
1 / 29

Transactional Information Systems:

Theory, Algorithms, and

the

Practice of

Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

“

Teamwork is essential. It allows you to blame someone else.

”

(Anonymous)

© 2002 Morgan Kaufmann

ISBN 1

-

55860

-

508

-

8

2 / 29

Part III: Recovery

•

11 Transaction Recovery

•

12 Crash Recovery: Notion of Correctness

•

13 Page

-

Model Crash Recovery Algorithms

•

14 Object

-

Model Crash Recovery Algorithms

•

15 Special Issues of Recovery

•

16 Media Recovery

•

17 Application Recovery

3 / 29

Chapter 14: Object

-

Model Crash Recovery

•

14.2 Overview of Redo

-

History Algorithms

•

14.3 Simple Algorithm for 2

-

Layered Systems

•

14.4 Enhanced Algorithm for 2

-

Layered Systems

•

14.5 Complete Algorithm for General Executions

•

14.6 Lessons Learned

“This we know. All things are connected.

”

(Chief Seattle)

4 / 29

Conceptual Overview of Redo

-

History Algorithms

•

Analysis pass

:

as in page model

•

Redo pass

:

page

-

level redo for efficiency

•

Undo pass

:

needs to invoke inverse high

-

level operations

Problems:

•

atomicity of high

-

level operations:

how to deal with partial effects of high

-

level operations

•

idempotence of high

-

level operations:

how to detect and prevent duplicate executions

in situations where winners can follow losers

Solutions:

•

page

-

level undo for partial high

-

level operations

•

create CLEs for high

-

level inverse operations

5 / 29

Example for Object

-

Model Crash Recovery

incr(x)

incr(x)

incr(y)

t

1

t

2

L

1

L

0

r(q)

w(q)

r(p)

w(p)

t

11

r(r)

w(r)

r(s)

w(s)

t

12

r(r)

w(r)

r(p)

w(p)

t

21

incr(z)

r(s)

w(s)

t

13

crash

6 / 29

Chapter 14: Object

-

Model Crash Recovery

•

14.2 Overview of Redo

-

History Algorithms

•

14.3 Simple Algorithm for 2

-

Layered Systems

•

14.4 Enhanced Algorithm for 2

-

Layered Systems

•

14.5 Complete Algorithm for General Executions

•

14.6 Lessons Learned

7 / 29

Actions During Normal Operation

Log buffer forcing necessary for:

•

L

0

log before a dirty page can be flushed

•

L

1

log upon transaction commit,

with L

0

log forced beforehand for transaction redo guarantee

•

L

1

log before L

0

log is forced for transaction undo guarantee

•

Introduce separate logs for each layer, with separate

instances of the log manager's data structures (e.g., log buffer)

•

Maintain L

0

log for page writes on behalf of subtransactions

along with subcommit log entries

for redo of completed subtransactions and

undo of incomplete subtransactions

•

Maintain L

1

log for high

-

level inverse operations

and transaction commit log entries

•

Both logs make use of CLEs

page

-

model

crash recovery

for sub

-

transactions

8 / 29

Execution of High

-

Level Operations

exec

(op, transid, inputparams,

↑

returnvalues, s):

subbegin ()

↑

subtransid;

execute operation;

newlogentry.LogSeqNo := s;

newlogentry.ActionType := exec;

newlogentry.TransId := transid;

newlogentry.SubtransId := subtransid;

newlogentry.UndoInfo :=

information on the inverse operation and its parameters;

newlogentry.PreviousSeqNo := ActiveTrans[transid].LastSeqNo;

ActiveTrans[transid].LastSeqNo := s;

L1LogBuffer += newlogentry;

subcommit (subtransid);

9 / 29

Simple 2

-

Level Crash Recovery Algorithm

restart

():

L

0

analysis pass () returns losers, winners, DirtyPages;

L

0

redo pass ();

L

0

undo pass ();

L

1

analysis pass ();

L

1

undo pass ();

•

L

0

recovery first identifies winner subtransactions,

performs redo for these

and undo for incomplete subtransactions

•

L

1

recovery then identifies loser transactions,

performs undo by traversing the corresponding

NextUndoSeqNo backward chains:

•

an inverse operation is initiated iff

the corresponding forward subtransaction was a winner

•

inverse operation executions create CLEs in the L

1

log and

are treated like subtransactions during normal operation

10 / 29

Efficient Testing of Winner Subtransactions

Solution:

