Transactional Information Systems:

Theory, Algorithms, and the Practice of
Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann
ISBN 1-55860-508-8

“Teamwork is essential. It allows you to blame someone else.” (Anonymous)

Part III: Recovery

* 11 Transaction Recovery

* 12 Crash Recovery: Notion of Correctness

* 13 Page-Model Crash Recovery Algorithms

* 14 Object-Model Crash Recovery Algorithms
* 15 Special Issues of Recovery

* 16 Media Recovery

* 17 Application Recovery

Chapter 15: Special Issues of Recovery

* 15.2 Logical Logging for Indexes and Large Objects

* 15.3 Intra-transaction Savepoints

* 15.4 Exploiting Parallelism During Restart
* 15.5 Main-Memory Data Servers

* 15.6 Data-Sharing Clusters

¢ 15.7 Lessons Learned

“Success is a lousy teacher. ” (Bill Gates)

2-Level Logging for Index Operations

log entries for insert;; (k, @x)
on B-tree path along pages 1, n, 1, with split of | into | and m:
write;;, (1)
write;;,(m)
write;;;(n)
insert‘lij(k, @x)

— writes the original contents of |
twice on the log (undo/redo info for 1 and m)

Logical Logging for Redo of Index Splits

log only L, operation for transaction redo (to save log space) and
rely on careful flush ordering for subtransaction atomicity

possible cases after a crash (because of arbitrary page flushing):

1) 1, m, and n are in old state (none were flushed)

2)1is new, m and n are old

3) mis new, 1 and n are old

4) n is new, 1 and m are old

5) 1and m are new, n is old

6) 1 and n are new, m is old

7) m and n are new, 1 is old

8) I, m, and n are in new state (all were flushed)

must avoid cases 2 and 6 (all other cases are recoverable)
by enforcing flush orderm <1< n

in addition, posting (n) could be detached from half-split (I and m)
by link technique, so that m <1 is sufficient

The Need for Redo and Flush-Order Dependencies

redo dependency

LSN 100 LSN 200

copy (a, b) copy (c, a)

readset: {a} readset: {c}

writeset: {b} writeset: {a}

} } time

flush-order
dependency

Problem: if a were flushed before b and the system crashed in between,
the copy operation with LSN 100 could not be redone

Redo and Flush-Order Dependencies

Opportunity: operations on large objects (BLOBs, stored procedure
execution state) can achieve significant
savings on log space by logical logging

Difficulty: redo of partially surviving multi-page operations

Definition:

There is a redo dependency from logged operation f(...) to
logged operation g(...) if

* f precedes g on the log and

* there exists page x such that x € readset(f) and x € writeset(g)

Definition:

There is a flush order dependency from page y to page z
(i.e., page y must be flushed before page z) if

there are logged operations f and g with

* y € writeset(f) and z € writeset(g)

¢ and a redo dependency from f to g.

Cyclic Flush-Order Dependencies

redo dependencies

LSN 100 LSN 200 LSN 300 LSN 400
copy (a, b) copy (c, a) merge (b, c, merge (a, c,
readset: {a} readset: { readset: {b, c} readset: {a, c
writeset: {b} writeset: {a} writeset: {a} writeset: {b}

| time

I

Sflush-order
dependencies

Need to flush all pages on the cycle atomically
or force physical, full-write, log entries (i.e., after-images) atomically

Intra-Operation Flush-Order Dependencies

‘ LSN 500 ' LSN 1000
swap (a, b) half-split (1)

redo dependencies

(read-write

dependencies)
readset: {a, b} readset: {1}
writeset: {a, b} writeset: {1, m}
} } time
flush-order

dependencies
page 1
aritten by: 1000

Chapter 15: Special Issues of Recovery

* 15.2 Logical Logging for Indexes and Large Objects

* 15.3 Intra-transaction Savepoints

* 15.4 Exploiting Parallelism During Restart
* 15.5 Main-Memory Data Servers
* 15.6 Data-Sharing Clusters

¢ 15.7 Lessons Learned

The Case for Partial Rollbacks

Additional calls during normal operation

(for partial rollbacks to resolve deadlocks or
application-defined intra-transaction consistency points):
e save (trans) Ts

e restore (trans, s)

Approach:
savepoints are recorded on the log, and restore creates CLEs

Problem with nested rollbacks:

1L,(x) w, (%) L(y) wi(y) W, (y) uy(y) L(y) wa(y) ¢, L (y) (W, ' (y)! wl(y) wi(x)
— not prefix reducible

Problem eliminated with NextUndoSeqNo backward chaining:

L) wi (%) 11(y) wi(y) Wi () uy(y) L(y) waly) € w(x)
— prefix reducible

NextUndoSeqNo Backward Chain
for Nested Rollbacks

first restore second restore abort
initiated initiated initiated
NextUndoSeqNo l l i
backward chain
crash

70: || 73: 74: 75:
write| |CLE | | CLE|restore
(6,0 | (6L, | (Gie, [(6, 30)
70) 40)

log
continued
during
restart

Savepoint Algorithm

savepoint (transid):

newlogentry.LogSeqNo := new sequence number;

newlogentry.ActionType := savepoint;

newlogentry.PreviousSeqNo :=
ActiveTrans[transid].LastSeqgNo;

newlogentry.NextUndoSeqNo :=
ActiveTrans[transid].LastSeqgNo;

ActiveTrans[transid].LastSeqNo := newlogentry.LogSeqgNo;

LogBuffer += newlogentry;

