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Recall: Funds Transfer Example 

   
  

Observation: 
   
  

failures may cause inconsistencies
   
  

,

   
  

require recovery for 
   
  

“
   
  

atomicity
   
  

”
   
  

and
   
  

“
   
  

durability
   
  

”

   
  

void main ( ) {

   
  

/* read user input */

   
  

scanf (
   
  

“
   
  

%d %d %d
   
  

”
   
  

, &sourceid, &targetid, &amount);

   
  

/* subtract amount from source account */

   
  

EXEC SQL Update Account

   
  

Set Balance = Balance 
   
  

-
   
  

:amount Where Account_Id = :sourceid;

   
  

/* add amount to target account */

   
  

EXEC SQL Update Account

   
  

Set Balance = Balance + :amount Where Account_Id = :targetid;

   
  

EXEC SQL Commit Work; }
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Also Recall: Dirty Read Problem

   
  

P1
   
  

Time
   
  

P2

   
  

r (x)
   
  

1
   
  

x := x + 100
   
  

2
   
  

w (x)
   
  

3
   
  

4
   
  

r (x)
   
  

5
   
  

x := x 
   
  

-
   
  

100
   
  

failure & rollback
   
  

6
   
  

7
   
  

w (x)

   
  

cannot rely on validity

   
  

of previously read data

   
  

Observation:
   
  

transaction rollbacks could affect concurrent transactions
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“
   
  

And if you find a new way, you can do it today. 

   
  

You can make it all true. And you can make it undo. 
   
  

”
   
  

(Cat Stevens)
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Expanded Schedules with Explicit Undo Steps

  

   
Approach:

  

   
•

     
schedules with aborts are expanded by 

  

   
making the undo operations that implement the rollback explicit

  

   
•

     
expanded schedules are analyzed 

  

   
by means of serializability arguments

  

   
Dirty

     
-

     
read problem:

  

   
s = 

     
r

     
1

     
(x) w

     
1

     
(x)

     
r

     
2

     
(x)

     
a

     
1

     
w

     
2

     
(x) c

     
2

  

   
Dirty

     
-

     
read in expanded schedule:

  

   
s' = 

     
r

     
1

     
(x) w

     
1

     
(x)

     
r

     
2

     
(x)

     
w

     
1

  
   
-
     
1

  
   
(x) c

     
1

     
w

     
2

     
(x) c

     
2

  
   
→

     
∉

     
CSR
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Examples

   
  

Expansion?

   
  

s = 
   
  

r
   
  

1
   
  

(x) w
   
  

1
   
  

(x)
   
  

r
   
  

2
   
  

(y)
   
  

w
   
  

1
   
  

(y) 
   
  

w
   
  

2
   
  

(y)
   
  

a
   
  

1
   
  

r
   
  

2
   
  

(z)
   
  

w
   
  

2
   
  

(z) c
   
  

2

   
  

How to handle active trasactions, as in

   
  

s =
   
  

w
   
  

1
   
  

(x) 
   
  

w
   
  

2
   
  

(x)
   
  

w
   
  

2
   
  

(y) 
   
  

w
   
  

1
   
  

(x)
   
  

?
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Definition 11.1 (Expansion of a Schedule):

  

   
For a schedule s the 

     
expansion

     
of s, exp(s), is defined as follows:

  

   
•

     
steps of exp(s):

  

   
•

     
t
     
i
     
∈

     
commit(s) 

     
⇒

     
op(t

     
i
     
) 

     
⊆

     
op(exp(s))

  

   
•

     
t
     
i
     
∈

     
abort(s) 

     
⇒

     
(op(t

     
i
     
) 

     
–

     
{a

     
i
     
}) 

     
∪

     
{c

     
i
     
} 

     
∪

     
{w

     
i
  
   
-
     
1

     
(x) | w

     
i
     
(x) 

     
∈

     
t
     
i
     
} 

     
⊆

     
op(exp(s))

  

   
•

     
t
     
i
     
∈

     
active(s) 

     
⇒

     
op(t

     
i
     
) 

     
∪

     
{c

     
i
     
} 

     
∪

     
{w

     
i
  
   
-
     
1

     
(x) | w

     
i
     
(x) 

     
∈

     
t
     
i
     
} 

     
⊆

     
op(exp(s))

  

   
•

     
step ordering in exp(s):

  

   
•

     
all steps from op(s) 

     
∩

     
op(exp(s)) occur in exp(s) in the same order as in s

  

   
•

     
all inverse steps of an aborted transaction occur in exp(s)

  

   
after the original steps in s and before the commit of this transaction

  

   
•

     
all inverse steps of active transactions occur in exp(s) 

  

   
after the original steps of s and before the commits of these transactions

  

   
•

     
the ordering of inverse steps is

  

   
the reverse of the ordering of the corresponding original steps

  

   
Formal Definition of Expanded Schedules

  

   
Example 11.2: 

  

   
s = 

     
w

     
1

     
(x)

     
w

     
2

     
(x) w

     
2

     
(y)

     
w

     
1

     
(y)

  

   
⇒

     
exp(s) = 

     
w

     
1

     
(x)

     
w

     
2

     
(x) w

     
2

     
(y)

     
w

     
1

     
(y)

     
w

     
1

  
   
-
     
1

     
(y)

     
w

     
2

  
   
-
     
1

     
(y) w

     
2

  
   
-
     
1

     
(x)

     
w

     
1

  
   
-
     
1

     
(x)

     
c

     
2 

     
c

     
1
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Definition 11.2 (Expanded Conflict Serializability):

  

   
A schedule s is 

     
expanded conflict serializable

     
if its expansion, exp(s), 

  

   
is conflict serializable. 