•

Include L

0

subbegin LSN in L

1

log entry for high

-

level operation

•

L

0

analysis pass should identify maximum subbegin LSN

as a “survivor mark

”

and explicitly identifies loser subtransactions

•

L

1

undo pass test “presence

”

of high

-

level operation f

ij

as follows:

•

if subbegin LSN in L

1

log entry for f

ij

is larger than survivor mark

then f

ij

must be a loser subtransaction

•

otherwise (i.e., there is L

0

evidence of f

ij

), if f

ij

is not a

loser subtransaction then it must be a winner subtransaction

Problem:

L

1

undo step needs to be invoked iff the

corresponding subtransaction is an L

0

winner

→

need efficient test without explicit L

0

winner list

11 / 29

L

1

Undo Pass of Simple 2

-

Level Algorithm (1)

L

1

undo pass

():

ActiveTrans := empty;

for each t in L1 losers do

ActiveTrans += t;

ActiveTrans[t].LastSeqNo := losers[t].LastSeqNo;

end /*for*/;

while there exists t in losers

such that losers[t].LastSeqNo <> nil do

nexttrans := TransNo in losers

such that losers[nexttrans].LastSeqNo =

max {losers[x].LastSeqNo | x in losers};

nextentry := losers[nexttrans].LastSeqNo;

if StableLog[nextentry].ActionType = compensation then

if StableLog[nextentry].CompensatingSubtransId

is in L0 winners then

losers[nexttrans].LastSeqNo :=

StableLog[nextentry].NextUndoSeqNo else

losers[nexttrans].LastSeqNo :=

StableLog[nextentry].PreviousSeqNo;

end /*if*/;

end /*if*/;

12 / 29

L

1

Undo Pass of Simple 2

-

Level Algorithm (2)

if StableLog[nextentry].ActionType = exec then

if StableLog[nextentry].SubtransId is in L0 winners

then

subbegin ();

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo := nextentry.PreviousSeqNo;

ActiveTrans[transid].LastSeqNo :=

newlogentry.LogSeqNo;

LogBuffer += newlogentry;

execute inverse operation

according to StableLog[nextentry].UndoInfo;

subcommit ();

end /*if*/;

losers[nexttrans].LastSeqNo :=

StableLog[nextentry].PreviousSeqNo;

end /*if*/;

13 / 29

L

1

Undo Pass of Simple 2

-

Level Algorithm (3)

if StableLog[nextentry].ActionType = begin

then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := rollback;

newlogentry.TransId := StableLog[nextentry].TransId;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

LogBuffer += newlogentry;

ActiveTrans

-

= transid;

losers

-

= transid;

end /*if*/;

end /*while*/;

force ();

14 / 29

Example for Simple 2

-

Level Algorithm

Sequence number:

action

Cached changes

[PageNo:

SeqNo]

Stable Changes

[PageNo:

SeqNo]

Log entry added to L

0

log

[LogSeqNo: action]

Log entry added to L

1

log

[LogSeqNo: action]

1

: begin (

t

1

)

1

: begin (

t

1

)

2: incr (x, t

1

)

2: incr

-

1

(x, t

1

)

3

: subbegin (

t

11

)

3

: subbegin (

t

11

)

4

: write (p,

t

11

)

p: 4

4

: write (p,

t

11

)

5

: write (q,

t

11

)

q: 5

5

: write (q,

t

11

)

6

: subcommit (

t

11

)

6

: subcommit (

t

11

)

7

: begin (

t

2

)

7

: begin (

t

2

)

8: incr (x, t

2

)

8: incr

-

1

(x, t

2

)

9

: subbegin (

t

21

)

9

: subbegin (

t

21

)

10

: write (p,

t

21

)

p: 10

10

: write (p,

t

21

)

11: incr (y, t

1

)

11: incr

-

1

(y, t

1

)

12

: subbegin (

t

12

)

12

: subbegin (

t

12

)

13

: write (s,

t

12

)

s: 13

13

: write (s,

t

12

)

14: flush (p)

p: 10

15

: write (r,

t

21

)

r: 15

15

: write (r,

t

21

)

16: flush (s)

s: 13

17

: subcommit (

t

21

)

17

: subcommit (

t

21

)

18

: commit (

t

2

)

18

: commit (

t

2

)

19

: write (r,

t

12

)

r: 19

19

: write (r,

t

12

)

20

: subcommit (

t

12

)

20

: subcommit (

t

12

)

21: incr (z, t

1

)

21: incr

-

1

(z, t

1

)

22

: subbegin (

t

13

)

22

: subbegin (

t

13

)

