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Lost Update Problem

  

   
P1

     
Time

     
P2

  

   
/* x = 100 */

  

   
r (x)
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2

     
r (x)

  

   
x := x+100

     
4

     
x := x+200

  

   
w (x)

     
5

  

   
/* x = 200 */

  

   
6

     
w (x)

  

   
/* x = 300 */

  

   
update 

     
“

     
lost

     
”
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Inconsistent Read Problem
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problem is the interleaving 
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1
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1
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2

       
(y) w
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no problem with sequential execution
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Dirty Read Problem
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w (x)

  

   
cannot rely on validity

  

   
of previously read data
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of previously read data

  

    
Observation:

       
transaction rollbacks could affect concurrent transactions

   



7 / 49

   
  

Chapter 3: Concurrency Control 
   
  

–
   
  

Notions of 

   
  

Correctness for the Page Model

   
  

•
   
  

3.2 Canonical Synchronization Problems

   
  

•
   
  

3.3 Syntax of Histories and Schedules

   
  

•
   
  

3.4 Correctness of Histories and Schedules

   
  

•
   
  

3.5 Herbrand Semantics of Schedules

   
  

•
   
  

3.6 Final
   
  

-
   
  

State Serializability

   
  

•
   
  

3.7 View Serializability

   
  

•
   
  

3.8 Conflict Serializability

   
  

•
   
  

3.9 Commit Serializability

   
  

•
   
  

3.10 An Alternative Criterion: Interleaving Specifications

   
  

•
   
  

3.11 Lessons Learned



8 / 49

   
Schedules and Histories

  

   
Definition 3.1 (Schedules and histories):

  

   
Let T={t

     
1

     
, ..., t

     
n

     
} be a set of transactions, where each t

     
i
     
∈

     
T

  

   
has the form t

     
i
     
=(op

     
i
     
, <

     
i
     
) with op

     
i
     
denoting the operations of t

     
i
  

   
and <

     
i
     
their ordering.

  

   
(i)

     
A 

     
history

     
for T is a pair s=(op(s),<

     
s
     
) s.t.

  

   
(a) op(s) 

     
⊆

     
∪

     
i=1..n

     
op

     
i
     
∪

     
∪

     
i=1..n

     
{a

     
i
     
, c

     
i
     
}

  

   
(b) for all i, 1

     
≤

     
i
     
≤

     
n: c

     
i
     
∈

     
op(s) 

     
⇔

     
a

     
i
     
∉

     
op(s)

  

   
(c) 

     
∪

     
i=1..n

     
<

     
i
     
⊆

     
<

     
s
  

   
(d) for all i, 1

     
≤

     
i
     
≤

     
n, and all p 

     
∈

     
op

     
i
     
: p <

     
s
     
c

     
i
     
or p <

     
s
     
a

     
i
  

   
(e) for all p, q 

     
∈

     
op(s) s.t. at least one of them is a write 

  

   
and both access the same data item: p <

     
s
     
q or q <

     
s
     
p

  

   
(ii) A 

     
schedule

     
is a prefix of a history.
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(ii) A 
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is a prefix of a history.

  

    
Definition 3.2 (Serial history):

   

    
A history s is 

       
serial

       
if for any two transactions t

       
i
       
and t

       
j
       
in s, 

   

    
where i

       
≠

       
j, all operations from t

       
i
       
are ordered in s before all

   

    
operations from t

       
j
       
or vice versa.
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Example Schedules and Notation

   
  

r
   
  

1
   
  

(x)
   
  

w
   
  

1
   
  

(x)
   
  

c
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r
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(z)

   
  

r
   
  

2
   
  

(x)
   
  

w
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w
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c
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w
   
  

3
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Example 3.4:
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1
   
  

a
   
  

3

   
  

trans(s):=

   
  

{t
   
  

i
   
  

| s contains step of t
   
  

i
   
  

}

   
  

commit(s):=

   
  

{t
   
  

i
   
  

∈
   
  

trans(s) | c
   
  

i
   
  

∈
   
  

s}

   
  

abort(s):=

   
  

{t
   
  

i
   
  

∈
   
  

trans(s) | a
   
  

i
   
  

∈
   
  

s}

   
  

active(s):=

   
  

trans(s) 
   
  

–
   
  

(commit(s) 
   
  

∪
   
  

abort(s))
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Correctness of Schedules

   
  

1.
   