  

   
XCSR 

     
denotes the class of expanded conflict serializable schedules.

  

   
Expanded Conflict Serializability (XCSR)

  

   
Example 11.4:

  

   
•

     
s = 

     
r

     
1

     
(x) w

     
1

     
(x)

     
r

     
2

     
(x)

     
a

     
1

     
c

     
2

  

   
⇒

     
exp(s) = 

     
r

     
1

     
(x) w

     
1

     
(x)

     
r

     
2

     
(x)

     
w

     
1

  
   
-
     
1

     
(x) 

     
c

     
1

     
c

     
2

  

   
s' = 

     
r

     
1

     
(x) w

     
1

     
(x) a

     
1

     
r

     
2

     
(x) c

     
2

  

   
⇒

     
exp(s') = 

     
r

     
1

     
(x) w

     
1

     
(x) 

     
w

     
1

  
   
-
     
1

     
(x) c

     
1

     
r

     
2

     
(x) c

     
2

     
∈

     
XCSR

  

   
∉

     
XCSR

  

   
Example 11.5:

  

   
•

     
s = 

     
w

     
1

     
(x)

     
w

     
2

     
(x) a

     
2

     
a

     
1

  

   
⇒

     
exp(s) = 

     
w

     
1

     
(x)

     
w

     
2

     
(x) 

     
w

     
2

  
   
-
     
1

     
(x) 

     
c

     
2

     
w

     
1

  
   
-
     
1

     
(x) 

     
c

     
1

     
∉

     
XCSR

  

   
Lemma 11.1:

  

   
•

     
XCSR 

     
⊂

     
CSR
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Definition 11.3 (Reducibility):

  

   
A schedule s is 

     
reducible

     
if its expansion, exp(s), can be transformed into

  

   
a serial history by finitely many applications of the following rules:

  

   
•

     
commutativity rule (CR):

  

   
if p, q 

     
∈

     
op(exp(s)) s.t. p < q and (p, q) 

     
∉

     
conf(exp(s)) and 

  

   
if there is no step o 

     
∈

     
op(exp(s)) with p < o < q, 

  

   
then the order of p and q can be reversed.

  

   
•

     
undo rule (UR):

  

   
if p, q 

     
∈

     
op(exp(s)) are inverses of each other (i.e., of the form p=w

     
i
     
(x) and

  

   
q=w

     
i
  
   
-
     
1

     
(x)) and if there is no other step o in between p and q,

  

   
then the pair of steps p and q can be removed from exp(s).

  

   
•

     
null rule (NR):

  

   
if p 

     
∈

     
op(exp(s)) has the form p=r

     
i
     
(x) s.t. t

     
i
     
∈

     
active(s) 

     
∪

     
abort(s),

  

   
then p can be removed from exp(s).

  

   
•

     
ordering rule (OR):

  

   
two commutative, unordered operations can be arbitrarily ordered.

  

   
Reducibility (RED)
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Examples in RED and outside RED

  

   
Example 11.6:

  

   
s = 

     
r

     
1

     
(x) w

     
1

     
(x)

     
r

     
2

     
(x) w

     
2

     
(x) a

     
2

     
a

     
1

  

   
⇒

     
exp(s) = 

     
r

     
1

     
(x) w

     
1

     
(x)

     
r

     
2

     
(x) w

     
2

     
(x) w

     
2

  
   
-
     
1

  
   
(x) c

     
2

     
w

     
1

  
   
-
     
1

  
   
(x) c

     
1

  
   
∈

     
RED

  

   
∼

     
r

     
1

     
(x) w

     
1

     
(x)

     
r

     
2

     
(x) c

     
2

     
w

     
1

  
   
-
     
1

  
   
(x) c

     
1

     
by UR

  

   
∼

     
w

     
1

     
(x)

     
c

     
2

     
w

     
1

  
   
-
     
1

  
   
(x) c

     
1

     
by NR

  

   
∼

     
w

     
1

     
(x) w

     
1

  
   
-
     
1

  
   
(x)

     
c

     
2

     
c

     
1

     
by CR

  

   
∼

     
c

     
2

     
c

     
1

     
by UR

  

   
Example 11.8:

  

   
s = 

     
w

     
1

     
(x)

     
w

     
2

     
(x) c

     
2

     
c

     
1

     
with prefix s' = 

     
w

     
1

     
(x)

     
w

     
2

     
(x) c

     
2

  

   
s is in RED, but s' is not

  

   
Example 11.7:

  

   
s = 

     
w

     
1

     
(x)

     
r

     
2

     
(x) 

     
c

     
1

     
c

     
2

  

   
s is in RED, since reduction yields s' = 

     
w

     
1

     
(x)

     
c

     
1

     
r

     
2

     
(x) c

     
2
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Definition 11.9 (Prefix Reducibility):

  

   
A schedule s is 

     
prefix reducible

     
if each of its prefixes is reducible.

  

   
PRED denotes the class of all prefix

     
-

     
reducible schedules.

