Transactional Information Systems:

Theory, Algorithms, and the Practice of
Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann
ISBN 1-55860-508-8

“Teamwork is essential. It allows you to blame someone else.” (Anonymous)

Part lll: Recovery

* 11 Transaction Recovery

* 12 Crash Recovery: Notion of Correctness

* 13 Page-Model Crash Recovery Algorithms

* 14 Object-Model Crash Recovery Algorithms
* 15 Special Issues of Recovery

* 16 Media Recovery

* 17 Application Recovery

Chapter 13: Page-Model
Crash Recovery Algorithms

* 13.2 Basic Data Structures

* 13.3 Redo-Winners Paradigm
* 13.4 Redo-History Paradigm

¢ 13.5 Lessons Learned

“History is written by the winners.” (Alex Haley)

“History is a people's memory, and without a memory,
man is demoted to the lower animals.” (Malcolm X)

Basic Data Structures for Crash Recovery (1)

type Page: record of
PageNo: identifier;
PageSeqNo: identifier;
Status: (clean, dirty) /* only for cached pages*/;
Contents: array [PageSize] of char;
end;
persistent var StableDatabase:
set of Page indexed by PageNo;
var DatabaseCache:
set of Page indexed by PageNo;

Basic Data Structures for Crash Recovery (2)

type LogEntry: record of
LogSeqNo: identifier;
TransId: identifier;
PageNo: identifier;
ActionType:(write, full-write, begin, commit, rollback);
UndoInfo: array of char;
RedoInfo: array of char;
PreviousSeqNo: identifier;
end;
persistent var Stablelog:
ordered set of LogEntry indexed by LogSeqNo;
var LogBuffer:
ordered set of LogEntry indexed by LogSeqNo;
type TransInfo: record of
TransId: identifier;
LastSeqNo: identifier;
end;
var ActiveTrans:
set of TransInfo indexed by TransId;

Remark: log entries can be physical or physiological

Recall: (Log) Sequence Numbers

Database Cache
4215
page b 4219 Log Buffer
gC q
3155 - -
e oI 4220/ begin(ty) [nil |
page z 4219‘ write(q,t;7) ‘ 4217}\
Volatile X
Memory (page/log
____________ sequence —_—— e [————
Stable ?—\/\
Storage M~ vV
4215 T 4218 |commit(t,o)| 4216]
page b X
page q 4217 write(z,t,) | 4215/
3155 — 4216 write(qt,o) | 4199]
Stable page p Stable, . <
e . Log 1215] wrie(b.,) | 4208

v/ W

Correspondence of Data Structures
and Abstract Model

0) action with sequence number s € StableLog
< LSN s is in StableLog

1) write action with sequence number s on page p € StableDatabase
& StableDatabase[p].PageSeqNo = s

2) write action with sequence number s on page p € CachedDatabase

< DatabaseCache[p].PageSeqNo > s Vv
StableDatabase[p].PageSeqNo > s

Typical implementation for 1) and 2):
DatabaseCache[p].PageSeqNo :=
max{s | there is a write action on p with sequence number s}

Chapter 13: Page-Model
Crash Recovery Algorithms

¢ 13.2 Basic Data Structures
* 13.3 Redo-Winners Paradigm

* 13.3.1 Actions During Normal Operation

* 13.3.2 Simple Three-Pass Algorithm
* 13.3.3 Enhanced Algorithm:
Log Truncation, Checkpoints, Redo Optimization
* 13.3.4 Complete Algorithm:
Handling Transaction Aborts and Undo Completion
*13.4 Redo-History Paradigm

¢ 13.5 Lessons Learned

Actions During Normal Operation (1)

write or full-write (pageno, transid, s):
DatabaseCache[pageno].Contents := modified contents;
DatabaseCache[pageno].PageSegNo := s;
DatabaseCache[pageno].Status := dirty;
newlogentry.LogSeqNo := s;

newlogentry.ActionType := write or full-write;

newlogentry.TransId := transid;

newlogentry.PageNo := pageno;

newlogentry.UndoInfo := information to undo update
(before-image for full-write);

newlogentry.RedoInfo := information to redo update

(after-image for full-write);
newlogentry.PreviousSegNo :=

ActiveTrans[transid].LastSeqNo;
ActiveTrans[transid].LastSeqNo := s;
LogBuffer += newlogentry;

Actions During Normal Operation (2)

fetch (pageno):
DatabaseCache += pageno;
DatabaseCache[pageno].Contents :=
StableDatabase[pageno].Contents;
DatabaseCache[pageno].PageSegNo :=
StableDatabase[pageno].PageSeqgNo;
DatabaseCache[pageno].Status := clean;

flush (pageno):
if there is logentry in LogBuffer
with logentry.PageNo = pageno

then force (); end /*if*/;

StableDatabase[pageno].Contents :=
DatabaseCache[pageno].Contents;

StableDatabase[pageno].PageSeqNo :=
DatabaseCache[pageno].PageSeqgNo;

DatabaseCache[pageno].Status := clean;

force ():
StablelLog += LogBuffer;
LogBuffer := empty;

Actions During Normal Operation (3)

begin (transid, s):
ActiveTrans += transid;
ActiveTrans[transid].LastSeqNo := s;
newlogentry.LogSegNo := s;
newlogentry.ActionType := begin;
newlogentry.TransId := transid;
newlogentry.PreviousSegNo := nil;
LogBuffer += newlogentry;

commit (transid, s):

newlogentry.LogSeqNo := s;
newlogentry.ActionType := commit;
newlogentry.TransId := transid;

newlogentry.PreviousSeqNo :=
ActiveTrans[transid].LastSeqNo;

LogBuffer += newlogentry;

ActiveTrans -= transid;

force ();

Correctness and Efficiency Considerations
for Actions During Normal Operation

Theorem 13.1:

During normal operation, the redo logging rule,

the undo logging rule, and the garbage collection rule
are satisfied.

Forced log /0 is potential bottleneck
during normal operation
— group commit for log I/O batching

Chapter 13: Page-Model
Crash Recovery Algorithms

* 13.2 Basic Data Structures
* 13.3 Redo-Winners Paradigm
* 13.3.1 Actions During Normal Operation

* 13.3.2 Simple Three-Pass Algorithm

* 13.3.3 Enhanced Algorithm:
Log Truncation, Checkpoints, Redo Optimization
* 13.3.4 Complete Algorithm:
Handling Transaction Aborts and Undo Completion
*13.4 Redo-History Paradigm

¢ 13.5 Lessons Learned

Overview of
Simple Three-Pass Algorithm

* Analysis pass:
determine start of stable log from master record
perform forward scan
to determine winner and loser transactions

* Redo pass:
perform forward scan
to redo all winner actions in chronological (LSN) order
(until end of log is reached)

* Undo pass:
perform backward scan
to traverse all loser log entries in reverse chronological order
and undo the corresponding actions

Simple Three-Pass Algorithm (1)

restart ():
analysis pass () returns losers;
redo pass ();
undo pass ();

analysis pass () returns losers:
var losers: set of record
TransId: identifier;
LastSeqNo: identifier;
end indexed by TransId;
losers := empty;
min LogSeqNo of oldest log entry in Stablelog;
max := LogSeqNo of most recent log entry in Stablelog;
for 1 := min to max do
case StablelLog[i].ActionType:
begin: losers += StablelLog[i].TransId;
losers[StableLog[i].TransId].LastSegNo := nil
commit: losers -= StablelLog[i].TransId;
full-write: losers[StablelLog[i].TransId].LastSeqgNo :
end /*case*/;
end /*for*/;

14

i,

Simple Three-Pass Algorithm (2)

redo pass ():

min := LogSeqNo of oldest log entry in StablelLog;

max := LogSeqNo of most recent log entry in Stablelog;
for i := min to max

do

if StableLog[i].ActionType = full-write and
StablelLog[i].TransId not in losers
then
pageno = StablelLog[i].PageNo;
fetch (pageno);
full-write (pageno)
with contents from StablelLog[i].RedoInfo;
end /*if*/;
end /*for*/;

Simple Three-Pass Algorithm (3)

undo pass ():
while there exists t in losers
such that losers[t].LastSegNo <> nil
do
nexttrans = TransNo in losers
such that losers[nexttrans].LastSegNo =
max {losers[x].LastSegNo | x in losers};
nextentry = losers[nexttrans].LastSeqNo;
if StableLog[nextentry].ActionType = full-write
then
pageno = StablelLog[nextentry].PageNo;
fetch (pageno);
full-write (pageno)
with contents from StableLog[nextentry].UndoInfo;
losers[nexttrans].LastSegNo :=
StableLog[nextentry].PreviousSeqgNo;
end /*if*/;
end /*while*/;

Correctness of Simple Three-Pass Algorithm

Theorem 13.2:
When restricted to full-writes as data actions,
the simple three-pass recovery algorithm performs correct recovery.