  

Define equivalence relation
   
  

≈≈
   
  

on set S of all schedules.

   
  

2.
   
  

“
   
  

Good
   
  

”
   
  

schedules are those in the equivalence classes

   
  

of serial schedules.

   
  

•
   
  

Equivalence must be efficiently decidable.

   
  

•
   
  

“
   
  

Good
   
  

”
   
  

equivalence classes should be 
   
  

“
   
  

sufficiently large
   
  

”
   
  

.

   
  

For the moment,

   
  

disregard aborts: assume that all transactions are committed.
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Activity

   
  

•
   
  

What is an equivalence relation?

   
  

•
   
  

List the three defining conditions!
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Herbrand Semantics of Schedules

  

   
Definition 3.3 (Herbrand 

     
S

     
emantics of 

     
S

     
teps):

  

   
For schedule s the 

     
Herbrand semantics H

     
s
     
of steps r

     
i
     
(x), w

     
i
     
(x) 

     
∈

     
op(s) is:

  

   
(i)

     
H

     
s
     
[r

     
i
     
(x)] := H

     
s
     
[w

     
j
     
(x)] where w

     
j
     
(x) is the last write on x in s before r

     
i
     
(x).

  

   
(ii)

     
H

     
s
     
[w

     
i
     
(x)] := f

     
ix

     
(H

     
s
     
[r

     
i
     
(y

     
1

     
)], ..., H

     
s
     
[r

     
i
     
(y

     
m

     
)]) where 

  

   
the r

     
i
     
(y

     
j
     
), 1

     
≤

     
j
     
≤

     
m, are all read operations of t

     
i
     
that occcur in s before w

     
i
     
(x) 

  

   
and f

     
ix

     
is an uninterpreted m

     
-

     
ary function symbol.
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Definition 3.4 (Herbrand 

       
U

       
niverse):

   

    
For data items D={x, y, z, ...} and transactions t

       
i
       
, 

       
1

       
≤

       
i
       
≤

       
n,

   

    
the 

       
Herbrand universe HU

       
is the smallest set of symbols s.t.

   

    
(i)

       
f

       
0x

       
( ) 

       
∈

       
HU for each x 

       
∈

       
D where f

       
0x

       
is a constant, and

   

    
(ii)

       
if w

       
i
       
(x) 

       
∈

       
op

       
i
       
for some t

       
i
       
, there are m read operations r

       
i
       
(y

       
1

       
), ..., r

       
i
       
(y

       
m

       
) 

   

    
that precede w

       
i
       
(x) in t

       
i
       
, and v

       
1

       
, ..., v

       
m

       
∈

       
HU, then f

       
ix

       
(v

       
1

       
, ..., v

       
m

       
) 

       
∈

       
HU.
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Definition 3.5 (Schedule 

       
S

       
emantics):

   

    
The 

       
Herbrand semantics of a schedule

       
s is the mapping

   

    
H[s]: D 

       
→

       
HU defined by H[s](x) := H

       
s
       
[w

       
i
       
(x)],

   

    
where w

       
i
       
(x) is the last operation from s writing x, for each x 

       
∈

       
D.
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Herbrand Semantics: Example

   
  

s = 
   
  

w
   
  

0
   
  

(x) w
   
  

0
   
  

(y) c
   
  

0
   
  

r
   
  

1
   
  

(x)
   
  

r
   
  

2
   
  

(y) w
   
  

2
   
  

(x) 
   
  

w
   
  

