Transactional Information Systems:

Theory, Algorithms, and the Practice of
Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann
ISBN 1-55860-508-8

“Teamwork is essential. It allows you to blame someone else.” (Anonymous)

Part III: Recovery

* 11 Transaction Recovery

* 12 Crash Recovery: Notion of Correctness

* 13 Page-Model Crash Recovery Algorithms

* 14 Object-Model Crash Recovery Algorithms
* 15 Special Issues of Recovery

* 16 Media Recovery

* 17 Application Recovery

Chapter 14: Object-Model Crash Recovery

* 14.2 Overview of Redo-History Algorithms

* 14.3 Simple Algorithm for 2-Layered Systems
* 14.4 Enhanced Algorithm for 2-Layered Systems
* 14.5 Complete Algorithm for General Executions

* 14.6 Lessons Learned

“This we know. All things are connected.” (Chief Seattle)

Conceptual Overview of Redo-History Algorithms

* Analysis pass: as in page model
* Redo pass: page-level redo for efficiency
* Undo pass: needs to invoke inverse high-level operations

Problems:
* atomicity of high-level operations:

how to deal with partial effects of high-level operations
* idempotence of high-level operations:

how to detect and prevent duplicate executions

in situations where winners can follow losers

Solutions:
* page-level undo for partial high-level operations
* create CLEs for high-level inverse operations

Example for Object-Model Crash Recovery

incr(x) incr(y) incr(z)
) ‘ " ‘
5] incr(x) §L1
L ‘ 1 :
PN | 1
t(p) wip) r(q) wig) LW W s Wl
I T T T T I I T T T T I I T T :
ty %) 113
e AR iL,

t :
crash

Chapter 14: Object-Model Crash Recovery

* 14.2 Overview of Redo-History Algorithms

* 14.3 Simple Algorithm for 2-Layered Systems

* 14.4 Enhanced Algorithm for 2-Layered Systems
* 14.5 Complete Algorithm for General Executions

* 14.6 Lessons Learned

Actions During Normal Operation

* Introduce separate logs for each layer, with separate
instances of the log manager's data structures (e.g., log buffer)

* Maintain L log for page writes on behalf of subtransactions
along with subcommit log entries page-model
for redo of completed subtransactions and crash];ecovery
undo of incomplete subtransactions];%ns suac_tion 5

* Maintain L, log for high-level inverse operations
and transaction commit log entries

* Both logs make use of CLEs

Log buffer forcing necessary for:
* L, log before a dirty page can be flushed
* L, log upon transaction commit,
with L, log forced beforehand for transaction redo guarantee
* L, log before L, log is forced for transaction undo guarantee

Execution of High-Level Operations

exec (op, transid, inputparams, Treturnvalues, s):
subbegin () Tsubtransid;
execute operation;
newlogentry.LogSeqNo := s;

newlogentry.ActionType := exec;
newlogentry.TransId := transid;
newlogentry.SubtransId := subtransid;

newlogentry.UndoInfo :=

information on the inverse operation and its parameters;
newlogentry.PreviousSeqgNo := ActiveTrans[transid].LastSegNo;
ActiveTrans[transid].LastSeqNo := s;
LiLogBuffer += newlogentry;
subcommit (subtransid);

Simple 2-Level Crash Recovery Algorithm

e L, recovery first identifies winner subtransactions,
performs redo for these
and undo for incomplete subtransactions
* L, recovery then identifies loser transactions,
performs undo by traversing the corresponding
NextUndoSeqNo backward chains:
* an inverse operation is initiated iff
the corresponding forward subtransaction was a winner
* inverse operation executions create CLEs in the L, log and
are treated like subtransactions during normal operation

restart ():
L, analysis pass () returns losers, winners, DirtyPages;
L, redo pass ();
L, undo pass ();
L, analysis pass ();
L, undo pass ();

Efficient Testing of Winner Subtransactions

Problem: L, undo step needs to be invoked iff the
corresponding subtransaction is an L, winner
— need efficient test without explicit L, winner list