Proof sketch:
1) all winners must have a commit log entry on stable log
losers without any stable log entries are irrelevant
2) redo restores last committed write for each page
(which absorbs all earlier winner writes)
3) LRC implies that losers follow winners for each page
= undo restores page state as of the time
before the first loser write and after the last winner write
= resulting cached database contains exactly the last
committed write of the original history

Example Scenario: up to Crash

|

, |

L .
I 1 ™

|

t . !

! He o

I 1 1 i

|

t‘ql W‘(b) \"V(d) | |

I 1 1 1 I

|

|

b WD ;|

I 1 1

|

ow@| W) |

™ 1 ™

|

flush(d) flush(d) flush(b) |

|

|

Example Scenario: }‘rom Clrash on

w(a) W(dz | |
| | I I
I L
| |
¢ ((| |
’ Mo e I I
[] 1 |
| |
t b d 1 1
3 W‘() \‘V() | ; !
' | ! ' I ISt restart | 2nd restart resumelz
i norma
| (mcomplete)l (complete) operation
t, d
4I W‘() | 1 I
1 | 1 1 1
| |
tSIW‘(H) W(b‘) wﬂf)| I
LI | 1 |
I I I
flush(@) flush(@) ~ flush(b) e recio e 7000 st
analysis pass | analysis pass
| pass 1 pass
1%t crash 2nd crash restart

complete

Example under Simple Three-Pass Algorithm

Sequence number:

action

Change of cached

database [PageNo:

SeqNo]

Change of stable

Database [PageNo:
SegNo]

Log entry added to log
buffer [LogSeqNo:
action]

Log entries added to
stable log [LogSeqNo's]

1: begin

: begin(t;)

1
2: begin (t,) 2: begin (t,)
3: write (a, t;) al 3 3: write (a, t;)
4: begin () 4: begin ()
5: begin (t,) 5: begin (t;)
6: write (b, t;) 6 6: write (b, t;)
7: write (c, t,) 7 7: write (¢, t,)
8: write (d, t,) 8 8: write (d, t;)
9: commit (t;) \ 9: commit (t;) 1,2,3,4,5,6,7,8,9
10: flush (d) \ d: 8
11: write (d, t;) df 11 \ 11: write (d, t;)
\l\begm (ts) | 12: begin (t5)
: write (a, ts) #: 13 | 13: write (a, ts)
14A commit (t;) I 14: commit (t;) 11,12,13, 14
15: flush (d) / d: 11
16: write (d, t,) d: 16 / 16: write (d, t,)
17: write (e, t,) e: 17 / 17: write (e, t,)
18: write (b, t5) b: 18 / 18: write (b, t5)
19: flush (b) b: 18 16,17, 18
20: commit (t,) 20: commit (t,) 20

21: write (f, ts)

f: 21

)

: write (f, ts)

% SYSTEM CRASH #

RESTART

l analysis pass: losers = {t,, ts}

Sequence number:

action

Change of cached

database [PageNo:

Change of stable
Database [PageNo:

Log entry added to log
buffer [LogSeqNo:

Log entries added to
stable log [LogSeqNo's]

SeqNo] SegNo] action]

l redo (3) | a:3 | | | ‘
I redo (6) | b: 6 | | | |
flush ()	[a:3		
redo (8) Ld:8			
flush d)	ld:s		
redo (1) [d:11			

|

% SECOND SYSTEM CRASH #

SECOND RESTART

analysis pass: losers = {t,, ts}

Sequence number:

Change of cached

database [PageNo:

Change of stable

Log entry added to log
buffer [LogSeqNo:

Log entries added to
stable log [LogSeqNo's]

action Database [PageNo:

SeqNo] SegNo] action]
l redo(3) | a:3 | | |
l redo(6) | b: 6 | | |
redo(8) ld:8		
redo(11) Ld: 11		
redo(16) Ld: 16		
undo(18) [b:6		
l undo(17)	e: 0	
undo(13) [a:3		
l undo(7)	c: 0	

SECOND RESTART COMPLETE: RESUME NORMAL OPERATION

Incorporating General Writes
As Physiological Log Entries

Principle:

* state testing during the redo pass:
for log entry for page p with log sequence number i,
redo write only if i > p.PageSeqNo
and subsequently set p.PageSeqNo :=1

* state testing during the undo pass:
for log entry for page p with log sequence number i,
undo write only if i < p.PageSeqNo
and subsequently set p.PageSeqNo :=i-1

Simple Three-Pass Algorithm with General

redo pass

undo pass

Oy Writes

fetch (pageno);
if DatabaseCache[pageno].PageSegNo < i
then
read and write (pageno)
according to StablelLog[i].RedoInfo;
DatabaseCache[pageno].PageSeqNo := i;
end /*if*/;
():
fetch (pageno);
if DatabaseCache[pageno].PageSegNo >= nextentry.LogSeqNo
then
read and write (pageno)
according to StableLog[nextentry].UndoInfo;
DatabaseCache[pageno].PageSegNo :=

nextentry.LogSeqNo - 1;
end /*if*/;

Correctness of Simple Three-Pass Algorithm
for General Writes

Theorem 13.3:
The simple three-pass recovery algorithm with sequence number
testing performs correct recovery for general writes.

Example under Simple Three-Pass Algorithm with General Writes

Sequence number:

Change of cached

Change of stable

Log entry added to log

Log entries added to

action database [PageNo: Database [PageNo: buffer [LogSeqNo: stable log [LogSegNo's]
SeqNo] SeqNo] action]
1: begin (t,) [~ 1: begin(t,)
2: begin (t,) 2: begin (t,)
3: write (a, t;) a:3 3: write (a, t;)
4: begin () [~ \ 4: begin ()
5: begin (t,) [~ | 5: begin (t,)
6: write (b, t;) b6\ Y 6: write (b, t;)
7: write (c, t,) c:7 X\ 7: write (c, t,)
8: write (d, t;) d: 8 \ 8: write (d, t;)
9: commit (t;) \, 9: commit (t;) 1,2,3,4,5,6,7,8,9
10: flush (d) A d: 8
11: write (d, ;) d: 11 /\ 11: write (d, t;)
(12: begin (t5) | 12: begin (ts)
13: write (a, ts) a: 13 | 13: write (a, ts)
14: commit (t;) I 14: commit (t;) 11,12,13, 14
15: flush (d) / d: 11
16: write (d, t,) d: 16 / 16: write (d, t)
17: write (e, t,) e 17 / 17: write (e, t,)
18: write (b, ts5) b: 18 18: write (b, ts5)
19: flush (b) b: 18 16,17, 18
20: commit (t,) 20: commit (t) 20
21: write (f, ts) f: 21 21: write (f, ts)

% SYSTEM CRASH #

RESTART

l analysis pass: losers = {t,, ts}

Sequence number:

Change of cached

Change of stable

Log entry added to log

Log entries added to

5 SECOND SYSTEM CRASH %

action database [PageNo: Database [PageNo: buffer [LogSeqNo: stable log [LogSeqNo's]
SeqNo] SegNo] action]
redo (3) | I _I
@er redo ((’)N b: 18 | Redo steps on d with LSN —
| flush (2 [a:3 <= 11 are suppressed _I
onsider-redo (8) d: 11 | I ‘
sider-redo (11) d: 11 | | | |

SECOND RESTART

analysis pass: losers = {t,, ts}

Sequence number: Change of cached Change of stable Log entry added to log |Log entries added to
action database [PageNo: Database [PageNo: buffer [LogSeqNo: stable log [LogSeqNo's]
SeqNo] SegNo] action]
| coer redo(N, | a: 3 | | |
consider-redo(6) b: 18 | | |
onsider-redo(8) d: 11 | | |
| d: 11 | | |
d: 16 | | |
b: 17 | | |
nsider-undo(17) e: 0 | | |
consider-undo(13) a: 3 | | |
| |

IM—lmdn(D/l c: 0

SECOND RESTART COMPLETE: RESUME NORMAL OPERATION

Chapter 13: Page-Model
Crash Recovery Algorithms

* 13.2 Basic Data Structures

* 13.3 Redo-Winners Paradigm
* 13.3.1 Actions During Normal Operation
* 13.3.2 Simple Three-Pass Algorithm

* 13.3.3 Enhanced Algorithm:
Log Truncation, Checkpoints, Redo Optimization

* 13.3.4 Complete Algorithm:
Handling Transaction Aborts and Undo Completion
*13.4 Redo-History Paradigm

¢ 13.5 Lessons Learned

Need and Opportunity for Log Truncation

Major cost factors and potential availability bottlenecks:
1) analysis pass and redo pass scan entire log
2) redo pass performs many random I/Os on stable database

Improvement:
continuously advance the log start pointer (garbage collection)
* for redo, can drop all log entries for page p that
precede the last flush action for p =: RedoLSN (p);
min{RedoLSN (p) | dirty page p} =: SystemRedoL.SN
» for undo, can drop all log entries that
precede the oldest log entry of a potential loser =: OldestUndoL.SN

Remarks:
for full-writes, all but the most recent after-image can be dropped
log truncation after complete undo pass requires global flush

Log Truncation

log truncation ():
OldestUndoLSN :=
min {i | StableLog[i].TransId is in ActiveTrans};
SystemRedoLSN := min {DatabaseCache[p].RedoLSN};
OldestRedoPage := page p such that
DatabaseCache[p].RedoLSN = SystemRedoLSN;
NewStartPointer := min{OldestUndoLSN, SystemRedoLSN};
OldStartPointer := MasterRecord.StartPointer;
while OldStartPointer - NewStartPointer
is not sufficiently large
and SystemRedoLSN < OldestUndoLSN
do
flush (OldestRedoPage);
SystemRedoLSN := min{DatabaseCache[p].RedoLSN};
OldestRedoPage := page p such that
DatabaseCache[p].RedoLSN = SystemRedoLSN;
NewStartPointer := min{0OldestUndoLSN, SystemRedoLSN};
end /*while*/;
MasterRecord.StartPointer := NewStartPointer;

Heavy-Weight Checkpoints

master record

PSFaItT LastCP
ointer
AN
stable
log
checkpoint
begin begin write write write ctiveTrans:
(t) () (/ t) (} ty) (/ t) {t, &}
LastSeqNo’s

analysis pass

redo pass

undo pass

Recovery with Heavy-Weight Checkpoints (1)

checkpoint ():
for each p in DatabaseCache do
if DatabaseCache[p].Status = dirty
then flush (p);
end /*if*/;
end /*for*/;
logentry.ActionType := checkpoint;
logentry.ActiveTrans :=
ActiveTrans (as maintained in memory);

logentry.LogSegNo := new sequence number;
LogBuffer += logentry;
force ();

MasterRecord.LastCP := logentry.LogSeqNo;

Recovery with Heavy-Weight Checkpoints (2)

analysis pass () returns losers:
cp := MasterRecord.LastCP;

losers := StablelLog[cp].ActiveTrans;
max := LogSeqNo of most recent log entry in Stablelog;
for i := cp to max do

case StableLog[i].ActionType:

maintenance of losers
as in the algorithm without checkpoints

end /*case*/;
end /*for*/,;
redo pass ():
cCp := MasterRecord.LastCP;
max := LogSegNo of most recent log entry in Stablelog;
for i := cp to max do

page-state-testing and redo steps
as in the algorithm without checkpoints

end /*for*/,;

Example with Heavy-Weight Checkpoints

Sequence number: Change of cached Change of stable Log entry added to log |Log entries added to
action database [PageNo: Database [PageNo: buffer [LogSeqNo: stable log [LogSegNo's]
SeqNo] SeqNo] action]

1: begin (t,) 1: begin (t,)

2: begin (t,) 2: begin (t,)

3: write (a, t;) a:3 3: write (a, t;)

4: begin (t3) 4: begin (t3)

5: begin (t;) 5: begin (t;)

6: write (b, t;) b: 6 6: write (b, t;)

7: write (c, t,) c:7 7: write (c, t,)

8: write (d, t;) d: 8 8: write (d, t;)

9: commit (t;) 9: commit (t,) 1,2,3,4,5,6,7,8,9
10: flush (d) d: 8

11: write (d, t;) d: 11 11: write (d, t3)

12: begin (t5) 12: begin (ts5)

13: write (a, ts) a: 13 13: write (a, ts)
14: checkpoint 14: Cp 11,12, 13

a:13,b:6,c:7,d: 11
ActiveTrans:
{t2, 3, t4, t5} 14

Example with Heavy-Weight Checkpoints

Sequence number:

action

Change of cached
database [PageNo:
SeqNo]

Change of stable

Database [PageNo:
SegNo]

Log entry added to log
buffer [LogSeqNo:
action]

Log entries added to
stable log [LogSeqNo's]

14: Checkpoint 14: CP 11,12, 13
a:13,b:6,c:7,d: 11
ActiveTrans:
{t, ts, ty, ts} 14
15: commit (t;) 15: commit (t;) 15
[16: flush (d)] d: 11
17: write (d, t,) d: 17 17: write (d, t,)
18: write (e, t,) e: 18 18: write (e, t,)
19: write (b, ts) b: 19 19: write (b, t5)
20: flush (b) b: 19 17,18, 19
21: commit (t,) 21: commit (t,) 21
22: write (f, t5) f:22 22: write (f, t5)

% SYSTEM CRASH #

RESTART

l analysis pass: losers = {t,, ts}

Sequence number:
action

Change of cached

database [PageNo:

Change of stable
Database [PageNo:

Log entry added to log
buffer [LogSeqNo:

Log entries added to
stable log [LogSeqNo's]

SeqNo] SeqNo] action]
| redo(17) | d: 17 | | | |
| undo(19) | b: 18 | | | |
l consider-undo(18) | e: 0 | | | |
| undo(13) | a: 12 | | | |
| undo(7) | c: 6 | | | |
| |

RESTART COMPLETE: RESUME NORMAL OPERATION

Dirty Page List for Redo Optimization

Keep track of

* the set of dirty cached pages

» for each such page the sequence number of
the oldest write action that followed the most recent flush action
(redo sequence numbers)

Avoid very old RedoSeqNo's by write-behind demon

type DirtyPagelListEntry: record of
PageNo: identifier;
RedoSegNo: identifier;
end;
var DirtyPages:

set of DirtyPagelListEntry indexed by PageNo;

Record dirty page list in checkpoint log entry and
reconstruct (conservative approximation of) dirty page list
during analysis pass