1
   
  

(y)
   
  

c
   
  

2
   
  

c
   
  

1

   
  

H
   
  

s
   
  

[
   
  

w
   
  

0
   
  

(x)
   
  

] = f
   
  

0x
   
  

( )

   
  

H
   
  

s
   
  

[
   
  

w
   
  

0
   
  

(y)
   
  

] = f
   
  

0y
   
  

( )

   
  

H
   
  

s
   
  

[
   
  

r
   
  

1
   
  

(x)
   
  

] = H
   
  

s
   
  

[
   
  

w
   
  

0
   
  

(x)
   
  

] = f
   
  

0x
   
  

( )

   
  

H
   
  

s
   
  

[r
   
  

2
   
  

(y)] = H
   
  

s
   
  

[
   
  

w
   
  

0
   
  

(y)
   
  

] = f
   
  

0y
   
  

( )

   
  

H
   
  

s
   
  

[w
   
  

2
   
  

(x)] = f
   
  

2x
   
  

(H
   
  

s
   
  

[r
   
  

2
   
  

(y)]) = f
   
  

2x
   
  

(f
   
  

0y
   
  

( ))

   
  

H
   
  

s
   
  

[
   
  

w
   
  

1
   
  

(y)
   
  

] = f
   
  

1y
   
  

(H
   
  

s
   
  

[
   
  

r
   
  

1
   
  

(x)
   
  

]) = f
   
  

1y
   
  

(f
   
  

0x
   
  

( ))

   
  

H[s](x) = H
   
  

s
   
  

[w
   
  

2
   
  

(x)] = f
   
  

2x
   
  

(f
   
  

0y
   
  

( ))

   
  

H[s](y) = H
   
  

s
   
  

[
   
  

w
   
  

1
   
  

(y)
   
  

] = f
   
  

1y
   
  

(f
   
  

0x
   
  

( ))
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w

       
1
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(f
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( )) = H
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w

       
1

       
(x)
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w
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⇒
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≈

       
f
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0y
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H[s'](y) = H

       
s'

       
[

       
w

       
2

       
(y)

       
] = f

       
2y

       
(f

       
1y

       
(f

       
0x
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⇒

       
¬

       
(s 

       
≈

       
f
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Definition 3.7 (Reads

     
-

     
from 

     
R

     
elation; 

     
U

     
seful, 

     
A

     
live, and 

     
D

     
ead 

     
S

     
teps):

  

   
Given a schedule s, extended with an initial and a final transaction, t

     
0

     
and t

     
∞

     
.
  

   
(i)

     
r

     
j
     
(x) reads x in s from w

     
i
     
(x)

     
if w

     
i
     
(x) is the last write on x s.t. w

     
i
     
(x) <

     
s
     
r

     
j
     
(x).

  

   
(ii)

     
The 

     
reads

     
-

     
from relation

     
of s is

  

   
RF(s) := {(t

     
i
     
, x, t

     
j
     
) | an r

     
j
     
(x) reads x from a w

     
i
     
(x)}.

  

   
(iii)

     
Step p is 

     
directly useful

     
for step q, denoted p

     
→

     
q, if q reads from p,

  

   
or p is a read step and q is a subsequent write step of the same transaction.

  

   
→

     
*, the 

     
“

     
useful

     
”

     
relation

     
, denotes the reflexive and transitive closure of 

     
→

     
.
  

   
(iv)

     
Step p is 

     
alive

     
in s if it is useful for some step from t

     
∞

     
, and 

     
dead

     
otherwise.