Solution:
* Include L, subbegin LSN in L, log entry for high-level operation
* L, analysis pass should identify maximum subbegin LSN
as a “survivor mark” and explicitly identifies loser subtransactions
* L, undo pass test “presence” of high-level operation f;; as follows:
« if subbegin LSN in L, log entry for f;,
is larger than survivor mark
then f;; must be a loser subtransaction
* otherwise (i.e., there is L, evidence of f;), if f;; is not a
loser subtransaction then it must be a winner subtransaction

L, Undo Pass of Simple 2-Level Algorithm (1)
L, undo pass ():
ActiveTrans := empty;
for each t in L1 losers do
ActiveTrans += t;
ActiveTrans[t].LastSeqNo
end /*for*/;
while there exists t in losers
such that losers[t].LastSeqNo <> nil do
nexttrans := TransNo in losers
such that losers[nexttrans].LastSegNo =

:= losers[t].LastSeqNo;

max {losers[x].LastSegNo | x in losers};
nextentry := losers[nexttrans].LastSeqNo;

if StablelLog[nextentry].ActionType = compensation then

if StableLog[nextentry].CompensatingSubtransId
is in LO winners then

losers[nexttrans].LastSeqNo :=

StableLog[nextentry].NextUndoSeqNo else
losers[nexttrans].LastSeqNo :=

StablelLog[nextentry].PreviousSeqNo;
end /*if*/;
end /*if*/;

L, Undo Pass of Simple 2-Level Algorithm (2)

if StableLog[nextentry].ActionType = exec then
if StableLog[nextentry].SubtransId is in LO winners

then
subbegin ();
newlogentry.LogSegNo := new sequence number;
newlogentry.ActionType := compensation;

newlogentry.PreviousSegNo :=
ActiveTrans[transid].LastSeqNo;
newlogentry.NextUndoSegNo := nextentry.PreviousSegNo;
ActiveTrans[transid].LastSeqNo :=
newlogentry.LogSeqNo;
LogBuffer += newlogentry;
execute inverse operation
according to StableLog[nextentry].UndoInfo;
subcommit ();
end /*if*/;
losers[nexttrans].LastSeqNo :=
StableLog[nextentry].PreviousSeqNo;
end /*if*/;

L, Undo Pass of Simple 2-Level Algorithm (3)

if StableLog[nextentry].ActionType = begin

then
newlogentry.LogSeqNo := new sequence number;
newlogentry.ActionType := rollback;
newlogentry.TransId := StableLog[nextentry].TransId;
newlogentry.PreviousSegNo :=

ActiveTrans[transid].LastSeqNo;

LogBuffer += newlogentry;

ActiveTrans -= transid;
losers -= transid;
end /*if*/;

end /*while*/;
force ();

Example for Simple 2-Level Algorithm

Sequence number: | Cached changes | Stable Changes | Log entry added to L,log | Log entry added to L, log

action [PageNo: [PageNo: [LogSeqNo: action] [LogSeqNo: action]
SegNo] SegNo]

1: begin (t,) 1: begin (t,)

2: incr (x, t;) 2: incr “'(x, ;)

3: subbegin (t;,) 3: subbegin (t,,)

4: write (p, t;,) p: 4 4: write (p, t;,)

5: write (q, t;,) q:5 5: write (g, t;,)

6: subcommit (t;,) 6: subcommit (t,)

7: begin (t,) 7: begin (t,)

8: incr (X, t,) 8: incr'! (x, t,)

9: subbegin (t,,) 9: subbegin (t,,)

10: write (p, t,;) p: 10 10: write (p, t,;)

11: incr (y, t,) 11:incr! (y,)

12: subbegin (t,,) 12: subbegin (t,,)

13: write (s, t,,) s: 13 13: write (s, t,,)

14: flush (p) p: 10

15: write (r, t,,) r: 15 15: write (1, t,,)

16: flush (s) s: 13

17: subcommit (t,,) 17: subcommit (t,,)

18: commit (t,) 18: commit (t,)

19: write (r, t,,) r: 19 19: write (1, t,,)