  

   
Prefix

     
-

     
Reducibility (PRED)

  

   
Theorem 11.1:

  

   
•

     
PRED 

     
⊂

     
RED (Lemma 11.2)

  

   
•

     
XCSR 

     
⊂

     
RED

  

   
•

     
XCSR and PRED are incomparable
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Activity: Why Histories are [not] in PRED?

   
  

1)
   
  

w
   
  

1
   
  

(x) r
   
  

2
   
  

(x) a
   
  

1
   
  

a
   
  

2

   
  

2)
   
  

w
   
  

1
   
  

(x) r
   
  

2
   
  

(x) a
   
  

1
   
  

c
   
  

2

   
  

3)
   
  

w
   
  

1
   
  

(x) r
   
  

2
   
  

(x) c
   
  

2
   
  

c
   
  

1

   
  

4)
   
  

w
   
  

1
   
  

(x) r
   
  

2
   
  

(x) c
   
  

2
   
  

a
   
  

1

   
  

5)
   
  

w
   
  

1
   
  

(x) r
   
  

2
   
  

(x) a
   
  

2
   
  

a
   
  

1

   
  

6)
   
  

w
   
  

1
   
  

(x) r
   
  

2
   
  

(x) a
   
  

2 
   
  

c
   
  

1

   
  

7)
   
  

w
   
  

1
   
  

(x) r
   
  

2
   
  

(x) c
   
  

1
   
  

c
   
  

2

   
  

8)
   
  

w
   
  

1
   
  

(x) r
   
  

2
   
  

(x) c
   
  

1
   
  

a
   
  

2

   
  

9)
   
  

w
   
  

1
   
  

(x) w
   
  

2
   
  

(x) a
   
  

1
   
  

a
   
  

2

   
  

10)
   
  

w
   
  

1
   
  

(x) w
   
  

2
   
  

(x) a
   
  

1
   
  

c
   
  

2

   
  

11)
   
  

w
   
  

1
   
  

(x) w
   
  

2
   
  

(x) c
   
  

2
   
  

c
   
  

1

   
  

12)
   
  

w
   
  

1
   
  

(x) w
   
  

2
   
  

(x) c
   
  

2
   
  

a
   
  

1

   
  

13)
   
  

w
   
  

1
   
  

(x) w
   
  

2
   
  

(x) a
   
  

2
   
  

a
   
  

1

   
  

14)
   
  

w
   
  

1
   
  

(x) w
   
  

2
   
  

(x) a
   
  

2
   
  

c
   
  

1

   
  

15)
   
  

w
   
  

1
   
  

(x) w
   
  

2
   
  

(x) c
   
  

1
   
  

c
   
  

2

   
  

16)
   
  

w
   
  

1
   
  

(x) w
   
  

2
   
  

(x) c
   
  

1
   
  

a
   
  

2

   
  

∈
   
  

PRED

   
  

∉
   
  

PRED

   
  

∉
   
  

PRED

   
  

∉
   
  

PRED

   
  

∈
   
  

PRED

   
  

∈
   
  

PRED

   
  

∈
   
  

PRED

   
  

∈
   
  

PRED

   
  

∉
   
  

PRED

   
  

∉
   
  

PRED

   
  

∉
   
  

PRED

   
  

∉
   
  

PRED

   
  

∈
   
  

PRED

   
  

∈
   
  

PRED

   
  

∈
   
  

PRED

   
  

∈
   
  

PRED
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Example

   
  

Consider

   
  

s = 
   
  

w
   
  

1
   
  

(x) 
   
  

r
   
  

2
   
  

(x) c
   
  

2
   
  

a
   
  

1

   
  

s is not acceptable (why?),

   
  

yet an SR scheduler would consider it valid (why?).
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Sufficient Condition: Recoverability

  

   
Definition 11.5 (Recoverability):

  

   
A schedule s is 

     
recoverable

     
if the following holds for all t

     
i
     
, t

     
j
     
∈

     
trans(s):

  

   
if t

     
i
     
reads from t

     
j
     
in s and c

     
i
     
∈

     
op(s), then c

     
j
     
< c

     
i
     
.
  

   
RC denotes the class of all recoverable schedules.

  

   
Example 11.10:

  

   
s

     
1

     
= 

     
w

     
1

     
(x) w

     
1

     
(y)

     
r

     
2

     
(u) w

     
2

     
(x) r

     
2

     
(y) w

     
2

     
(y)

     
w

     
3

     
(u) c

     
3

     
c

     
2

     
w

     
1

     
(z) c

     
1

  

   
s

     
2

     
= 

     
w

     
1

     
(x) w

     
1

     
(y)

     
r

     
2

     
(u) w

     
2

     
(x) r

     
2

     
(y) w

     
2

     
(y)

     
w

     
3

     
(u) c

     
3

     
w

     
1

     
(z) c

     
1

     
c

     
2

     
∈

     
RC

  

   
∉

     
RC
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Sufficient Condition:

  

   
Avoidance of Cascading Aborts

  

   
Definition 11.20 (Avoiding Cascading Aborts):

  

   
A schedule s 

     
avoids cascading aborts

     
if the following holds for all t

     
i
     
, t

     
j
     
∈

     
trans(s):

  

   
if t

     
i
     
reads x from t

     
j
     
in s, then c

     
j
     
< r

     
i
     
(x).