— exploit knowledge of dirty page list and redo sequence numbers
for I/0O optimizations during redo

master record

Light-Weight Checkpoints

Start L astCP
Pointer
|
checkpoint P
. write || begin || begin || write || write write | | write || write Active Dirty .
G @ @ @) [Cot) [Gt [Coot) [(o) || Trans: Pages:
{ti’tk} {p7qsx}
| |
stable log

W LastSeqNo’s

analysis pass

redo pass

undo pass

Recovery with Light-Weight Checkpoints (1)

checkpoint ():
DirtyPages := empty;
for each p in DatabaseCache do
if DatabaseCache[p].Status = dirty
then
DirtyPages += p;
DirtyPages[p].RedoSeqNo :=
DatabaseCache[p].RedoLSN;
end /*if*/;
end /*for*/,;
logentry.ActionType := checkpoint;
logentry.ActiveTrans :=
ActiveTrans (as maintained in memory);
logentry.DirtyPages := DirtyPages;

logentry.LogSeqNo := new sequence number;
LogBuffer += logentry;
force ();

MasterRecord.LastCP := logentry.LogSeqNo;

Recovery with Light-Weight Checkpoints (2)

analysis pass () returns losers, DirtyPages:
cp := MasterRecord.LastCP;
losers := StablelLog[cp].ActiveTrans;
DirtyPages := StablelLog[cp].DirtyPages;
max := LogSegNo of most recent log entry in Stablelog;
for 1 := cp to max do
case StablelLog[i].ActionType:

maintenance of losers
as in the algorithm without checkpoints

end /*case*/;

if StablelLog[i].ActionType = write or full-write
and StableLog[i].PageNo not in DirtyPages

then
DirtyPages += StableLog[i].PageNo;
DirtyPages[StableLog[i].PageNo].RedoSegNo := 1i;

end /*if*/;

end /*for*/;

Recovery with Light-Weight Checkpoints (3)

redo pass ():

cp := MasterRecord.LastCP;
SystemRedoLSN := min{cp.DirtyPages[p].RedoSeqgNo};
max := LogSegNo of most recent log entry in Stablelog;

for 1 := SystemRedoLSN to max do
if StablelLog[i].ActionType = write or full-write
and StablelLog[i].TransId not in losers
then
pageno := StablelLog[i].PageNo;
if pageno in DirtyPages
and i1 >= DirtyPages[pageno].RedoSeqNo
then
fetch (pageno);
if DatabaseCache[pageno].PageSegNo < i
then
read and write (pageno)
according to StablelLog[i].RedoInfo;
DatabaseCache[pageno].PageSeqNo := 1i;
else
DirtyPages[pageno] .RedoSeqNo :=
DatabaseCache[pageno].PageSeqNo + 1;
end/*if*/,; end/*if*/; end/*if*/,; end/*for*/;

Example with Light-Weight Checkpoints

Sequence number: Change of cached Change of stable Log entry added to log |Log entries added to

action database [PageNo: Database [PageNo: buffer [LogSeqNo: stable log [LogSeqNo's]
SegNo] SegNo] action]

1: begin (t;) 1: begin (t;)

2: begin (t,) 2: begin (t,)

3: write (a, t;) a:3 3: write (a, t;)

4: begin (t3) 4: begin (t3)

5: begin (ty) 5: begin (ty)

6: write (b, t;) b: 6 6: write (b, t;)

7: write (c, t,) c7 7: write (c, t,)

8: write (d, t;) d: 8 8: write (d, t;)

9: commit (t;) 9: commit (t;) 1,2,3,4,5,6,7,8,9

10: flush (d) d: 8

11: write (d, t3) d: 11 11: write (d, t3)

12: begin (ts) 12: begin (ts)

13: write (a, ts) a: 13 13: write (a, ts)

14: checkpoint

14: CP

DirtyPages:
{a,b,c,d}
RedoLSNs:
{a:3,b:6,c:7,d: 11}
ActiveTrans:

{6, t ty, ts}

11,12, 13, 14

Example with Light-Weight Checkpoints

Sequence number:

action

Change of cached
database [PageNo:
SegNo]

Change of stable
Database [PageNo:
SegNo]

Log entry added to log
buffer [LogSeqNo:
action]

Log entries added to
stable log [LogSeqNo's]

14: Checkpoint 14: CP
DirtyPages:
{a, b, c,d}
RedoLSNs:
{a:3,b:6,c:7,d: 11}
ActiveTrans:
{to, 5, ty, ts] 11,12, 13, 14
15: commit (t3) 15: commit (t3) 15
16: flush (d) d: 11
17: write (d, t;) d: 17 17: write (d, t;)
18: write (e, t,) e: 18 18: write (e, t,)
19: write (b, ts) b: 19 19: write (b, ts)
20: flush (b) b: 19 17,18, 19
21: commit (t,) 21: commit (t,) 21
22: write (f, t5) f:22 22: write (f, ts)

% SYSTEM CRASH #

RESTART

irtyPages = {a, b, ¢, d, e}
LSNs: a: 3,b: 6,¢:7,d: 11, e: 18

Sequence number:
action

Change of cached

database [PageNo:

Change of stable

Database [PageNo:

Log entry added to log
buffer [LogSeqNo:

Log entries added to
stable log [LogSeqNo's]

SeqNo] SeqNo] action]
l consider-redo(3) | a:3
c0n51der redo(6) | b: 19

Skip-redo(8)

|Mlml

RESTART COMPLETE: RESUME NORMAL OPERATION

| redo(17) | d: 17

| undo(19) | b: 18

l consider-undo(18) | e 0

l consider-undo(13) | a:3

l consider-undo(7) | c: 0 |
|

Recovery with Flush Log Entries

analysis pass () returns losers, DirtyPages:
cp := MasterRecord.LastCP;
losers := StablelLog[cp].ActiveTrans;
DirtyPages := StablelLog[cp].DirtyPages;
max := LogSeqNo of most recent log entry in Stablelog;
for i := cp to max do
case StablelLog[i].ActionType:

maintenance of losers
as in the algorithm without checkpoints

end /*case*/;
if StableLog[i].ActionType = write or full-write
and StableLog[i].PageNo not in DirtyPages
then
DirtyPages += StablelLog[i].PageNo;
DirtyPages[StableLog[i].PageNo].RedoSeqNo := 1i;
end /*if*/;
if StablelLog[i].ActionType = flush then
DirtyPages -= StablelLog[i].PageNo;
end /*if*/; end /*for*/;

Example with Light-Weight Checkpoints

Sequence number: Change of cached Change of stable Log entry added to log |Log entries added to

action database [PageNo: Database [PageNo: buffer [LogSeqNo: stable log [LogSeqNo's]
SegNo] SegNo] action]

1: begin (t;) 1: begin (t;)

2: begin (t,) 2: begin (t,)

3: write (a, t;) a:3 3: write (a, t;)

4: begin (t3) 4: begin (t3)

5: begin (ty) 5: begin (ty)

6: write (b, t;) b: 6 6: write (b, t;)

7: write (c, t,) c7 7: write (c, t,)

8: write (d, t;) d: 8 8: write (d, t;)

9: commit (t;) 9: commit (t;) 1,2,3,4,5,6,7,8,9

10: flush (d) d: 8 10: flush (d)

11: write (d, t3) d: 11 11: write (d, t3)

12: begin (ts) 12: begin (ts)

13: write (a, ts) a: 13 13: write (a, ts)

14: checkpoint

14: CP

DirtyPages:
{a,b,c,d}
RedoLSNs:
{a:3,b:6,c:7,d: 11}
ActiveTrans:

{t, &, b, ts}

10,11, 12,13, 14

Example with Light-Weight Checkpoints

Sequence number:

action

Change of cached
database [PageNo:
SegNo]

Change of stable
Database [PageNo:
SegNo]

Log entry added to log
buffer [LogSeqNo:
action]

Log entries added to
stable log [LogSeqNo's]