20: subcommit (t;,) 20: subcommit (t;,)

21: incr (z, t;) 21:incr! (z, t,)

22: subbegin (t,5) 22: subbegin (t,5)

23: write (s, t,3) s: 23 23: write (s, t;3)

5 SYSTEM CRASH %

[euLIou SuLINp SUON)OR

uonerddo

Sequence number: action Cached Stable Log entry added to L, Log entry added to L, log
changes Changes log [LogSegNo: action] [LogSeqNo: action]
[PageNo: [PageNo:
SeqNo] SeqNo]

RESTART

L, analysis pass: L, losers = {t;3}, L, winners = {t;;, t-;, t;5}

consider-redo (4)

redo (5) q:5

consider-redo (10)

consider-redo (13)

redo (15) r: 15

redo (19) r: 19

redo (23) s: 23

24: compensate (23) s: 24 24: CLE (23), next=nil

25: subrollback (t,5) 25: subrollback (t,5)

L, analysis pass: L, losers = {t,}

sider-compensate (21, t;5

Q0: compensate (11, t,,) 1 t;, 26: CLE (11, t;,, t;,), next=2

27: SuDDCTTr 27: subbegin (t,,)

28: write (s, t;4) s: 28 28: write (s, t;4)

29: write (1, t;,) r: 29 29: write (1, t,,)

30: flush (r) r: 29

31: subcommit (t 31: subcommit (t,,)

RV 1 () I — g5

33: compensate (2, t;,) T t;s 33: CLE(2, t;,, t;5), next = nil

% SECOND SYSTEM CRASH #

Sequence number: action Cached Stable Log entry added to L, Log entry added to L, log
changes Changes log [LogSegNo: action] [LogSeqNo: action]
[PageNo: [PageNo:
SeqNo] SeqNo]
SECOND RESTART
L, analysis pass: Ly losers = {t;3}, L, winners = {t;;, t-;, t}o, tj3, tia}

consider-redo (4)

consider-redo (5)

consider-redo (10)

consider-redo (13)

consider-redo (15)

consider-redo (19)

redo (23) s: 23
redo (24) s: 24
redo (28) s: 28

considefsrede=(2o=—

—

A%
34 subrollback (t,)

34: subrollback (t5)

L, analysis pass: L, losers = {t,}

. compensate (2, ;) 1 t, _~]

35: CLE (2, t;, tj¢), nex t= nil

30: su

36: subbegin (t,)
37 wiite (p, Lp) p: 37
38: write (q, t,¢) q:38

39: subcommit (t;.)

39: subcommit (t,)

40: rollback (t,)

S

40: rollback (t,)

SECOND RESTART COMPLETE: RESUME NORMAL OPERATION

Chapter 14: Object-Model Crash Recovery

* 14.2 Overview of Redo-History Algorithms
* 14.3 Simple Algorithm for 2-Layered Systems

* 14.4 Enhanced Algorithm for 2-Layered Systems

* 14.5 Complete Algorithm for General Executions

* 14.6 Lessons Learned

Enhanced 2-Level Crash Recovery Algorithm

combine L log and L, log into a single log
* simplifies log forcing: log buffer forcing as in page model
« simplifies state testing by L, undo:
by creating the L, log entry for the inverse operation at the end
of the subtransaction and interpreting it also as an L, subcommit,
the L, undo pass does no longer need to to test for L, winners
* can combine two analysis passes into one
* can combine two undo passes into one
by using the NextUndoSeqNo backward chain as follows:
e an L, write log entry points to the preceding write
* in the same subtransaction
» the very first L, write log entry of a subtransaction points to
the L, log entry of the preceding subtransaction
e an L, or L, CLE points to the predecessor of the
compensated action

NextUndoSeqNo Backward Chaining
in Enhanced 2-Level Crash Recovery Algorithm

combined Ly/L, log ...
... during
normal
operation crash
begin exec;,”!
(t) (=sub-
Wit [Wiz Wi [Wio3 ||| commit {lf wyz; [Wizy
(t12))
NextUndoSeqNo
backward chain
... continued
during
restart