  

   
ACA denotes the class of all schedules that avoid cascading aborts.

  

   
Examples 11.10 and 11.11:

  

   
s

     
2

     
= 

     
w

     
1

     
(x) w

     
1

     
(y)

     
r

     
2

     
(u) w

     
2

     
(x) r

     
2

     
(y) w

     
2

     
(y)

     
w

     
3

     
(u) c

     
3

     
w

     
1

     
(z) c

     
1

     
c

     
2

  

   
s

     
3

     
= 

     
w

     
1

     
(x) w

     
1

     
(y)

     
r

     
2

     
(u) w

     
2

     
(x)

     
w

     
1

     
(z) c

     
1

     
r

     
2

     
(y) w

     
2

     
(y)

     
w

     
3

     
(u) c

     
3

     
c

     
2

  

   
s = w

     
0

     
(x, 1) c

     
0

     
w

     
1

     
(x, 2)

     
w

     
2

     
(x, 3) c

     
2

     
a

     
1

  

   
∈

     
ACA

  

   
∉

     
ACA

  

   
∈

     
ACA
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Sufficient Condition: Strictness

  

   
Definition 11.7 (Strictness):

  

   
A schedule s is

     
strict

     
if the following holds for all t

     
i
     
, t

     
j
     
∈

     
trans(s):

  

   
for all p

     
i
     
(x) 

     
∈

     
op(t

     
i
     
), p=r or p=w, if w

     
j
     
(x) < p

     
i
     
(x) then a

     
j
     
< p

     
i
     
(x) or c

     
j
     
< p

     
i
     
(x).

  

   
ST

     
denotes the class of all strict schedules.

  

   
Example 11.11 and 11.13:

  

   
s

     
3

     
= 

     
w

     
1

     
(x) w

     
1

     
(y)

     
r

     
2

     
(u) w

     
2

     
(x)

     
w

     
1

     
(z) c

     
1

     
r

     
2

     
(y) w

     
2

     
(y)

     
w

     
3

     
(u) c

     
3

     
c

     
2

  

   
s

     
4

     
= 

     
w

     
1

     
(x) w

     
1

     
(y)

     
r

     
2

     
(u)

     
w

     
1

     
(z) c

     
1

     
w

     
2

     
(x) r

     
2

     
(y) w

     
2

     
(y)

     
w

     
3

     
(u) c

     
3

     
c

     
2

     
∈

     
ST

  

   
∉

     
ST
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Sufficient Condition: Rigorousness

  

   
Definition 11.8 (Rigorousness):

  

   
A schedule s is 

     
rigorous

     
if it is strict and the following holds for all t

     
i
     
, t

     
j
     
∈

     
trans(s):

  

   
if r

     
j
     
(x) < w

     
i
     
(x) then a

     
j
     
< w

     
i
     
(x) or c

     
j 

     
< w

     
i
     
(x).

  

   
RG

     
denotes the class of all rigorous schedules.

  

   
Example 11.13 and 11.14:

  

   
s

     
4

     
= 

     
w

     
1

     
(x) w

     
1

     
(y)

     
r

     
2

     
(u)

     
w

     
1

     
(z) c

     
1

     
w

     
2

     
(x) r

     
2

     
(y) w

     
2

     
(y)

     
w

     
3

     
(u) c

     
3

     
c

     
2

  

   
s

     
5

     
= 

     
w

     
1

     
(x) w

     
1

     
(y)

     
r

     
2

     
(u)

     
w

     
1

     
(z) c

     
1

     
w

     
2

     
(x) r

     
2

     
(y) w

     
2

     
(y) c

     
2

     
w

     
3

     
(u) c

     
3

     
∈

     
RG

  

   
∉

     
RG
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Relationships Among Schedule Classes

  

   
Theorems 11.2, 11.3, 11.4: 

  

   
•

     
RG 

     
⊂

     
ST

     
⊂

     
ACA 

     
⊂

     
RC

  

   
•

     
RG

     
⊂

     
COCSR 

  

   
•

     
CSR 

     
∩

     
ST 

     
⊂

     
PRED 

     
⊂

     
CSR 

     
∩

     
RC 

  

   
Proofs?
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Definition 11.9 (Log Recoverability):

  

   
A schedule s is 

     
log recoverable

     
if the following properties hold:

  

   
•

     
s is recoverable

  

   
•

     
for all t

     
i
     
, t

     
j
     
∈

     
trans(s): if there is a ww conflict of the form w

     
i
     
(x) < w

     
j
     
(x) in s, 

  

   
then

  

   
•

     
a

     
i
     
< w

     
j
     
(x) or c

     
i
     
< c

     
j
     
if t

     
j 

     
commits, 

  

   
•

     
or a

     
j
     
< a

     
i
     
if t

     
i
     
aborts.

  

   
LRC

     
denotes the class of all log recoverable schedules.