  

   
(v)

     
The 

     
live

     
-

     
reads

     
-

     
from relation

     
of s is 

  

   
LRF(s) := {(t

     
i
     
, x, t

     
j
     
) | an alive r

     
j
     
(x) reads x from w

     
i
     
(x)}

  

   
Reads

     
-

     
from Relation
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Example 3.7:

       
s= 

       
r

       
1

       
(x)

       
r

       
2

       
(y)

       
w

       
1

       
(y)

       
w

       
2

       
(y)

   

    
s'= 

       
r

       
1

       
(x) w

       
1

       
(y)

       
r

       
2

       
(y) w

       
2

       
(y)

   

    
RF(s) = {(t

       
0

       
,x,t

       
1

       
), (t

       
0

       
,y,t

       
2

       
), (t

       
0

       
,x,t

       
∞

       
), (t

       
2

       
,y,t

       
∞

       
)}

   

    
RF(s') = {(t

       
0

       
,x,t

       
1

       
), (t

       
1

       
,y,t

       
2

       
), (t

       
0

       
,x,t

       
∞

       
), (t

       
2

       
,y,t

       
∞

       
)}

   

    
LRF(s) = 

       
{(t

       
0

       
,y,t

       
2

       
), (t

       
0

       
,x,t

       
∞

       
), (t

       
2

       
,y,t

       
∞

       
)}

   

    
LRF(s') = {(t

       
0

       
,x,t

       
1

       
), (t

       
1

       
,y,t

       
2

       
), (t

       
0

       
,x,t

       
∞

       
), (t

       
2

       
,y,t

       
∞

       
)}
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Final

     
-

     
State Serializability

  

   
Theorem 3.1:

  

   
For schedules s and s' the following statements hold.

  

   
(i)

     
s 

     
≈

     
f
     
s' iff op(s)=op(s') and LRF(s)=LRF(s').

  

   
(ii)

     
For s let the step graph D(s)=(V,E) be a directed graph with vertices

  

   
V:=op(s) and edges E:={(p,q) | p

     
→

     
q}, and the reduced step graph D

     
1

     
(s) be

  

   
derived from D(s) by removing all vertices that correspond to dead steps.

  

   
Then LRF(s)=LRF(s') iff D

     
1

     
(s)=D

     
1

     
(s').
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is polynomial in the length of the two schedules.
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Final
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Definition 3.8 (Final

       
S

       
tate 

       
S

       
erializability):

   

    
A schedule s is 

       
final

       
state serializable

       
if there is a serial schedule s' s.t. s 

       
≈

       
f

       
s'.

   

    
FSR denotes the class of all final

       
-

       
state serializable histories.
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FSR: Example 3.9

  

   
s'= 

     
r

     
1

     
(x) w

     
1

     
(y)

     
r

     
2

     
(y) w

     
2

     
(y)

  

   
w

     
0

     
(x)

  

   
r

     
1

     
(x)

  

   
r

      
∞

      
(x)

  

   
w

     
0

     
(y)

  

   
r

     
2

     
(y)

  

   
w

     
1

     
(y)

  

   
w

     
2

     
(y)

  

   
s= 

     
r

     
1

     
(x)

     
r

     
2

     
(y)

     
w

     
1

     
(y)

     
w

     
2

     
(y)

  

   
r

      
∞

      
(y)

  

   
D(s):

  

   
w

     
0

     
(x)

  

   
r

     
1

     
(x)

  

   
r

      
∞

      
(x)

  

   
w

     
0

     
(y)

  

   
w

     
1

     
(y)

  

   
r

     
2

     
(y)

  

   
w

     
2

     
(y)

  

   
r

      
∞

      
(y)

  

   
D(s'):

  

   
dead

  

   
steps
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Canonical Anomalies Reconsidered

  

   
•

     
Lost update anomaly:

  

   
L = 

     
r

     
1

     
(x)

     
r

     
2

     
(x)

     
w

     
1

     
(x)

     
w

     
2

     
(x)

     
c

     
1

     
c

     
2

  

   
→

     
history is not FSR

  

   
•

     
Inconsistent read anomaly:

  

   
I = 

     
r

     
2

     
(x) w

     
2

     
(x)

     
r

     
1

     
(x)

     
r

     
1

     
(y)

     
r

     
2

     
(y) w

     
2

     
(y)

     
c

     
1

     
c

     
2

  

   
→

     
history is FSR !

