
1 / 17

Transactional Information Systems:

Theory, Algorithms, and

the

Practice of

Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

“

Teamwork is essential. It allows you to blame someone else.

”

(Anonymous)

© 2002 Morgan Kaufmann

ISBN 1

-

55860

-

508

-

8

2 / 17

Part III: Recovery

•

11 Transaction Recovery

•

12 Crash Recovery: Notion of Correctness

•

13 Page

-

Model Crash Recovery Algorithms

•

14 Object

-

Model Crash Recovery Algorithms

•

15 Special Issues of Recovery

•

16 Media Recovery

•

17 Application Recovery

3 / 17

Chapter 12: Crash Recovery

–

Notion of Correctness

•

12.2 System Architecture and Interfaces

•

12.3 System Model

•

12.4 Correctness Criterion

•

12.5 Roadmap of Algorithms

•

12.6 Lessons Learned

“

We will meet again if your memory serves you well.

”

(Bob Dylan)

4 / 17

Goal of Crash Recovery

Failure

-

resilience:

•

redo

recovery for committed transactions

•

undo

recovery for uncommitted transactions

Failure model:

•

soft (no damage to secondary storage)

•

fail

-

stop (no unbounded failure propagation)

captures most (server) software failures,

both Bohrbugs and Heisenbugs

Requirements:

•

fast restart for high availability (= MTTF / (MTTF + MTTR))

•

low overhead during normal operation

•

simplicity, testability, very high confidence in correctness

5 / 17

Examples

•

Server fails once a month, recovery takes 2 hours

⇒

720/722 = 0,997

i.e., server availability is 99,7 %

server is down 26 hours per year

•

Server fails every 48 hours, but can recover within 30 sec

⇒

172800/172830 = 0,9998

i.e., server availability is 99,98 %

server is down 105 min per year

•

Fast recovery is essential, not long uptime!

6 / 17

Actions During Normal Operation

All of the following actions are

“

tagged

”

with

unique, monotonically increasing

sequence numbers

Transaction actions:

•

begin (t)

•

commit (t)

•

rollback (t)

•

save (t)

•

restore (t, s)

Data actions:

•

read (pageno, t)

•

write (pageno, t)

•

full

-

write (pageno, t)

•

exec (op, obj, t)

Caching actions:

•

fetch (pageno)

•

flush (pageno)

Log actions:

•

force ()

7 / 17

Overview of System Architecture

Database Cache

Log Buffer

Stable

Database

Stable

Log

Database

Page

Database

Page

Log Entry

Log Entry

read

write

begin

commit, rollback

write

fetch

flush

force

Volatile

Memory

Stable

Storage

Database Server

8 / 17

Chapter 12: Crash Recovery

–

Notion of Correctness

•

12.2 System Architecture and Interfaces

•

12.3 System Model

•

12.4 Correctness Criterion

•

12.5 Roadmap of Algorithms

•

12.6 Lessons Learned

9 / 17

Logging

Definition 12.1 (Extended History):

The

extended history

of a transactional data server is a partially ordered forest

of actions where

•

the roots are transaction identifiers or caching actions,

•

the leaves are read, write, or full

-

write actions or transaction actions,

•

only exec actions can appear as intermediate nodes, and

•

the ordering of actions is tree

-

consistent.

Definition 12.2 (Stable Log):

For a given extended history the

stable log

is a totally ordered subset of the

history's actions such that the log ordering is compatible with the history order.

Definition 12.3 (Log Buffer):

For a given extended history the

log buffer

is a totally ordered subset of the

history's actions such that the log ordering is compatible with the history order

and all entries in the log buffer follow (w.r.t. the total order) all entries in the

stable log.

10 / 17

Impact of Caching

Definition 12.4 (Cached Database):

For a given extended history the

cached database

is a partially ordered subset of

the history's write actions such that the order is a subset of the the history order,

and for each page p the maximum element among the write actions on p in the

history is also the maximum element for p in the cached database.

Definition 12.5 (Stable database):

For a given extended history the

stable database

is a partially ordered subset of

the history's write actions such that the order is a subset of the history order,

and for each page p

•

all write actions on p that precede the most recent flush(p) in the history

are included in the stable database, and

•

the maximum element among all included write actions in the history is also

the maximum element for p in the stable database.

The maximum element among all writes on a page p is

tracked by the

page sequence number

in the header of p.

11 / 17

Chapter 12: Crash Recovery

–

Notion of Correctness

•

12.2 System Architecture and Interfaces

•

12.3 System Model

•

12.4 Correctness Criterion

•

12.5 Roadmap of Algorithms

•

12.6 Lessons Learned

12 / 17

Correctness Criterion

Definition 12.6 (Correct Crash Recovery):

A crash recovery algorithm is

correct

if it guarantees that,

after a system failure, the cached database will eventually,

i.e., possibly after repeated failures and restarts,

be equivalent (i.e., reducible) to

a serial order of the committed transactions

that coincides with the serialization order of the history.

13 / 17

Logging Rules

Definition 12.7 (Logging Rules):

During normal operation, a recovery algorithm satisfies

•

the

redo logging rule

if for every committed transaction t,

all data actions of t are in the stable log or the stable database,

•

the

undo logging rule

if for every data action p of an

uncommitted transaction t the presence of p in the stable

database implies that p is in the stable log,

•

the

garbage collection rule

if for every data action p of

transaction t the absence of p from the stable log implies

that p is in the stable database if and only if t is committed.

14 / 17

Chapter 12: Crash Recovery

–

Notion of Correctness

•

12.2 System Architecture and Interfaces

•

12.3 System Model

•

12.4 Correctness Criterion

•

12.5 Roadmap of Algorithms

•

12.6 Lessons Learned

15 / 17

Taxonomy of Crash

-

Recovery Algorithms

crash recovery algorithms

update

-

in

-

place

(with

-

undo)

deferred

-

update

(no

-

undo)

with

-

undo / with

-

redo

(steal / no

-

force)

with

-

undo / no

-

redo

(steal / force)

no

-

undo / with

-

redo

(no

-

steal / no

-

force)

no

-

undo / no

-

redo

(no

-

steal / force)

steal/no

-

force algorithms are most versatile and cost

-

effective

16 / 17

Chapter 12: Crash Recovery

–

Notion of Correctness

•

12.2 System Architecture and Interfaces

•

12.3 System Model

•

12.4 Correctness Criterion

•

12.5 Roadmap of Algorithms

•

12.6 Lessons Learned

17 / 17

Lessons Learned

•

During normal operation and during restart,

operations are captured in the log buffer, the stable log,

the cached database, and the stable database.

•

Correct recovery requires preserving the original serialization

order of the committed transactions.

•

The redo logging, undo logging, and garbage collection rules

are necessary prerequisites for the ability to provide correct recovery.

	Chapter 12