23

: write (s,

t

13

)

s: 23

23

: write (s,

t

13

)

⚡

SYSTEM CRASH

⚡

15 / 29

Sequence number: action

Cached

changes

[PageNo:

SeqNo]

Stable

Changes

[PageNo:

SeqNo]

Log entry added to L

0

log [LogSeqNo: action]

Log entry added to L

1

log

[LogSeqNo: action]

RESTART

L

0

analysis pass: L

0

losers = {t

13

}, L

0

winners = {t

11

, t

21

, t

12

}

consider

-

redo (

4

)

redo (

5

)

q: 5

consider

-

redo (

10

)

consider

-

redo (

13

)

redo (

15

)

r: 15

redo (

19

)

r: 19

redo (

23

)

s: 23

24

: compensate (

23

)

s: 24

24

: CLE (23), next=nil

25

: subrollback (

t

13

)

25

: subrollback (

t

13

)

L

1

analysis pass: L

1

losers = {t

1

}

consider

-

compensate (21,

t

13

)

26

: compensate (11,

t

12

)

↑

t

14

26: CLE (11, t

12

, t

14

), next = 2

27

: subbegin (

t

14

)

27

: subbegin (

t

14

)

28

: write (s,

t

14

)

s: 28

28

: write (s,

t

14

)

29

: write (r,

t

14

)

r: 29

29

: write (r,

t

14

)

30: flush (r)

r: 29

31

: subcommit (

t

14

)

31

: subcommit (

t

14

)

32: flush (q)

q: 5

33

: compensate (2,

t

11

)

↑

t

15

33: CLE(2, t

11

, t

15

), next = nil

⚡

SECOND SYSTEM CRASH

⚡

16 / 29

Sequence number: action

Cached

changes

[PageNo:

SeqNo]

Stable

Changes

[PageNo:

SeqNo]

Log entry added to L

0

log [LogSeqNo: action]

Log entry added to L

1

log

[LogSeqNo: action]

SECOND RESTART

L

0

analysis pass: L

0

losers = {t

13

}, L

0

winners = {t

11

, t

21

, t

12

, t

13

, t

14

}

consider

-

redo (

4

)

consider

-

redo (

5

)

consider

-

redo (

10

)

consider

-

redo (

13

)

consider

-

redo (

15

)

consider

-

redo (

19

)

redo (

23

)

s: 23

redo (

24

)

s: 24

redo (

28

)

s: 28

L

1

analysis pass: L

1

losers = {t

1

}

consider

-

redo (

29

)

34

: subrollback (

t

15

)

34

: subrollback (

t

15

)

35

: compensate (2,

t

11

)

↑

t

16

35: CLE (2, t

11

, t

16

), nex t= nil

36

: subbegin (

t

16

)

36

: subbegin (

t

16

)

37

: write (p,

t

16

)

p: 37

38

: write (q,

t

16

)

q: 38

39

: subcommit (

t

16

)

39

: subcommit (

t

16

)

40

: rollback (

t

1

)

40

: rollback (

t

1

)

SECOND RESTART COMPLETE: RESUME NORMAL OPERATION

17 / 29

Chapter 14: Object

-

Model Crash Recovery

•

14.2 Overview of Redo

-

History Algorithms

•

14.3 Simple Algorithm for 2

-

Layered Systems

•

14.4 Enhanced Algorithm for 2

-

Layered Systems

•

14.5 Complete Algorithm for General Executions

•

14.6 Lessons Learned

18 / 29

Enhanced 2

-

Level Crash Recovery Algorithm

combine L

0

log and L

1

log into a single log

•

simplifies log forcing: log buffer forcing as in page model

•

simplifies state testing by L

1

undo:

by creating the L

1

log entry for the inverse operation at the end

of the subtransaction and interpreting it also as an L

0

subcommit,

the L

1

undo pass does no longer need to to test for L

0

winners

•

can combine two analysis passes into one

•

can combine two undo passes into one

by using the NextUndoSeqNo backward chain as follows:

•

an L

0

write log entry points to the preceding write

•

in the same subtransaction

•

the very first L

0

write log entry of a subtransaction points to

the L

1

log entry of the preceding subtransaction

•

an L

0

or L

1

CLE points to the predecessor of the

compensated action

19 / 29

NextUndoSeqNo Backward Chaining

in Enhanced 2

-

Level Crash Recovery Algorithm

begin

(t

1

)

combined L

0

/L

1

log ...

