

r

221

(p)

w

222

(p)

deposit

12

(c)

r

121

(p)

w

122

(p)

not

tree

-

reducible

34 / 42

Perfect Commutativity

Definition 11.11 (Perfect Commutativity):

Given a set of operations for an object type, such that for each operation

f (x, p

1

, ..., p

m

) an appropriate inverse operation f

-

1

(x, p

1

', ..., p

m'

') is included.

A commutativity table for these operations is called

perfect

if the following holds:

if f(x, p

1

, ..., p

m

) and g(x, q

1

, ..., q

n

) commute then

f(x, p

1

, ..., p

m

) and g

-

1

(x, q

1

'..., q

n'

') commute,

f

-

1

(x, p

1

', ..., p

m'

') and g(x, q

1

, ..., q

n

) commute, and

f

-

1

(x, p

1

', ..., p

m'

') and g

-

1

(x, q

1

'..., q

n'

') commute.

Definition 11.12 (Perfect Closure):

The

perfect closure

of a commutativity table for the operations of a given

object type is the largest, perfect subset of the original commutativity table's

commutative operation pairs.

Important observation:

For object types with perfect or perfectly closed commutativity tables,

S2PL

does not need to acquire any additional locks for undo,

and therefore is

deadlock

-

free during rollback

.

35 / 42

Examples of Commutativity Tables

with Inverse Operations

r

i

(x)

w

i

(x)

w

i

-

1

(x)

r

i

(x) w

i

(x) w

i

-

1

(x)

+

-

-

-

-

-

-

-

-

perfect

insert

delete

test

insert

-

1

delete

-

1

insert delete test insert

-

1

delete

-

1

-

-

-

-

-

-

-

-

-

-

-

-

+

-

-

-

-

-

+

-

-

-

-

-

+

not perfect

for object type

“

page

”

for object type

“

set

”

insert delete test insert

-

1

delete

-

1

-

-

-

-

-

-

-

-

-

-

-

-

+

-

-

-

-

-

-

-

-

-

-

-

-

perfectly closed

36 / 42

Chapter 11: Transaction Recovery

•

11.2 Expanded Schedules

•

11.3 Page

-

Model Correctness Criteria

•

11.4 Sufficient Syntactic Conditions

•

11.5 Further Relationships Among Criteria

•

11.6 Extending Page

-

Model CC Algorithms

•

11.7 Object

-

Model Correctness Criteria

•

11.8 Extending Object

-

Model CC Algorithms

•

11.9 Lessons Learned

37 / 42

Complete and Partial Rollbacks

in General Object

-

Model Schedules

Definition 11.15 (Terminated Subtransactions):

An object

-

model history has

terminated subtransactions

if each non

-

leaf node p

ω

has either a child c

ων

or

a

ων

that follows all other (

ν

-

1)

children of

p

ω

.

An object

-

model schedule with terminated subtransactions is a prefix of

an object

-

model history with terminated subtransactions.

Definition 11.16 (Expanded Object Model Schedule):

For an object model schedule s with terminated subtransactions the

expansion

of s, exp(s), is an object

-

model history derived as follows:

•

All operations whose parent has a commit child are included in exp(s).

•

For each operation whose parent p

ω

has an abort child a

ων

an inverse operation

is added for all of p's children that do themselves have a commit child, and

a commit child is added to p.

The inverse operations have the reverse order of the corresponding forward

operations and placed in between the forward operations and the new commit child.

All new children of p precede an operation q in exp(s) if the abort child of p

preceded q in s.

•

For each transaction in active(s) and each non

-

terminated subtransaction,

inverse operations and a final commit child are

added as children of the transaction roots, with ordering analagous to above.

38 / 42

Tree Prefix Reducibility

for General Object

-

Model Schedules

with Complete and Partial Rollbacks

Definition 11.17 (Extended Tree Reducibility):

An object model schedule s is

extended tree reducible

if its expansion, exp(s),

can be transformed into a serial order of s's committed transaction roots by

applying the following rules finitely many times:

1.

the commutativity rule applied to adjacent leaves,

2.

the tree

-

pruning rule for isolated subtrees,

3.

the undo rule applied to adjacent leaves,

4.

the null rule for read

-

only operations, and

5.

the ordering rule applied to unordered leaves.

39 / 42

Example with Complete and Partial Rollbacks

t

1

t

2

withdraw(a)

withdraw(b)

r(p)

r(q)

w(p)

w(q)

deposit(c)

deposit(c)

r(q)

w(q)

r(q)

w(q)

c

a

c

a

withdraw(b)

r(q)

w(q)

c

c

c

t

1

t

2

withdraw(a)

withdraw(b)

r(p)

r(q)

w(p)

w(q)

deposit(c)

deposit(c)

r(q)

w(q)

r(q)

w(q)

w(q)

withdraw(b)

r(q)

w(q)

reclaim(c)

deposit(b)

Expansion

40 / 42

Extending Layered Concurrency Control

for Complete and Partial Rollbacks

Theorem 11.12:

The layered S2PL protocol with perfect commutativity tables

generates only schedules that are extended tree reducible.

Theorem 11.10:

A layered object

-

model schedule for which all level

-

to

-

level schedules

are order

-

preserving conflict serializable and strict is extended tree reducible.

Definition 11.14 (Strictness):

A flat object schedule s is strict if for each pair of L1 operations, p

j

and q

i

,

from different transactions t

i

and t

j

such that p

j

is an update operation,

the order p

j

< q

i

implies that a

j

< q

i

or c

j

< q

i

.

41 / 42

Chapter 11: Transaction Recovery

•

11.2 Expanded Schedules

•

11.3 Page

-

Model Correctness Criteria

•

11.4 Sufficient Syntactic Conditions

•

11.5 Further Relationships Among Criteria

•

11.6 Extending Page

-

Model CC Algorithms

•

11.7 Object

-

Model Correctness Criteria

•

11.8 Extending Object

-

Model CC Algorithms

•

11.9 Lessons Learned

42 / 42

Lessons Learned

•

PRED captures correct schedules in the presence of aborts

by means of intuitive transformation rules.

•

Among the sufficient syntactic criteria, LRC, ACA, ST, and RG

(all in conjunction with CSR), ST is the most practical one.

•

Consequently, S2PL is the method of choice

(and can be shown to guarantee PRED).

•

PRED carries over to the object model, in combination

with the transformation rules of tree

-

reducibility, leading to TPRED,

and captures both complete and partial rollbacks of transactions.

•

The most practical sufficient syntactic condition for

layered schedules with perfect commutativity

requires OCSR and ST for each level

-

to

-

level schedule,

and can be implemented by layered S2PL.

	Chapter 11