  

   
Log

     
-

     
Recoverability

  

   
1)

     
w

     
1

     
(x) r

     
2

     
(x) a

     
1

     
a

     
2

     
∈

     
PRED

  

   
2)

     
w

     
1

     
(x) r

     
2

     
(x) a

     
1

     
c

     
2

     
∉

     
PRED

  

   
3)

     
w

     
1

     
(x) r

     
2

     
(x) c

     
2

     
c

     
1

     
∉

     
PRED

  

   
4)

     
w

     
1

     
(x) r

     
2

     
(x) c

     
2

     
a

     
1

     
∉

     
PRED

  

   
5)

     
w

     
1

     
(x) r

     
2

     
(x) a

     
2

     
a

     
1

     
∈

     
PRED

  

   
6)

     
w

     
1

     
(x) r

     
2

     
(x) a

     
2 

     
c

     
1

     
∈

     
PRED

  

   
7)

     
w

     
1

     
(x) r

     
2

     
(x) c

     
1

     
c

     
2

     
∈

     
PRED

  

   
8)

     
w

     
1

     
(x) r

     
2

     
(x) c

     
1

     
a

     
2

     
∈

     
PRED

  

   
Relationship to PRED for wr and ww conflicts:

  

   
1)

     
w

     
1

     
(x) w

     
2

     
(x) a

     
1

     
a

     
2

     
∉

     
PRED

  

   
2)

     
w

     
1

     
(x) w

     
2

     
(x) a

     
1

     
c

     
2

     
∉

     
PRED

  

   
3)

     
w

     
1

     
(x) w

     
2

     
(x) c

     
2

     
c

     
1

     
∉

     
PRED

  

   
4)

     
w

     
1

     
(x) w

     
2

     
(x) c

     
2

     
a

     
1

     
∉

     
PRED

  

   
5)

     
w

     
1

     
(x) w

     
2

     
(x) a

     
2

     
a

     
1

     
∈

     
PRED

  

   
6)

     
w

     
1

     
(x) w

     
2

     
(x) a

     
2

     
c

     
1

     
∈

     
PRED

  

   
7)

     
w

     
1

     
(x) w

     
2

     
(x) c

     
1

     
c

     
2

     
∈

     
PRED

  

   
8)

     
w

     
1

     
(x) w

     
2

     
(x) c

     
1

     
a

     
2

     
∈

     
PRED
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Relationship Between LRC and PRED

  

   
Theorem 11.5: 

  

   
•

     
PRED = CSR 

     
∩

     
LRC

  

   
Proof sketch:

  

   
•

     
Lemma 11.3: If s 

     
∈

     
CSR 

     
∩

     
LRC, then all operations of uncommitted transactions

  

   
can be eliminated using rules CR, UR, NR, and OR.

  

   
•

     
PRED 

     
⊇

     
CSR 

     
∩

     
LRC: 

  

   
Assume s 

     
∈

     
CSR 

     
∩

     
LRC.

  

   
After eliminating operations of uncommitted transactions by Lemma 11.31

  

   
(and preserving all conflict orders among committed transactions),

  

   
s is still CSR and so is every prefix of s. Thus s is in PRED.

  

   
•

     
PRED 

     
⊆

     
LRC: 

  

   
Assume s 

     
∈

     
PRED but 

     
∉

     
LRC. Consider a conflict w

     
i
     
(x) < w

     
j
     
(x). Since s 

     
∉

     
LRC,

  

   
either a) t

     
j
     
commits but t

     
i
     
does not commit or commits after t

     
j
  

   
or b) t

     
i
     
aborts but t

     
j
     
does not abort or aborts after t

     
i
     
. 

  

   
All cases lead to contradictions to the assumption that s is in PRED.

  

   
Similarly, assuming that s does not satisfy the RC property for situations

  

   
like w

     
i
     
(x) < r

     
j
     
(x) c

     
j
     
, leads to a contradiction.

  

   
•

     
PRED 

     
⊆

     
CSR
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Extending 2PL for ST and RG

  

   
Theorem 11.6: 

  

   
Gen(SS2PL) = RG

  

   
Theorem 11.7: 

  

   
Gen(S2PL) 

     
⊆

     
CSR 

     
∩

     
ST
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Extending SGT for LRC

  

   
Approach:

  

   
•

     
defer commit

     
upon commit request of t

     
j
  

   
if there is a ww or wr conflict from t

     
i 

     
to t

     
j
     
and t

     
i
     
is not yet committed

  

   
•

     
enforce cascading abort

     
for t

     
j
     
upon abort request of t

     
i
  

   
if there is a ww or wr conflict from t

     
i
     
to t

     
j
  

   
ESGT algorithm:

  

   
•

     
process w and r steps as usual and maintain serialization graph

  

   
with explicit labeling of edges that correspond to ww or wr conflicts

  

   
•

     
upon c

     
i
     
test if t

     
i
     
has a predecessor w.r.t. ww or wr edges in the graph;

  

   
if no predecessor exists then perform c

     
i
     
and resume waiting successors

  

   
•

     
upon a

     
i
     
test if t

     
i
     
has successor w.r.t. ww or wr edges in the graph;

  

   
if no successor exists then perform a

     
i
     
,
  

   
otherwise enforce aborts for all successors of t

     
i
  

   
Theorem 11.8: 

  

   
Gen(ESGT) 

     
⊆

     
CSR 

     
∩

     
LRC

  

   
Remark:

     
similar approaches are feasible for other CC protocols

  

   
(including non

     
-

     
strict 2PL)

  



30 / 42

   
  

Chapter 11: Transaction Recovery

   
  

•
   
  

11.2 Expanded Schedules

   
  

•
   
  

11.3 Page
   
  