...

w

111

w

112

exec

11

-

1

(=sub

-

commit

(t

11

))

w

121

w

122

exec

12

-

1

(=sub

-

commit

(t

12

))

w

123

w

131

w

132

crash

... during

normal

operation

w

132

-

1

... continued

during

restart

NextUndoSeqNo

backward chain

CLE

w

131

-

1

CLE

w

141

w

142

w

143

exec

12

-

1

(=sub

-

commit

(t

14

))

CLE

w

151

w

152

exec

11

-

1

(=sub

-

commit

(t

15

))

CLE

com

-

mit

(t

1

)

20 / 29

L

0

/L

1

Undo Pass of Enhanced 2

-

Level Algorithm (1)

undo pass

():

ActiveTrans := empty;

for each t in losers do

ActiveTrans += t;

ActiveTrans[t].LastSeqNo := losers[t].LastSeqNo;

end /*for*/;

while there exists t in losers such that

losers[t].LastSeqNo <> nil do

nexttrans = TransNo in losers

such that losers[nexttrans].LastSeqNo =

max {losers[x].LastSeqNo | x in losers};

nextentry := losers[nexttrans].LastSeqNo;

if StableLog[nextentry].ActionType = compensation then

losers[nexttrans].LastSeqNo :=

StableLog[nextentry].NextUndoSeqNo;

end /*if*/;

21 / 29

L

0

/L

1

Undo Pass of Enhanced 2

-

Level Algorithm (2)

if StableLog[nextentry].ActionType = write or full

-

write

then

pageno := StableLog[nextentry].PageNo; fetch (pageno);

if DatabaseCache[pageno].PageSeqNo

>= nextentry.LogSeqNo then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo := nextentry.PreviousSeqNo;

newlogentry.RedoInfo :=

inverse action of the action in nextentry;

ActiveTrans[transid].LastSeqNo := newlogentry.LogSeqNo;

LogBuffer += newlogentry;

read and write (StableLog[nextentry].PageNo)

according to StableLog[nextentry].UndoInfo;

DatabaseCache[pageno].PageSeqNo := newlogentry.LogSeqNo;

end /*if*/;

losers[nexttrans].LastSeqNo :=

StableLog[nextentry].NextUndoSeqNo;

end /*if*/;

22 / 29

L

0

/L

1

Undo Pass of Enhanced 2

-

Level Algorithm (3)

if StableLog[nextentry].ActionType = exec then

subbegin ();

execute inverse operation

according to StableLog[nextentry].UndoInfo;

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := compensation;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

newlogentry.NextUndoSeqNo := nextentry.NextUndoSeqNo;

ActiveTrans[transid].LastSeqNo :=

newlogentry.LogSeqNo;

LogBuffer += newlogentry;

subcommit ();

losers[nexttrans].LastSeqNo :=

StableLog[nextentry].NextUndoSeqNo;

end /*if*/;

23 / 29

L

0

/L

1

Undo Pass of Enhanced 2

-

Level Algorithm (4)

if StableLog[nextentry].ActionType = begin then

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := rollback;

newlogentry.TransId := StableLog[nextentry].TransId;

newlogentry.PreviousSeqNo :=

ActiveTrans[transid].LastSeqNo;

LogBuffer += newlogentry;

ActiveTrans

-

= transid; losers

-

= transid;

end /*if*/;

end /*while*/;

force ();

24 / 29

Example for Enhanced 2

-

Level Algorithm

Sequence number:

action

Cached changes

[PageNo:

SeqNo]

Stable Changes

[PageNo:

SeqNo]

Log entry added [LogSeqNo: action]

[NextUndoSeqNo]

1

: begin (

t

1

)

1

: begin (

t

1

), next = nil

2: incr (x, t

1

)

3

: subbegin (

t

11

)

4

: write (p,

t

11

)

p: 4

4

: write (p,

t

11

), next = nil

5

: write (q,

t

11

)

q: 5

5

: write (q,

t

11

), next = 4

6

: subcommit (

t

11

)

6: incr

-

1

(x, t

1

), next = nil

7

: begin (

t

2

)

7

: begin (

t

2

)

8: incr (x, t

2

)

9

: subbegin (

t

21

)

10

: write (p,

t

21

)

p: 10

10

: write (p,

t

21

), next = nil

11: incr (y, t

1

)

12

: subbegin (

t

12

)

13

: write (s,

t

12

)

s: 13

13

: write (s,

t

12

), next = 6

14: flush (p)

p: 10

15

: write (r,

t

21

)

r: 15

15

: write (r,

t

21

), next = 10

16: flush (s)

s: 13

17

: subcommit (

t

21

)