CLE
-1
Wizt Wiar Wi4 Wi43

Ly/L; Undo Pass of Enhanced 2-Level Algorithm (1)

undo pass ():
ActiveTrans := empty;
for each t in losers do
ActiveTrans += t;
ActiveTrans[t].LastSeqNo := losers[t].LastSeqNo;
end /*for*/;
while there exists t in losers such that
losers[t].LastSegNo <> nil do
nexttrans = TransNo in losers
such that losers[nexttrans].LastSeqNo =
max {losers[x].LastSegNo | x in losers};
nextentry := losers[nexttrans].LastSeqgNo;

if StableLog[nextentry].ActionType = compensation then
losers[nexttrans].LastSeqNo :=
StableLog[nextentry].NextUndoSegNo;
end /*if*/;

Ly/L; Undo Pass of Enhanced 2-Level Algorithm (2)

if StableLog[nextentry].ActionType = write or full-write
then
pageno := StablelLog[nextentry].PageNo; fetch (pageno);
if DatabaseCache[pageno].PageSeqNo
>= nextentry.LogSeqNo then
newlogentry.LogSeqNo := new sequence number;
newlogentry.ActionType := compensation;
newlogentry.PreviousSeqNo :=
ActiveTrans[transid].LastSeqNo;
newlogentry.NextUndoSegNo := nextentry.PreviousSeqNo;
newlogentry.RedoInfo :=
inverse action of the action in nextentry;
ActiveTrans[transid].LastSeqNo := newlogentry.LogSeqNo;
LogBuffer += newlogentry;
read and write (StableLog[nextentry].PageNo)
according to StablelLog[nextentry].UndoInfo;
DatabaseCache[pageno].PageSeqNo := newlogentry.LogSeqNo;
end /*if*/;
losers[nexttrans].LastSegNo :=
StablelLog[nextentry].NextUndoSeqNo;
end /*if*/;

Ly/L; Undo Pass of Enhanced 2-Level Algorithm (3)

if StableLog[nextentry].ActionType = exec then
subbegin ();
execute inverse operation
according to StableLog[nextentry].UndoInfo;
newlogentry.LogSegNo := new sequence number;
newlogentry.ActionType := compensation;
newlogentry.PreviousSeqNo :=
ActiveTrans[transid].LastSeqNo;
newlogentry.NextUndoSegNo := nextentry.NextUndoSeqgNo;
ActiveTrans[transid].LastSeqNo :=
newlogentry.LogSegNo;
LogBuffer += newlogentry;
subcommit ();
losers[nexttrans].LastSegNo :=
StableLog[nextentry].NextUndoSeqNo;
end /*if*/;

Ly/L; Undo Pass of Enhanced 2-Level Algorithm (4)

if StableLog[nextentry].ActionType = begin then
newlogentry.LogSegNo := new sequence number;
newlogentry.ActionType := rollback;
newlogentry.TransId := StableLog[nextentry].TransId;
newlogentry.PreviousSeqNo :=
ActiveTrans[transid].LastSeqNo;
LogBuffer += newlogentry;
ActiveTrans -= transid; losers -= transid;
end /*if*/;
end /*while*/;
force ();

Example for Enhanced 2-Level Algorithm

Sequence number: | Cached changes | Stable Changes | Log entry added [LogSegNo: action]

action [PageNo: [PageNo: [NextUndoSeqNo]
SegNo] SegNo]

1: begin (t,) 1: begin (t,), next = nil

2:incr (X, t;)

3: subbegin (t;,)

4: write (p, t;,) p: 4 4: write (p, t;,), next = nil

5: write (q, t;,) q:5 5: write (g, t;,), next =4

6: subcommit (t;,) 6: incr! (x, t;), next = nil

7: begin (t,) 7: begin (t,)

8: incr (x, t,)

9: subbegin (t,,)

10: write (p, t,;) p: 10 10: write (p, t,,), next = nil

11: incr (v, t,)

12: subbegin (t,,)