14: Checkpoint

14: CP

DirtyPages:

{a, b, c,d}
RedoLSNs:
{a:3,b:6,c:7,d: 11}
ActiveTrans:

{0, Gty G}

10, 11, 12, 13, 14

15: commit (t3) 15: commit (t;) 15

16: flush (d) d: 11 16: flush (d)

17: write (d, t,) d: 17 17: write (d, t,)

18: write (e, t,) e: 18 18: write (e, t,)

19: write (b, ts) b: 19 19: write (b, ts5)

20: flush (b) b: 19 20: flush (b) 16, 17, 18, 19
21: commit (t) 21: commit (t;) 20, 21

22: write (f, ts) f: 22 22: write (f, ts)

% SYSTEM CRASH #

RESTART

LSNs: a: 3,¢: 7, d:

17, e: 18

Sequence number:
action

Change of cached

database [PageNo:

Change of stable

Database [PageNo:

Log entry added to log
buffer [LogSeqNo:

Log entries added to
stable log [LogSeqNo's]

SeqNo] SeqNo] action]
l consider-redo(3) | a:3
l consider-redo(6) | b: 19

l skip-redo(8) |

Kip-redo(1) Y

redo |

RESTART COMPLETE: RESUME NORMAL OPERATION

| d: 17

| undo(19) | b: 18

l consider-undo(18) | e 0

l consider-undo(13) | a:3

l consider-undo(7) | c: 0 |
|

Correctness of Enhanced Three-Pass
Algorithm

Theorem 13.4:

Extending the simple three-pass recovery algorithm with log
truncation, heavy-weight or light-weight checkpoints, and flush
action logging (or any subset of these features) preserves

the correctness of crash recovery.

Chapter 13: Page-Model
Crash Recovery Algorithms

* 13.2 Basic Data Structures

* 13.3 Redo-Winners Paradigm
* 13.3.1 Actions During Normal Operation
* 13.3.2 Simple Three-Pass Algorithm

* 13.3.3 Enhanced Algorithm:
Log Truncation, Checkpoints, Redo Optimization

* 13.3.4 Complete Algorithm:
Handling Transaction Aborts and Undo Completion

*13.4 Redo-History Paradigm

¢ 13.5 Lessons Learned

Problems with Aborted Transactions as
Losers

* identifying losers would require
full log scan (without advantage from checkpoints)
* losers would precede winners in serialization order

Example:

4 w(a)

ty w(a) rollback

t3 w(a)
—t

tz w() w(a)

flush(a)

crash

Example Scenario with Aborted Transactions

Analysis pass: “losers” = {t,, t,}

consider-redo (2)

a: 12

consider-redo (8)

a: 12

undo (12)

consider-undo (11)

Sequence number: Change of cached Change of stable Log entry added to log |Log entries added to
action database [PageNo: Database [PageNo: buffer [LogSeqNo: stable log [LogSeqNo's]
SegNo] SegNo] action]
1: begin (t,) <= 1: begin (t,)
2: write (a,t,) <G a:2) 2: write (a, t,)
zw 3: commit (t,) 1,2.3
(4: begin (t,) 4: begin (t,)
5: write (a,) <G@m a: 5 5: write (a, t,)
6: abort (t,) <= 6: abort (t,) 4,5,6
7: begin (t3) < 7: begin (t3)
8: write (a, t;) <G| a: §) 8: write (a, t;)
9: commit{ty)—<mm 9: commit (t;) 7,8,9
[10: begin (t,) <@ 10: begin (t,)
11: write (b, {,) <¢==== b: 11 1 1: write (b, ty)
12: write (a, t,) <= a: 12 12: write (a, t,)
13: flush (a) | a: 12 13: flush (a) | 10, 11, 12
% SYSTEM CRASH »
RESTART

Kindo (5) —

Handling Aborted Transactions as Winners

* create compensation log entries for
inverse operations of transaction rollback

» complete rollback by creating rollback log entry

* during crash recovery,
aborted transactions with complete rollback are winners,
incomplete aborted transactions are losers

Theorem 13.5:
The extension for handling transaction rollbacks during normal
operation preserves the correctness of the three-pass algorithm.

Completion of Transaction Rollback

abort (transid):
logentry := ActiveTrans[transid].LastSeqgNo;
while logentry is not nil and
logentry.ActionType = write or full-write do

newlogentry.LogSeqNo := new sequence number;
newlogentry.ActionType := compensation;
newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSegNo;

newlogentry.RedoInfo :=
inverse action of the action in logentry;
newlogentry.UndoInfo :=
inverse action of inverse action of action in logentry;
ActiveTrans[transid].LastSeqNo := newlogentry.LogSegNo;
LogBuffer += newlogentry;
write (logentry.PageNo) according to logentry.UndoInfo;
logentry := logentry.PreviousSeqNo;
end /*while*/
newlogentry.LogSeqNo := new sequence number;
newlogentry.ActionType := rollback;
newlogentry.TransId := transid;
newlogentry.PreviousSegNo := ActiveTrans[transid].LastSegNo;
LogBuffer += newlogentry; ActiveTrans -= transid; force ();

Example with Aborted Transactions as Winners

| 12: begin (t,)

| 13: write (b, 1) <]

b: 13

| 13: write (b, 1)

14: write (a, t,) <=

a: 14

14: write (a, t,)

15: abort (t,)

16: compensate
(14: write (a, t,))

16: compensate (a, t,)

Sequence number: Change of cached Change of stable Log entry added to log |Log entries added to
action database [PageNo: Database [PageNo: buffer [LogSeqNo: stable log [LogSeqNo's]
SegNo] SegNo] action]
1: begin (t,) <= 1: begin (t,) {
2: write (a, t,) <G a: 25 2: write (a, ,)
| 3: commit (1) <Gomd | | 3: commit (t,) | 1,23 |
I 4: begin (t,) & ! | | 4: begin (t,) | |
l 5: write (a, t,) H a:5 | | 5: write (a, t,) | ‘
l 6: abort (t,) | \ | | | |
7: compensate <— / ‘
(5: write (a, t,)) 7: compensate (a, t,)
8: rollback (t,) <(ummm 8: rollback (t,) 4,5,7,8 |
l 9: begin (t3) H‘\ | | 9: begin (t3) | |
l 10: write (a, ty) H a: 10) | | 10: write (a, ty) | |
| 11: commit (&) | | 11: commit (t,) | 9,10, 11 |
| | |
I I |

17: flush (a)

a: 16

12,13, 14, 16

% SYSTEM CRASH #

RESTART

l analysis pass: “losers” = {t,}

Sequence number:
action

Change of cached
database [PageNo:

Change of stable

Database [PageNo:

Log entry added to log
buffer [LogSeqNo:

Log entries added to
stable log [LogSeqNo's]

SeqNo] SeqNo] action]
consider-redo (2) a: 16
consider-redo (5) a: 16
consider-redo (7) a: 16
consider-redo (10) a: 16
undo (16) a: 15
undo (14) a: 13
consider-undo (13) | b: 0

RESTART COMPLETE: RESUME NORMAL OPERATION

Undo Completion

» create undo-complete log entry for each loser,
* flush pages modified during undo, and
* set OldestUndoL.SN to nil (to facilitate log truncation)

Theorem 13.6:
The method for undo completion
preserves the correctness of the three-pass algorithm.