  

   
LRF(L) = {(t

     
0

     
,x,t

     
2

     
), (t

     
2

     
,x,t

     
∞

     
)}

  

   
LRF(t

     
1

     
t
     
2

     
) = {(t

     
0

     
,x,t

     
1

     
), (t

     
1

     
,x,t

     
2

     
), (t

     
2

     
,x,

     
t
     
∞

     
)}

  

   
LRF(t

     
2

     
t
     
1

     
) = {(t

     
0

     
,x,t

     
2

     
), (t

     
2

     
,x,t

     
1

     
), (t

     
1

     
,x,

     
t
     
∞

     
)}

  

   
LRF(I) = {(t

     
0

     
,x,t

     
2

     
), (t

     
0

     
,y,t

     
2

     
), (t

     
2

     
,x,t

     
∞

     
), 

     
(t

     
2

     
,y,t

     
∞

     
)}

  

   
LRF(t

     
1

     
t
     
2

     
) = 

     
{(t

     
0

     
,x,t

     
2

     
), (t

     
0

     
,y,t

     
2

     
), (t

     
2

     
,x,t

     
∞

     
), 

     
(t

     
2

     
,y,t

     
∞

     
)}

  

   
LRF(t

     
2

     
t
     
1

     
) = 

     
{(t

     
0

     
,x,t

     
2

     
), (t

     
0

     
,y,t

     
2

     
), (t

     
2

     
,x,t

     
∞

     
), 

     
(t

     
2

     
,y,t

     
∞

     
)}
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∞
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0

     
,x,t

     
2

     
), (t

     
0

     
,y,t

     
2

     
), (t

     
2
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∞

     
), 

     
(t

     
2

     
,y,t

     
∞
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1

     
t
     
2
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{(t

     
0

     
,x,t

     
2

     
), (t

     
0

     
,y,t

     
2

     
), (t

     
2

     
,x,t

     
∞

     
), 

     
(t

     
2

     
,y,t

     
∞

     
)}

  

   
LRF(t

     
2

     
t
     
1

     
) = 

     
{(t

     
0

     
,x,t

     
2

     
), (t

     
0

     
,y,t

     
2

     
), (t

     
2

     
,x,t

     
∞

     
), 

     
(t

     
2

     
,y,t

     
∞

     
)}

  

    
Observation:

       
(Herbrand) semantics of all read steps matters!
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View Serializability

  

   
Definition 3.9 (View 

     
E

     
quivalence):

  

   
Schedules s and s' are 

     
view equivalent

     
, denoted s 

     
≈

     
v

     
s', if the following hold:

  

   
(i)

     
op(s)=op(s')

  

   
(ii)

     
H[s] = H[s']

  

   
(iii)

     
H

     
s
     
[p] = H

     
s'

     
[p] for all (read or write) steps
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v
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Definition 3.

       
10

       
(View 

       
S

       
erializability):

   

    
A schedule s is 

       
view serializable

       
if there exists a serial schedule s' s.t. s 

       
≈

       
v

       
s'.

   

    
VSR denotes the class of all view

       
-

       
serializable histories.
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Inconsistent Read Reconsidered

  

   
•

     
Inconsistent read anomaly:

  

   
I = 

     
r

     
2

     
(x) w

     
2

     
(x)

     
r

     
1

     
(x) r

     
1

     
(y)

     
r

     
2

     
(y) w

     
2

     
(y)

     
c

     
1

     
c

     
2

  

   
→

     
history is not VSR !