13: write (s, t,,) s: 13 13: write (s, t,,), next=6

14: flush (p) p: 10

15: write (r, t,,) r: 15 15: write (r, t,,), next = 10

16: flush (s) s: 13

17: subcommit (t,,) 17: incr’! (x, t,), next = nil

18: commit (t,) 18: commit (t,)

19: write (1, t,,) r: 19 19: write (r, t;,), next = 13

20: subcommit (t,,) 20: incr'! (v,), next =6

21: incr (z, t,)

22: subbegin (t,5)

23: write (s, t,3) s: 23 23: write (s, t;3), next = 20

% SYSTEM CRASH #

32: compensate (6, t;,) Tt

Sequence number: action Cached Stable Log entry added
changes Changes [LogSeqNo: action]
[PageNo: [PageNo: [NextUndoSeqNo]
SeqNo] SeqNo]
RESTART
analysis pass: losers = {t,}, LastSegNo (t,) =23
consider-redo (4)
redo (5) q:5
consider-redo (10)
consider-redo (13)
redo (15) r: 15
redo (19) r: 19
redo (23) s: 23
24: compensate (23) s: 24 24: CLE (23), next = 20
l 25: compensate (20, t;,) Tty | | | I
I 26: subbegin (t,,) | | | |
I 27: write (s, t;4) | s: 27 | | 27: write (s, t;,), next = 20 I
l 28: write (1, t,,) | r: 28 | | 28: write (1, t,,), next = 27 I
29: flush (1)		28	
30: subcommit (1)			30: CLE (20, ty, ty,). next=6_
31: flush (@)		g:5	
£s			

ECOND SYSTEM CRASH #

Sequence number: action Cached Stable Log entry added
changes Changes [LogSeqNo: action]
[PageNo: [PageNo: [NextUndo SeqNo]
SeqNo] SeqNo]
SECOND RESTART

analysis pass: losers = {t

,}, Last SegNo (t,) = 30

consider-redo (4)

consider-redo (5)

consider-redo (10)

consider-redo (13)

consider-redo (15)

consider-redo (19)

37: subcommit (t;5)

37: CLE (6, t;;, t;5), next = nil

redo (23) s: 23
redo (24) s:24
redo (27) s: 27
consider-redo (28)
l 33: compensate (6, t;;) T t;s | | |
34: subbegin (1,5) | | |
35: write (p, t;5) | p: 35 | | 35: write (p, t)5) , next=6
36: write (g, t;5) | q: 36 | | 36: write (g, t;5), next = 35
| | |3
|

38: rollback (t,)

| 38: rollback (1))

SECOND RESTART COMPLETE:

RESUME NORMAL OPERATION

Correctness of Enhanced 2-Level Algorithm

Theorem 14.1:
The enhanced 2-level crash recovery method,
with 3 passes over the combined log, performs correct recovery.

Proof sketch:
The following invariant holds at each point of the undo pass:

V log sequence numbers s € StableLog such that
s = ActiveTrans[t].LastSeqNo for some loser transaction t:
V operations o € StableLog:

(o belongstot) =
(o is reachable along ActiveTrans[t].NextUndoSeqNo

< 0 € CachedDatabase)

Chapter 14: Object-Model Crash Recovery

* 14.2 Overview of Redo-History Algorithms

* 14.3 Simple Algorithm for 2-Layered Systems

* 14.4 Enhanced Algorithm for 2-Layered Systems
* 14.5 Complete Algorithm for General Executions

* 14.6 Lessons Learned

Lessons Learned

* The redo-history paradigm can be extended to
object-model crash recovery.
» State-of-the-art algorithms are based on:
* page-oriented redo of winners and losers
* log entries of all levels in a single log,
to facilitate a single undo pass
* log entries for high-level operations are at the same time
sub-commit log entries to ensure the operation atomicity
» for undo, log entries of all levels are appropriately linked in the
NextUndoSeqNo backward chain
* during undo, CLEs are created to track progress and
ensure idempotence
* during undo, the execution of high-level inverse operations
requires the creation of low-level redo log entries
to ensure operation atomicity

	Chapter 14