Complete Undo Algorithm (1)

undo pass ():
FlushList := empty;
while there exists t in losers
such that losers[t].LastSegNo <> nil do
nexttrans := TransNo in losers
such that losers[TransNo].LastSeqNo =
max {losers[x].LastSegNo | x in losers};

nextentry = losers[nexttrans].LastSeqNo;

if StableLog[nextentry].ActionType = write then
pageno := StablelLog[nhextentry].PageNo; fetch (pageno);
if DatabaseCache[pageno].PageSeqNo >= nextentry.LogSeqNo;
then

read and write (StableLog[nextentry].PageNo)
according to StableLog[nextentry].UndoInfo;
DatabaseCache[pageno].PageSegNo:=nextentry.LogSeqNo - 1;
FlushList += pageno;
end /*if*/;
losers[nexttrans].LastSeqNo :=
StableLog[nextentry].PreviousSeqNo;
end /*if*/;
end /*while*/;

Complete Undo Algorithm (2)

for each p in FlushList do
flush (p);

end /*for*/;

for each t in losers do

newlogentry.LogSeqNo := new sequence number;
newlogentry.ActionType := undo-complete;
newlogentry.TransId := losers[t].TransId;

LogBuffer += newlogentry;
end /*for*/;
force ();

Example with Undo Completion

Sequence number:
action

Change of cached
database [PageNo:
SeqNo]

Change of stable
Database [PageNo:
SeqNo]

Log entry added to log
buffer [LogSeqNo:
action]

Log entries added to
stable log [LogSeqNo's]

1: begin (t,) 1: begin (t,)

2: write (a, t,) a:2 2: write (a, t,)

3: commit (t,) 3: commit (t,) 1,2,3
4: begin (t,) 4: begin (t,)

5: write (a, t,) a: 5 5: write (a, t,)

6: abort (t,)

7: compensate

(5: write (a, t,)) a7 7: compensate (a, t,)

8: rollback (t,) 8: rollback (t,) 4,5,7,8
9: begin (t3) 9: begin (t3)

10: write (b, t;) b: 10 10: write (b, t;)

11: commit (t;) 11: commit (t;) 9,10, 11
12: begin (t,) 12: begin (t,)

13: write (b, t,) b: 13 13: write (b, t,)

14: write (a, t,) a: 14 14: write (a, t,)

15: abort (t,)

16: compensate

(14: write (a, t,)) a: 16 16: compensate (a, t,)

17: flush (a) a: 16 12,13, 14, 16
18: begin (t;5) 18: begin (t;)

19: write (c, ts) c: 19 19: write (c, t5)

20: begin (t¢) 20: begin (t,)

21: write (d, to) d: 21 21: write (d, to)

22: flush (c) c: 19 18, 19, 20, 21

% SYSTEM CRASH %

RESTART

| analysis pass: “losers” = {ty, ts, te}

Sequence number:
action

Change of cached
database [PageNo:
SeqNo]

Change of stable
Database [PageNo:
SeqNo]

Log entry added to log
buffer [LogSeqNo:
action]

Log entries added to
stable log [LogSeqNo's]

complete (t.)

consider-redo (2) a: 16

consider-redo (5) a: 16

consider-redo (7) a: 16

redo (10) b: 16

consider-undo (21) | d: 0

undo (19) c: 18

undo (16) a: 15

undo (14) a: 13

consider-undo (13) | b: 13

flush (a) 13

flush (c) 18

23: undo- 23: undo-
complete (t,) complete (t,)
24: undo- 24: undo-
complete (t.) complete (ts)
25: undo- 25: undo-

complete (tg)

force

23,24, 25

RESTART COMPLETE: RESUME NORMAL OPERATION

Chapter 13: Page-Model
Crash Recovery Algorithms

¢ 13.2 Basic Data Structures
* 13.3 Redo-Winners Paradigm

* 13.4 Redo-History Paradigm

* 13.4.1 Actions During Normal Operation

* 13.4.2 Simple Three-Pass and Two-Pass Algorithms
* 13.4.3 Enhanced Algorithms

* 13.4.4 Complete Algorithms

¢ 13.5 Lessons Learned

Basic Idea

In Redo-Winners, the redo pass considers only winners,
at the expense of complicating transaction aborts and log
truncation.

In Redo-History, all actions are repeated in chronological
order, i.e.,

1. it first reconstructs the cached database,

2. then undoes losers from there.

Redo-History: ARIES

g

i /ARTES Irmpact.btent

ARIES Family of Locking and Recovery Algorithms

asking information on e ARTES (ligorstians for Recover: and Bolation

5 aily of locking. logzming and recovery

dod Baformation on the books and tatversity courses winah cover ARTES with als 1o covrse
chers Mhors. The ampact of on products. prototypes and researchers is also outined.

papers and patents on ARIES is also meluded

This page is devoted to

T

ARTES on the research and the conunercial worlds was recogmized with th s Best
b T D00 The il md eetotion of ARTIS b deried ay STTIBSS panes

¢
s 230 SIGNIODO2)
e rereronoyd, citation lists: met: s o Braore

ARTE.
0 tinex. and the ARTES/ T
Complete than the ones at DEL]

authors and systems by
Grses. papers and
d be most welcome!

an very thankful to the professors
extremely popular via their books. ¢
additions (o this page’s contents wou

ilders who have made the ARTES algorithms
Any and

Chapter 13: Page-Model
Crash Recovery Algorithms

* 13.2 Basic Data Structures
* 13.3 Redo-Winners Paradigm
* 13.4 Redo-History Paradigm
* 13.4.1 Actions During Normal Operation

* 13.4.2 Simple Three-Pass and Two-Pass Algorithms

* 13.4.3 Enhanced Algorithms
* 13.4.4 Complete Algorithms

¢ 13.5 Lessons Learned

Key Properties of Redo-History Algorithms

* Optional analysis pass
* determines losers and
* reconstructs DirtyPages list,
using the analysis algorithm of the redo-winners paradigm
* Redo pass starts from SystemRedoL.SN and
* redoes both winner and loser updates,
with LSN-based state testing for idempotence,
to reconstruct the database state as of the time of the crash
* Undo pass initiates rollback for all loser transactions,
using the code for rollback during normal operation,
with undo steps (without page state testing)
e creating compensation log entries and
* advancing page sequence numbers

Redo Pass of Redo-History Algorithms

redo pass
min :=
max :=
for i

():
LogSeqNo of oldest log entry in Stablelog;
LogSeqNo of most recent log entry in Stablelog;

= min to max do

pageno = StableLog[i].PageNo;
fetch (pageno);
if DatabaseCache[pageno].PageSegNo < i
then

read and write (pageno)

according to StablelLog[i].RedoInfo;

DatabaseCache[pageno].PageSegNo := i;

end /*if*/;

end /*for*/;

Undo Pass of Redo-History Algorithms (1)

undo pass ():
ActiveTrans := empty;
for each t in losers do
ActiveTrans += t;
ActiveTrans[t]. LastSeqNo := losers[t].LastSeqNo;
end /*for*/;
while there exists t in losers
such that losers[t].LastSeqNo <> nil do
nexttrans := TransNo in losers
such that losers[nexttrans].LastSegNo =
max {losers[x].LastSegNo | x in losers};
nextentry := losers[nhexttrans].LastSegNo;

Undo Pass of Redo-History Algorithms (2)

if StableLog[nextentry].ActionType in {write, compensation}
then

pageno := StableLog[nextentry].PageNo; fetch (pageno);

if DatabaseCache[pageno].PageSeqNo >= nextentry.LogSeqNo;

then
newlogentry.LogSeqNo := new sequence number;
newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo :=
ActiveTrans[transid].LastSeqNo;
newlogentry.RedoInfo :=
inverse action of the action in nextentry;
newlogentry.UndoInfo := inverse action of the
inverse action of the action in nextentry;
ActiveTrans[transid].LastSeqNo :=
newlogentry.LogSeqgNo;
LogBuffer += newlogentry;
read and write (StableLog[nextentry].PageNo)
according to StableLog[nextentry].UndoInfo;
DatabaseCache[pageno].PageSegNo:=newlogentry.LogSeqNo;
end /*if*/;
losers[nexttrans].LastSeqNo :=
StableLog[nextentry].PreviousSeqgNo;
end /*if*/;