-
   
  

Model Correctness Criteria

   
  

•
   
  

11.4 Sufficient Syntactic Conditions

   
  

•
   
  

11.5 Further Relationships Among Criteria

   
  

•
   
  

11.6 Extending Page
   
  

-
   
  

Model CC Algorithms

   
  

•
   
  

11.7 Object
   
  

-
   
  

Model Correctness Criteria

   
  

•
   
  

11.8 Extending Object
   
  

-
   
  

Model CC Algorithms

   
  

•
   
  

11.9 Lessons Learned 



31 / 42

   
Aborts in Flat Object Schedules

  

   
Definition 11.10 (Inverse operations):

  

   
An operation f' (x

     
1

     
', ..., x

     
m'

     
', 

     
↑

     
y

     
1

     
', ..., 

     
↑

     
y

     
k'

     
') with input parameters

  

   
x

     
1

     
' through x

     
m'

     
' and output parameters y

     
1

     
' through y

     
k'

     
' is the

  

   
inverse operation

     
of operation f (x

     
1

     
, ..., x

     
m

     
, 

     
↑

     
y

     
1

     
, ..., 

     
↑

     
y

     
k

     
) if 

  

   
for all possible sequences 

     
α

     
and 

     
ω

     
of operations on a given interface,

  

   
the return parameters in the sequence 

     
α

     
f (...) f' (...) 

     
ω

     
are the same as in 

     
α

     
ω

     
.
  

   
f' (...) is also denoted as f

     
-
     
1

     
(...).

  

   
With the notion of inverse operations, the concepts 

  

   
of expanded schedules and PRED generalize to flat object schedules.

  

   
Examples 11.17 and 11.18:

  

   
s

     
1

     
= 

     
withdraw

     
1

     
(a)

     
withdraw

     
2

     
(b) deposit

     
2

     
(c)

     
deposit

     
1

     
(c)

     
c

     
1

     
a

     
2

     
∈

     
PRED

  

   
⇒

     
exp(s

     
1

     
) = 

  

   
withdraw

     
1

     
(a)

     
withdraw

     
2

     
(b) deposit

     
2

     
(c)

     
deposit

     
1

     
(c) c

     
1

     
reclaim

     
2

     
(c) deposit

     
2

     
(b) c

     
2

  

   
s

     
2

     
= 

     
insert

     
1

     
(x)

     
delete

     
2

     
(x)

     
insert

     
3

     
(y)

     
a

     
1

     
a

     
2

     
a

     
3

     
∉

     
PRED

  

   
⇒

     
exp(s

     
2

     
) = 

     
insert

     
1

     
(x)

     
delete

     
2

     
(x)

     
insert

     
3

     
(y) 

     
delete

     
1

     
(x) c

     
1

     
insert

     
2

     
(x)

     
c

     
2

     
delete

     
3

     
(y) c

     
3
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Example of Correctly Expanded

   
  

Flat Object Schedule

   
  

c
   
  

1

   
  

t

   
  

1

   
  

withdraw
   
  

11
   
  

(a)

   
  

r
   
  

111
   
  

(p)
   
  

w
   
  

112
   
  

(p)

   
  

t

   
  

2

   
  

withdraw
   
  

21
   
  

(b)

   
  

r
   
  

211
   
  

(p)
   
  

w
   
  

212
   
  

(p)

   
  

deposit
   
  

22
   
  

(c)

   
  

r
   
  

221
   
  

(p)
   
  

w
   
  

222
   
  

(p)

   
  

deposit
   
  

12
   
  

(c)

   
  

r
   
  

121
   
  

(p)
   
  

w
   
  

122
   
  

(p)

   
  

a
   
  

2

   
  

Expansion

   
  

reclaim
   
  

23
   
  

(c)
   
  

deposit
   
  

24
   
  

(b)

   
  

t

   
  

1

   
  

withdraw
   
  

11
   
  

(a)

   
  

r
   
  

111
   
  

(p)
   
  

w
   
  

112
   
  

(p)

   
  

t

   
  

2

   
  

withdraw
   
  

21
   
  

(b)

   
  

r
   
  

211
   
  

(p)
   
  

w
   
  

212
   
  

(p)

   
  

deposit
   
  

22
   
  

(c)

   
  

r
   
  

221
   
  

(p)
   
  

w
   
  

222
   
  

(p)

   
  

deposit
   
  

12
   
  

(c)

   
  

r
   
  

121
   
  

(p)
   
  

w
   
  

122
   
  

(p)

   
  

tree
   
  

-

   
  

reducible
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Example of Incorrectly Expanded

   
  

Flat Object Schedule

   
  

t

   
  

1

   
  

withdraw
   
  

11
   
  

(a)

   
  

r
   
  

111
   
  

(p)
   
  

w
   
  

112
   
  

(p)

   
  

t

   
  

2

   
  

withdraw
   
  

21
   
  

(b)

   
  

r
   
  

211
   
  

(p)
   
  

w
   
  

212
   
  

(p)

   
  

deposit
   
  

22
   
  

(c)

   
  

r
   
  

221
   
  

(p)
   
  

w
   
  

222
   
  

(p)

   
  

deposit
   
  

12
   
  

(c)

   
  

r
   
  

121
   
  

(p)
   
  

w
   
  

122
   
  

(p)

   
  

c
   
  

1
   
  

a
   
  

2

   
  

Incorrect “expansion”

   
  

w
   
  

-

   
  

1

   
  

23
   
  

(p)
   
  

w
   
  

-

   
  

1

   
  

24
   
  

(p)

   
  

Important observation: 

   
  

Page
   
  

-
   
  

level undo is, in general, incorrect for object
   
  

-
   
  

model transactions.