  

   
RF(I) = {(t

     
0

     
,x,t

     
2

     
), (t

     
2

     
,x,t

     
1

     
), (t

     
0

     
,y,t

     
1

     
), (t

     
0

     
,y,t

     
2

     
), (t

     
2

     
,x,t

     
∞

     
), 

     
(t

     
2

     
,y,t

     
∞

     
)}

  

   
RF(t

     
1

     
t
     
2

     
) = 

     
{(t

     
0

     
,x,t

     
1

     
), (t

     
0

     
,y,t

     
1

     
), (t

     
0

     
,x,t

     
2

     
), (t

     
0

     
,y,t

     
2

     
), (t

     
2

     
,x,t

     
∞

     
), 

     
(t

     
2

     
,y,t

     
∞

     
)}

  

   
RF(t

     
2

     
t
     
1

     
) = 

     
{(t

     
0

     
,x,t

     
2

     
), (t

     
0

     
,y,t

     
2

     
), (t

     
2

     
,x,t

     
1

     
), (t

     
2

     
,y,t

     
1

     
), (t

     
2

     
,x,t

     
∞

     
), 

     
(t

     
2

     
,y,t

     
∞

     
)}
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c
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0
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2

     
), (t

     
2

     
,x,t

     
1

     
), (t

     
0

     
,y,t

     
1

     
), (t

     
0

     
,y,t

     
2

     
), (t

     
2

     
,x,t

     
∞

     
), 

     
(t

     
2

     
,y,t

     
∞

     
)}

  

   
RF(t

     
1

     
t
     
2

     
) = 

     
{(t

     
0

     
,x,t

     
1

     
), (t

     
0

     
,y,t

     
1

     
), (t

     
0

     
,x,t

     
2

     
), (t

     
0

     
,y,t

     
2

     
), (t

     
2

     
,x,t

     
∞

     
), 

     
(t

     
2

     
,y,t

     
∞

     
)}

  

   
RF(t

     
2

     
t
     
1

     
) = 

     
{(t

     
0

     
,x,t

     
2

     
), (t

     
0

     
,y,t

     
2

     
), (t

     
2

     
,x,t

     
1

     
), (t

     
2

     
,y,t

     
1

     
), (t

     
2

     
,x,t

     
∞

     
), 

     
(t

     
2

     
,y,t

     
∞

     
)}

  

    
Observation:

       
VSR properly captures our intuition
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Relationship Between VSR and FSR

  

   
Theorem 3.

     
3

     
:

  

   
VSR 

     
⊂

     
FSR.

  

   
Theorem 3.

     
4

     
:

  

   
Let s be a history without dead steps. Then s 

     
∈

     
VSR iff s 

     
∈

     
FSR. 
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On the Complexity of Testing VSR

  

   
Theorem 3.

     
5

     
:

  

   
The problem of deciding for a given schedule s whether s 

     
∈

     
VSR holds

  

   
is NP

     
-

     
complete.
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Properties of VSR

  

   
Definition 3.11 (Monotone Classes of Histories)

  

   
Let s be a schedule and T 

     
⊆

     
trans(s). 

     
Π

     
T

     
(s) denotes the projection of s onto T.

  

   
A class E of histories is called 

     
monotone

     
if the following holds:

  

   
if s is in E, then 

     
Π

     
T

     
(s) is in E for each T 

     
⊆

     
trans(s).

  

   
VSR is not monotone. 

  

   
Example:

  

   
s = 

     
w

     
1

     
(x)

     
w

     
2

     
(x) w

     
2

     
(y) c

     
2

     
w

     
1

     
(y)

     
c

     
1

     
w

     
3

     
(x) w

     
3

     
(y) c

     
3

  

   
Π

     
{t1, t2}

     
(s) = 

     
w

     
1

     
(x)

     
w

     
2

     
(x) w

     
2

     
(y) c

     
2

     
w

     
1

     
(y)

     
c

     
1

  

   
→

     
∈

     
VSR

  

   
→

     
∉

     
VSR
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Chapter 3: Concurrency Control 
   
  

–
   
  

Notions of 

   
  

Correctness for the Page Model

   
  

•
   
  

3.2 Canonical Synchronization Problems

   
  

•
   
  