Undo Pass of Redo-History Algorithms (3)

if StablelLog[nextentry].ActionType = begin
then
newlogentry.LogSeqNo := new sequence number;
newlogentry.ActionType := rollback;
newlogentry.TransId := StableLog[nextentry].TransId;
newlogentry.PreviousSegNo :=
ActiveTrans[transid].LastSeqNo;
LogBuffer += newlogentry;
ActiveTrans -= transid;
losers -= transid;
end /*if*/;
end /*while*/;
force ();

Simple Three-Pass Redo-History Algorithm

Sequence number:

Change of cached

Change of stable

Log entry added to log

Log entries added to

action database [PageNo: Database [PageNo: buffer [LogSeqNo: stable log [LogSegNo's]
SeqNo] SeqNo] action]
1: begin (t,) [~ 1: begin(t,)
(2: begin (t,) 2: begin (t,)
3: write (a, t;) a:3 3: write (a, t;)
4: begin () [~ \ 4: begin ()
5: begin (t,) [~ | 5: begin (t,)
6: write (b, t;) b6\ Y 6: write (b, t;)
7: write (c, t) c:7 X\ 7: write (c, t,)
8: write (d, t;) d: 8 \ 8: write (d, t;)
9: commit (t;) \, 9: commit (t;) 1,2,3,4,5,6,7,8,9
10: flush (d) A d: 8
11: write (d, t;) d: 11 /\ 11: write (d, t;)
(12: begin (15) | 12: begin (t5)
13: write (a, ts) a: 13 | 13: write (a, ts)
14: commit (t;) [14: commit (t;) 11,12,13, 14
15: flush (d) / d: 11
16: write (d, t,) d: 16 / 16: write (d, t,)
17: write (e, t,) e: 17 17: write (e, t,)
18: write (b, t5) b: 18 18: write (b, t5)
19: flush (b) b: 18 16,17, 18
20: commit (t,) 20: commit (t,) 20
21: write (1, t5) f: 21 21: write (f, t5)

% SYSTEM CRASH AND RESTART#

Sequence number: Change of cached Change of stable Log entry added to log Log entries added

action database [PageNo: Database [PageNo: buffer [LogSeqNo: action] |to stable log
SeqNo] SeqNo] [LogSeqNo's]

l Analysis pass: losers = {t,, ts} ‘
l redo (3) | a:3 | | | |
l consider-redo (6) | b: 18 | | | |
| flush (a) | | a3 | | |
| redo (7) | c:7 | | | |
l consider-redo (8) | d: 11 | | | ‘
I consider-redo (11) | d: 11 | | | |
redo (13) [a:13			
redo (16) Ld: 16			
redo (17) le:17			
l consider-redo (18)	b: 18		
l flush (a)		a: 13	
l 22: compensate (18)	b: 22		22: compensate (18: b, ts)
l 23: compensate (17)	e: 23		23: compensate (17: e, t,)
flush (b)		b: 22	
l 24: compensate (13) | a: 24 | | 24: compensate (13: a, t5) | |
I 25: rollback (t5) | | | 25: rollback (ts) | ‘

|

I % SECOND SYSTEM CRASH AND SECOND RESTART#

Sequence number:
action

Change of cached
database [PageNo:

Change of stable
Database [PageNo:

Log entry added to log
buffer [LogSeqNo: action]

Log entries added
to stable log

SeqNo] SeqNo] [LogSeqNo's]
Analysis pass: losers = {t,, ts}
redo (3) a: 13
consider-redo (6) b: 22
redo (7) c:7
consider-redo (8) d: 11
consider-redo (11) d: 11
consider-redo (13) a: 13
redo (16) d: 16
redo (17) e: 17
consider-redo (18) b: 22
consider-redo (22) b: 22
redo (23) e: 23
26: compensate (23) e: 26 26: compensate (23, e: t,)
27: compensate (22) b: 27 27: compensate (22, e: ts)
28: compensate (18) b: 28 28: compensate (18, b: t5)
29: compensate (17) e: 29 29: compensate (17, e: t,)
30: compensate (13) a: 30 30: compensate (13, a: ts)
31: rollback (ts) 31: rollback (ts)
32: compensate (7) c: 32 32: compensate (7: ¢, t,)

33: rollback (t,)

31: rollback (t,)

force

26,27, 28, 29, 30,
31,32,33

SECOND RESTART COMPLETE: RESUME NORMAL OPERATION

Correctness of Simple Redo-History Algorithm

Theorem 13.7:
The simple three-pass redo-history recovery algorithm
performs correct recovery.

Proof sketch:
* redo pass establishes the postcondition
Vp Vt Voe stable log: (o belongs to t and refers to p) = o € cached db
* undo pass performs rollback like during normal operation
and establishes the postcondition
Vp Vt Voe stable log: (o belongs to t and refers to p and t € losers) = o & cached db
* as losers follow winners in the serialization order,
the final postcondition of the entire restart is
Vp Vt Voe stable log: (o belongs to t and refers to p and t € winners) = o € cached db
* a second crash during redo does not affect the second restart
* a second crash during undo could leave losers prolonged with some (but not all)
inverse actions; the second restart will treat them as if the inverse actions were
forward actions, and thus is no different from the first restart

Chapter 13: Page-Model
Crash Recovery Algorithms

* 13.2 Basic Data Structures

* 13.3 Redo-Winners Paradigm

* 13.4 Redo-History Paradigm
* 13.4.1 Actions During Normal Operation
* 13.4.2 Simple Three-Pass and Two-Pass Algorithms
* 13.4.3 Enhanced Algorithms

* 13.4.4 Complete Algorithms

¢ 13.5 Lessons Learned

Undo Completion for Redo-History Algorithms

By completing losers, creating CLEs, and
advancing page sequence numbers during undo,
upon completed restart the log can be truncated

at the SystemRedoL. SN (without need for flushing)

(Minor) problem: Example:
repeated crashes during undo 10: write(t;,a)
20: write(t;,b)

lead 'tO . . . 30: write(t;,c)
multiple-times inverse actions first crash: redo 10, 20, 30
that could make need to undo 30, 20, 10

] 40: write(t;,c)!
successive restarts longer 50: write(t;, b)™!

second crash: redo 10, 20, 30, 40, 50
need to undo 50, 40, 30, 20, 10

60: (write(t;, b))

70: (write(t;, ¢)')!

80: write(t;,c)!

90: write(t;, b)’!

100: write(t;, a)™!

second restart complete

Next Undo Sequence Number Backward
Chaining

Multiple-times inverse actions can be avoided by backward chaining
a CLE to the predecessor of its corresponding forward action and
following this NextUndoSeqNo backward chain during undo

Example: 10: write(t;,a), NextUndoSeqNo=nil
20: write(t;,b), NextUndoSeqNo=10
30: write(t;,c), NextUndoSeqNo=20
first crash: redo 10, 20, 30; need to undo 30, 20, 10
40: write(t,,c)"!, NextUndoSeqNo=20
50: write(t;, b)!, NextUndoSeqNo=10
second crash: redo 10, 20, 30, 40, 50; need to undo 10
60: write(t;, a)"!, NextUndoSeqNo=nil
second restart complete

lllustration of
Next Undo Sequence Number Backward
Chaining

/_\F\MxtUndoSeqNo's

log
30:
begin write wnte write
() (t,a) (t,b) (t,c)

Undo Pass with CLEs and
NextUndoSeqNo Backward Chaining (1)

undo pass ():
ActiveTrans := empty;
for each t in losers do
ActiveTrans += t;
ActiveTrans[t].LastSeqNo := losers[t].LastSeqNo;
end /*for*/;
while there exists t in losers
such that losers[t].LastSegNo <> nil
do
nexttrans = TransNo in losers
such that losers[nexttrans].LastSeqNo =
max {losers[x].LastSeqNo | x in losers};
nextentry := losers[nexttrans].LastSeqNo;

if StablelLog[nextentry].ActionType = compensation
then
losers[nexttrans].LastSeqNo :=
StablelLog[nextentry].NextUndoSeqNo;
end /*if*/;