   
  

t

   
  

1

   
  

withdraw
   
  

11
   
  

(a)

   
  

r
   
  

111
   
  

(p)
   
  

w
   
  

112
   
  

(p)

   
  

t

   
  

2

   
  

withdraw
   
  

21
   
  

(b)

   
  

r
   
  

211
   
  

(p)
   
  

w
   
  

212
   
  

(p)

   
  

deposit
   
  

22
   
  

(c)

   
  

r
   
  

221
   
  

(p)
   
  

w
   
  

222
   
  

(p)

   
  

deposit
   
  

12
   
  

(c)

   
  

r
   
  

121
   
  

(p)
   
  

w
   
  

122
   
  

(p)

   
  

not
   
  

tree
   
  

-

   
  

reducible
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Perfect Commutativity

  

   
Definition 11.11 (Perfect Commutativity):

  

   
Given a set of operations for an object type, such that for each operation

  

   
f (x, p

     
1

     
, ..., p

     
m

     
) an appropriate inverse operation f

     
-
     
1

     
(x, p

     
1

     
', ..., p

     
m'

     
') is included.

  

   
A commutativity table for these operations is called 

     
perfect

     
if the following holds:

  

   
if f(x, p

     
1

     
, ..., p

     
m

     
) and g(x, q

     
1

     
, ..., q

     
n

     
) commute then

  

   
f(x, p

     
1

     
, ..., p

     
m

     
) and g

     
-
     
1

     
(x, q

     
1

     
'..., q

     
n'

     
') commute,

  

   
f

     
-
     
1

     
(x, p

     
1

     
', ..., p

     
m'

     
') and g(x, q

     
1

     
, ..., q

     
n

     
) commute, and

  

   
f

     
-
     
1

     
(x, p

     
1

     
', ..., p

     
m'

     
') and g

     
-
     
1

     
(x, q

     
1

     
'..., q

     
n'

     
') commute.

  

   
Definition 11.12 (Perfect Closure):

  

   
The 

     
perfect closure

     
of a commutativity table for the operations of a given

  

   
object type is the largest, perfect subset of the original commutativity table's

  

   
commutative operation pairs. 

  

   
Important observation:

  

   
For object types with perfect or perfectly closed commutativity tables,

  

   
S2PL

     
does not need to acquire any additional locks for undo,

  

   
and therefore is 

     
deadlock

     
-

     
free during rollback

     
.
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Examples of Commutativity Tables

   
  

with Inverse Operations

   
  

r
   
  

i
   
  

(x)

   
  

w
   
  

i
   
  

(x)

   
  

w
   
  

i   
  

-
   
  

1

   
  

(x)

   
  

r
   
  

i
   
  

(x) w
   
  

i
   
  

(x) w
   
  

i   
  

-
   
  

1

   
  

(x)

   
  

+ 
   
  

-
   
  

-

   
  

-
   
  

-
   
  

-

   
  

-
   
  

-
   
  

-
   
  

perfect

   
  

insert

   
  

delete

   
  

test

   
  

insert
   
  

-
   
  

1

   
  

delete
   
  

-
   
  

1

   
  

insert delete test insert
   
  

-
   
  

1

   
  

delete
   
  

-
   
  

1

   
  

-
   
  

-
   
  

-
   
  

-
   
  

-

   
  

-
   
  

-
   
  

-
   
  

-
   
  

-

   
  

-
   
  

-
   
  

+ 
   
  

-
   
  

-

   
  

-
   
  

-
   
  

-
   
  

+ 
   
  

-

   
  

-
   
  

-
   
  

-
   
  

-
   
  

+

   
  

not perfect

   
  

for object type 
   
  

“
   
  

page
   
  

”

   
  

for object type 
   
  

“
   
  

set
   
  

”

   
  

insert delete test insert
   
  

-
   
  

1

   
  

delete
   
  

-
   
  

1

   
  

-
   
  

-
   
  

-
   
  

-
   
  

-

   
  

-
   
  

-
   
  

-
   
  

-
   
  

-

   
  

-
   
  

-
   
  

+ 
   
  

-
   
  

-

   
  

-
   
  

-
   
  

-
   
  

-
   
  

-

   
  

-
   
  

-
   
  

-
   
  

-
   
  

-

   
  

perfectly closed
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Complete and Partial Rollbacks

  

   
in General Object

     
-

     
Model Schedules

  

   
Definition 11.15 (Terminated Subtransactions):

  

   
An object

     
-

     
model history has 

     
terminated subtransactions

     
if each non

     
-

     
leaf node p

     
ω

  

   
has either a child c

     
ων

     
or 

     
a

     
ων

     
that follows all other (

     
ν

     
-

     
1)

     
children of 

     
p

     
ω

     
. 

  

   
An object

     
-

     
model schedule with terminated subtransactions is a prefix of 

  

   
an object

     
-

     
model history with terminated subtransactions.