17: incr

-

1

(x, t

2

), next = nil

18

: commit (

t

2

)

18

: commit (

t

2

)

19

: write (r,

t

12

)

r: 19

19

: write (r,

t

12

), next = 13

20

: subcommit (

t

12

)

20: incr

-

1

(y, t

1

), next = 6

21: incr (z, t

1

)

22

: subbegin (

t

13

)

23

: write (s,

t

13

)

s: 23

23

: write (s,

t

13

), next = 20

⚡

SYSTEM CRASH

⚡

25 / 29

Sequence number: action

Cached

changes

[PageNo:

SeqNo]

Stable

Changes

[PageNo:

SeqNo]

Log entry added

[LogSeqNo: action]

[NextUndoSeqNo]

RESTART

analysis pass: losers = {t

1

}, LastSeqNo (t

1

) = 23

consider

-

redo (

4

)

redo (

5

)

q: 5

consider

-

redo (

10

)

consider

-

redo (

13

)

redo (

15

)

r: 15

redo (

19

)

r: 19

redo (

23

)

s: 23

24

: compensate (

23

)

s: 24

24: CLE (23), next = 20

25

: compensate (20,

t

12

)

↑

t

14

26

: subbegin (

t

14

)

27

: write (s,

t

14

)

s: 27

27

: write (s,

t

14

), next = 20

28

: write (r,

t

14

)

r: 28

28

: write (r,

t

14

), next = 27

29: flush (r)

r: 28

30

: subcommit (

t

14

)

30: CLE (20, t

12

, t

14

), next = 6

31: flush (q)

q: 5

32

: compensate (6,

t

11

)

↑

t

15

⚡

SECOND SYSTEM CRASH

⚡

26 / 29

Sequence number: action

Cached

changes

[PageNo:

SeqNo]

Stable

Changes

[PageNo:

SeqNo]

Log entry added

[LogSeqNo: action]

[NextUndo SeqNo]

SECOND RESTART

analysis pass: losers = {t

1

}, Last SeqNo (t

1

) = 30

consider

-

redo (

4

)

consider

-

redo (

5

)

consider

-

redo (

10

)

consider

-

redo (

13

)

consider

-

redo (

15

)

consider

-

redo (

19

)

redo (

23

)

s: 23

redo (

24

)

s: 24

redo (

27

)

s: 27

consider

-

redo (

28

)

33

: compensate (6,

t

11

)

↑

t

15

34

: subbegin (

t

15

)

35

: write (p,

t

15

)

p: 35

35

: write (p,

t

15

) , next = 6

36

: write (q,

t

15

)

q: 36

36

: write (q,

t

15

), next = 35

37

: subcommit (

t

15

)

37: CLE (6, t

11

, t

15

), next = nil

38

: rollback (

t

1

)

38: rollback (t

1

)

SECOND RESTART COMPLETE: RESUME NORMAL OPERATION

27 / 29

Correctness of Enhanced 2

-

Level Algorithm

Theorem 14.1:

The enhanced 2

-

level crash recovery method,

with 3 passes over the combined log, performs correct recovery.

Proof sketch:

The following invariant holds at each point of the undo pass:

∀

log sequence numbers s

∈

StableLog such that

s = ActiveTrans[t].LastSeqNo for some loser transaction t:

∀

operations o

∈

StableLog:

(o belongs to t)

⇒

(o is reachable along ActiveTrans[t].NextUndoSeqNo

⇔

o

∈

CachedDatabase)

28 / 29

Chapter 14: Object

-

Model Crash Recovery

•

14.2 Overview of Redo

-

History Algorithms

•

14.3 Simple Algorithm for 2

-

Layered Systems

•

14.4 Enhanced Algorithm for 2

-

Layered Systems

•

14.5 Complete Algorithm for General Executions

•

14.6 Lessons Learned

29 / 29

Lessons Learned

•

The redo

-

history paradigm can be extended to

object

-

model crash recovery.

•

State

-

of

-

the

-

art algorithms are based on:

•

page

-

oriented redo of winners and losers

•

log entries of all levels in a single log,

to facilitate a single undo pass

•

log entries for high

-

level operations are at the same time

sub

-

commit log entries to ensure the operation atomicity

•

for undo, log entries of all levels are appropriately linked in the

NextUndoSeqNo backward chain

•

during undo, CLEs are created to track progress and

ensure idempotence

•

during undo, the execution of high

-

level inverse operations

requires the creation of low

-

level redo log entries

to ensure operation atomicity

	Chapter 14