Undo Pass with CLEs and
NextUndoSeqNo Backward Chaining (2)

if StableLog[nextentry].ActionType = write then
pageno:=StableLog[nextentry].PageNo;fetch (pageno);
if DatabaseCache[pageno].PageSeqNo
>= nextentry.LogSeqNo then
newlogentry.LogSegNo := new sequence number;
newlogentry.ActionType := compensation;
newlogentry.PreviousSeqNo :=
ActiveTrans[transid].LastSeqNo;
newlogentry.NextUndoSeqNo :=
nextentry.PreviousSeqNo;
newlogentry.RedoInfo :=
inverse action of the action in nextentry;
ActiveTrans[transid].LastSegNo :=
newlogentry.LogSegNo;
LogBuffer += newlogentry;
read and write (StableLog[nextentry].PageNo)
according to StablelLog[nextentry].UndoInfo;
DatabaseCache[pageno].PageSeqNo :=
newlogentry.LogSeqgNo;
end /*if*/;

Undo Pass with CLEs and
NextUndoSeqNo Backward Chaining (3)

losers[nexttrans].LastSeqNo =
StableLog[nextentry].PreviousSeqNo;

end /*if*/;

if StableLog[nextentry].ActionType = begin then
newlogentry.LogSegNo := new sequence number;
newlogentry.ActionType := rollback;

newlogentry.TransId :=
StablelLog[nextentry].TransId;
newlogentry.PreviousSeqNo :=
ActiveTrans[transid].LastSeqgNo;
LogBuffer += newlogentry;

ActiveTrans -= transid;
losers -= transid;
end /*if*/;

end /*while*/;
force ();

Transaction Abort During Normal Operation with
CLEs and NextUndoSeqNo Backward Chaining

1
abort (transid): ()
logentry := ActiveTrans[transid].LastSeqNo;
while logentry is not nil and
logentry.ActionType = write or full-write do
newlogentry.LogSegNo := new sequence number;
newlogentry.ActionType := compensation;
newlogentry.PreviousSeqNo :=
ActiveTrans[transid].LastSegNo;
newlogentry.RedoInfo :=
inverse action of the action in logentry;
newlogentry.NextUndoSegNo :=
logentry.PreviousSeqNo;
ActiveTrans[transid].LastSeqNo :=
newlogentry.LogSeqNo;
LogBuffer += newlogentry;
write (logentry.PageNo)
according to logentry.UndoInfo;
logentry := logentry.PreviousSeqNo;
end /*while*/

Transaction Abort During Normal Operation
with CLEs and NextUndoSeqNo Backward
Chaining (2)

newlogentry.LogSegNo := new sequence number;
newlogentry.ActionType := rollback;
newlogentry.TransId := transid;

newlogentry.PreviousSegNo :=
ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSegNo := nil;

LogBuffer += newlogentry;

ActiveTrans -= transid;

force ();

Example with Undo Completion of Three-Pass Redo-History Recovery

Sequence number:

Change of cached

Change of stable

Log entry added to log

Log entries added to

action database [PageNo: Database [PageNo: buffer [LogSeqNo: stable log [LogSegNo's]
SeqNo] SeqNo] action]
1: begin (t,) [~ 1: begin(t,)
(2: begin (t,) 2: begin (t,)
3: write (a, t;) a:3 3: write (a, t;)
4: begin () [~ \ 4: begin ()
5: begin (t,) [~ | 5: begin (t,)
6: write (b, t;) b6\ Y 6: write (b, t;)
7: write (c, t) c:7 X\ 7: write (c, t,)
8: write (d, t;) d: 8 \ 8: write (d, t;)
9: commit (t;) \, 9: commit (t;) 1,2,3,4,5,6,7,8,9
10: flush (d) A d: 8
11: write (d, t;) d: 11 /\ 11: write (d, t;)
(12: begin (15) | 12: begin (t5)
13: write (a, ts) a: 13 | 13: write (a, ts)
14: commit (t;) [14: commit (t;) 11,12,13, 14
15: flush (d) / d: 11
16: write (d, t,) d: 16 / 16: write (d, t,)
17: write (e, t,) e: 17 17: write (e, t,)
18: write (b, t5) b: 18 18: write (b, t5)
19: flush (b) b: 18 16,17, 18
20: commit (t,) 20: commit (t,) 20
21: write (1, t5) f: 21 21: write (f, t5)

% SYSTEM CRASH AND RESTART#

Sequence number:

Change of cached
database [PageNo:

Change of stable

Log entry added to log
buffer [LogSeqNo: action]

Log entries added
to stable log

action Database [PageNo:
SeqNo] SegNo] [LogSeqNo's]

Analysis pass: losers = {t,, ts}

redo (3) a: 3

consider-redo (6) b: 18

flush (a) a:3

redo (7) c: 7

consider-redo (8) d: 11

consider-redo (11) d: 11

redo (13) a: 13

redo (16) d: 16

redo (17) e: 17

consider-redo (18) b: 18

flush (a) a: 13

22: compensate (18) b: 22 22: compensate (18: b, t.)
NextUndoSegNo: 13

23: compensate (17) e: 23 23: compensate (17: e, t,)
NextUndoSeqNo: 7

flush (b) b: 22 22,23

24: compensate (13) a: 24 24: compensate (13: a, t;)

NextUndoSegNo: nil

25: rollback (t5)

25: rollback (ts)

% SECOND SYSTEM CRASH AND SECOND RESTART#

Sequence number:
action

Change of cached
database [PageNo:

Change of stable
Database [PageNo:

Log entry added to log
buffer [LogSeqNo: action]

Log entries added
to stable log

SeqNo] SeqNo] [LogSeqNo's]

Analysis pass: losers = {t,, ts}

consider-redo (3) a: 13

consider-redo (6) b: 22

redo (7) c:7

consider-redo (8) d: 11

consider-redo (11) d: 11

consider-redo (13) a: 13

redo (16) d: 16

redo (17) e: 17

consider-redo (18) b: 22

consider-redo (22) b: 22

redo (23) e: 23

26: compensate (13) a: 26 26: compensate (13, e: t,)
NextUndoSeqNo: nil

27: rollback (ts) 27: rollback (ts)

28: compensate (7) c: 28 32: compensate (7: c, t,)
NextUndoSeqgNo: nil

33: rollback (t,) 31: rollback (t,)

force 26,27, 28,29

SECOND RESTART COMPLETE: RESUME NORMAL OPERATION

Correctness of Undo Completion with
CLEs and NextUndoSeqNo Backward Chaining

Theorem 13.8:

The method for undo completion, based on executing
inverse actions and creating CLEs that are backward-chained
to reflect the next undo log sequence numbers,

preserves the correctness of the three-pass or two-pass
redo-history recovery algorithms.

Proof sketch:
The following invariant holds:
Vlog sequence numbers s € stable log such that
all more recent log entries of losers, including s,
have been processed by the undo pass:
Vu € stable log with u.LogSeqNo = s.LogSeqNo: Vo € stable log:
(u.Transld €losers and o.TransId = u.TransId and
0.LogSeqNo > u.NextUndoSeqNo) = o ¢ cached db

Chapter 13: Page-Model
Crash Recovery Algorithms

¢ 13.2 Basic Data Structures
* 13.3 Redo-Winners Paradigm
* 13.4 Redo-History Paradigm

¢ 13.5 Lessons Learned

Lessons Learned

* Redo-history algorithm preferable
because of uniformity, no need for page flush during restart,
simplicity, and robustness
(and extensibility towards object model, see Chapter 14)
* Main ingredients are:
* three passes for log analysis, redo, undo
* light-weight checkpoints for log truncation
* additional flush log entries for further savings of redo cost
* compensation log entries

for transaction rollback and undo completion

	Chapter 13