  

   
Definition 11.16 (Expanded Object Model Schedule):

  

   
For an object model schedule s with terminated subtransactions the 

     
expansion

  

   
of s, exp(s), is an object

     
-

     
model history derived as follows:

  

   
•

     
All operations whose parent has a commit child are included in exp(s).

  

   
•

     
For each operation whose parent p

     
ω

     
has an abort child a

     
ων

     
an inverse operation

  

   
is added for all of p's children that do themselves have a commit child, and

  

   
a commit child is added to p.

  

   
The inverse operations have the reverse order of the corresponding forward

  

   
operations and placed in between the forward operations and the new commit child.

  

   
All new children of p precede an operation q in exp(s) if the abort child of p

  

   
preceded q in s.

  

   
•

     
For each transaction in active(s) and each non

     
-

     
terminated subtransaction,

  

   
inverse operations and a final commit child are

  

   
added as children of the transaction roots, with ordering analagous to above.
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Tree Prefix Reducibility

  

   
for General Object

     
-

     
Model Schedules 

  

   
with Complete and Partial Rollbacks

  

   
Definition 11.17 (Extended Tree Reducibility):

  

   
An object model schedule s is 

     
extended tree reducible

     
if its expansion, exp(s),

  

   
can be transformed into a serial order of s's committed transaction roots by

  

   
applying the following rules finitely many times:

  

   
1.

     
the commutativity rule applied to adjacent leaves,

  

   
2.

     
the tree

     
-

     
pruning rule for isolated subtrees,

  

   
3.

     
the undo rule applied to adjacent leaves,

  

   
4.

     
the null rule for read

     
-

     
only operations, and

  

   
5.

     
the ordering rule applied to unordered leaves.
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Example with Complete and Partial Rollbacks
   
  

t
   
  

1
   
  

t
   
  

2

   
  

withdraw(a)
   
  

withdraw(b)

   
  

r(p)
   
  

r(q)
   
  

w(p)
   
  

w(q)

   
  

deposit(c)
   
  

deposit(c)

   
  

r(q)
   
  

w(q)
   
  

r(q)
   
  

w(q)

   
  

c
   
  

a

   
  

c
   
  

a

   
  

withdraw(b)

   
  

r(q)
   
  

w(q)
   
  

c
   
  

c
   
  

c

   
  

t
   
  

1
   
  

t
   
  

2

   
  

withdraw(a)
   
  

withdraw(b)

   
  

r(p)
   
  

r(q)
   
  

w(p)
   
  

w(q)

   
  

deposit(c)
   
  

deposit(c)

   
  

r(q)
   
  

w(q)
   
  

r(q)
   
  

w(q)
   
  

w(q)

   
  

withdraw(b)

   
  

r(q)
   
  

w(q)

   
  

reclaim(c)
   
  

deposit(b)

   
  

Expansion
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Extending Layered Concurrency Control

  

   
for Complete and Partial Rollbacks

  

   
Theorem 11.12: 

  

   
The layered S2PL protocol with perfect commutativity tables

  

   
generates only schedules that are extended tree reducible.

  

   
Theorem 11.10: 

  

   
A layered object

     
-

     
model schedule for which all level

     
-

     
to

     
-

     
level schedules

  

   
are order

     
-

     
preserving conflict serializable and strict is extended tree reducible.

  

   
Definition 11.14 (Strictness):

  

   
A flat object schedule s is strict if for each pair of L1 operations, p

     
j
     
and q

     
i
     
,
  

   
from different transactions t

     
i
     
and t

     
j
     
such that p

     
j
     
is an update operation,

  

   
the order p

     
j
     
< q

     
i
     
implies that a

     
j
     
< q

     
i
     
or c

     
j
     
< q

     
i
     
. 
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Chapter 11: Transaction Recovery

   
  

•
   
  

11.2 Expanded Schedules

   
  

•
   
  

11.3 Page
   
  

-
   
  

Model Correctness Criteria

   
  

•
   
  

11.4 Sufficient Syntactic Conditions

   
  

•
   
  

11.5 Further Relationships Among Criteria

   
  

•
   
  

11.6 Extending Page
   
  

-
   
  

Model CC Algorithms

   
  

•
   
  

11.7 Object
   
  

-
   
  

Model Correctness Criteria

   
  

•
   
  

11.8 Extending Object
   
  

-
   
  

Model CC Algorithms

   
  

•
   
  

11.9 Lessons Learned 
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Lessons Learned

   
  

•
   
  

PRED captures correct schedules in the presence of aborts

   
  

by means of intuitive transformation rules.

   
  

•
   
  

Among the sufficient syntactic criteria, LRC, ACA, ST, and RG

   
  

(all in conjunction with CSR), ST is the most practical one.

   
  

•
   
  

Consequently, S2PL is the method of choice

   
  

(and can be shown to guarantee PRED).

   
  

•
   
  

PRED carries over to the object model, in combination

   
  

with the transformation rules of tree
   
  

-
   
  

reducibility, leading to TPRED,

   
  

and captures both complete and partial rollbacks of transactions.

   
  

•
   
  

The most practical sufficient syntactic condition for 

   
  

layered schedules with perfect commutativity 

   
  

requires OCSR and ST for each level
   
  

-
   
  

to
   
  

-
   
  

level schedule,

   
  

and can be implemented by layered S2PL.
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