Restore Algorithm
restore (transid, s):
logentry := ActiveTrans[transid].LastSeqNo;
while logentry is not equal to s do
if logentry.ActionType = write or full-write then
newlogentry.LogSegNo := new sequence number;
newlogentry.ActionType := compensation;
newlogentry.PreviousSegNo:=ActiveTrans[transid].LastSeqNo;
newlogentry.RedoInfo :=
inverse action of the action in logentry;
newlogentry.NextUndoSegNo := logentry.PreviousSeqNo;
ActiveTrans[transid].LastSeqNo := newlogentry.LogSegNo;
LogBuffer += newlogentry;
write (logentry.PageNo) according to logentry.UndoInfo;
logentry := logentry.PreviousSeqNo;
end /*if*/;
if logentry.ActionType = restore then
logentry := logentry.NextUndoSeqNo;

end /*if*/
end /*while*/
newlogentry.LogSeqNo := new sequence number;
newlogentry.ActionType := restore;
newlogentry.TransId := transid;
newlogentry.PreviousSegNo := ActiveTrans[transid].LastSegNo;

newlogentry.NextUndoSegNo := s.NextUndoSeqNo;
LogBuffer += newlogentry;

Savepoints in Nested Transactions

121 1122 21 Tzz

w@wb) wl)wd) wle) w(f) w(gwh) w()

T R B

savepoints: 0 1 2 3 4 5

beginnings of active subtransactions are feasible savepoints

Chapter 15: Special Issues of Recovery

* 15.2 Logical Logging for Indexes and Large Objects

* 15.3 Intra-transaction Savepoints

* 15.4 Exploiting Parallelism During Restart

* 15.5 Main-Memory Data Servers
* 15.6 Data-Sharing Clusters

¢ 15.7 Lessons Learned

Exploiting Parallelism During Restart

* Parallelize redo by spawning multiple threads
for different page subsets (driven by DirtyPages list),
assuming physical or physiological log entries
* Parallelize log scans by partitioning the stable log
across multiple disks based on hash values of page numbers
* Parallelize undo by spawning multiple threads
for different loser transactions

Incremental restart with

early admission of new transactions right after redo

* by re-acquiring locks of loser transactions (or coarser locks)
during redo of history, or

* right after log analysis
by allowing access, already during redo, to all non-dirty pages p
with p.PageSeqNo < OldestUndoLSN (p)

Chapter 15: Special Issues of Recovery

* 15.2 Logical Logging for Indexes and Large Objects
* 15.3 Intra-transaction Savepoints

* 15.4 Exploiting Parallelism During Restart

* 15.5 Main-Memory Data Servers

* 15.6 Data-Sharing Clusters

¢ 15.7 Lessons Learned

Considerations for Main-Memory Data Servers

Main-memory databases are particularly attractive for
telecom or financial apps with < 50 GB of data,

fairly uniform workload of short transactions,

and very stringent response time requirements

Specific opportunities:
* crash recovery amounts to reloading the database
— physical (after-image) logging attractive
* eager page flushing in the background
amounts to “fuzzy checkpoint”
* in-memory versioning (with no-steal caching)
can eliminate writing undo information to stable log
* log buffer forcing can be avoided by “safe RAM”
* incremental, page-wise, redo (and undo) on demand
may deviate from chronological order

Chapter 15: Special Issues of Recovery

* 15.2 Logical Logging for Indexes and Large Objects
* 15.3 Intra-transaction Savepoints

* 15.4 Exploiting Parallelism During Restart

* 15.5 Main-Memory Data Servers

¢ 15.6 Data-Sharing Clusters

¢ 15.7 Lessons Learned

Architecture of Data-Sharing Clusters

Data-sharing cluster:

multiple computers (as data servers) with local memory
and shared disks via high-speed interconnect

for load sharing, failure isolation, and very high availability

During normal operation:
* transactions initiated and executed locally
* pages transferred to local caches on demand (data shipping)
* coherency control eliminates stale page copies:
» multiple caches can hold up-to-date copies read-only
* upon update in one cache, all other caches drop their copies
* can be combined with page-model or object-model CC
* logging to global log on shared disk or
partitioned log with static assignment of server responsibilities or
private logs for each server for perfect scalability

Upon failure of a single server:
failover to surviving servers

Illustration of Data-Sharing Cluster

Server 1 Server 2 Server n
4215 Cache 4215 Cache Cache
Pagep | 13755 pagep | r37ss 4309
pageq pageq pagey
[4299] *e® | | [3155
page x pageq
||| Interconnect
—_Stable Log — ble Log Stable Log
4299 write(x. . 4215 write(p, . 4309 write(y |

Stable Database
4011

Recovery with “Private” Logs

needs page-wise globally monotonic sequence numbers,
e.g., upon update to page p (without any extra messages):
p-PageSeqNo := max{p.PageSeqNo, largest local seq no} + 1

surviving server performs crash recovery on behalf of the failed one,
* with analyis pass on private log of failed seerver to identify losers,
e scanning and “merging” all private logs for redo,

possibly with DirtyPages info from the failed server,

(merging can be avoided by flushing before

each page transfer across servers),
* scanning private log of failed server for undo

recovery from failure of entire cluster needs
analysis passes, merged redo passes, and undo passes
over all private logs

Chapter 15: Special Issues of Recovery

* 15.2 Logical Logging for Indexes and Large Objects
* 15.3 Intra-transaction Savepoints

* 15.4 Exploiting Parallelism During Restart

* 15.5 Main-Memory Data Servers

* 15.6 Data-Sharing Clusters

¢ 15.7 Lessons Learned

Lessons Learned

* The redo-history algorithms from Chapter 13 and 14
can be extended in a fairly localized and incremental manner.
* Practically important extensions are:
* logical log entries for multi-page operations
* as an additional option
* intra-transaction savepoints and partial rollbacks

parallelized and incremental restart for higher availability

special architectures like
- main-memory data servers
- for sub-second responsiveness and
- data-sharing clusters
- for very high availability

	Chapter 15