3.3 Syntax of Histories and Schedules

   
  

•
   
  

3.4 Correctness of Histories and Schedules

   
  

•
   
  

3.5 Herbrand Semantics of Schedules

   
  

•
   
  

3.6 Final
   
  

-
   
  

State Serializability

   
  

•
   
  

3.7 View Serializability

   
  

•
   
  

3.8 Conflict Serializability

   
  

•
   
  

3.9 Commit Serializability

   
  

•
   
  

3.10 An Alternative Criterion: Interleaving Specifications

   
  

•
   
  

3.11 Lessons Learned
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Conflict Serializability

  

   
Definition 3.

     
12

     
(Conflicts and 

     
C

     
onflict 

     
R

     
elations):

  

   
Let s be a schedule, t, t' 

     
∈

     
trans(s), t 

     
≠

     
t'.

  

   
(i)

     
Two data operations p 

     
∈

     
t and q 

     
∈

     
t' are in

     
conflict

     
in s if

  

   
they access the same data item and at least one of them is a write.

  

   
(ii)

     
{(p, q)} | p, q are in conflict and p <

     
s
     
q} is the 

     
conflict relation

     
of s.
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Definition 3.

       
13

       
(Conflict 

       
E

       
quivalence):

   

    
Schedules s and s' are 

       
conflict equivalent

       
, denoted s 

       
≈

       
c
       
s', if

   

    
op(s) = op(s') and conf(s) = conf(s'). 
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12

     
(Conflicts and 

     
C

     
onflict 

     
R

     
elations):

  

   
Let s be a schedule, t, t' 

     
∈

     
trans(s), t 

     
≠
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Two data operations p 

     
∈
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conflict
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quivalence):
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conflict equivalent
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≈

       
c
       
s', if

   

    
op(s) = op(s') and conf(s) = conf(s'). 

   

    
Definition 3.

       
14

       
(Conflict 

       
S

       
erializability):

   

    
Schedule s is 

       
conflict serializable

       
if there is a serial schedule s' s.t. s 

       
≈

       
c

       
s'.

   

    
CSR denotes the class of all conflict serializable schedules.

   

    
Example 

       
a

       
:

       
r

       
1

       
(x)

       
r

       
2

       
(x)

       
r

       
1

       
(z)

       
w

       
1

       
(x)

       
w

       
2

       
(y)

       
r

       
3

       
(z) w

       
3

       
(y) 

       
c

       
1

       
c

       
2

       
w

       
3

       
(z) c

       
3

   

    
Example 

       
b

       
:

       
r

       
2

       
(x) w

       
2

       
(x)

       
r

       
1

       
(x) r

       
1

       
(y)

       
r

       
2

       
(y) w

       
2

       
(y)

       
c

       
1

       
c

       
2

   

    
→

       
∈

       
CSR

   

    
→

       
∉

       
CSR
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Properties of CSR

  

   
Theorem 3.

     
8

     
:

  

   
CSR 

     
⊂

     
VSR

  

   
Example:

     
s = 

     
w

     
1

     
(x)

     
w

     
2

     
(x) w

     
2

     
(y) c

     
2

     
w

     
1

     
(y)

     
c

     
1

     
w

     
3

     
(x) w

     
3

     
(y) c

     
3

  

   
s 

     
∈

     
VSR, but s 

     
∉

     
CSR.

  

   
Theorem 3.

     
9

     
:

  

   
(i)

     
CSR is monotone. 

  

   
(ii)

     
s 

     
∈

     
CSR 

     
⇔

     
Π

     
T

     
(s) 

     
∈

     
VSR for all T 

     
⊆

     
trans(s)

  

   
(i.e., CSR is the largest monotone subset of VSR).
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Activity

   
  

•
   
  

What is a directed graph?

   
  

•
   
  

Think of ways to associate a graph with a 

   
  

schedule!
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Conflict Graph

  

   
Definition 3.

     
15

     
(Conflict 

     
G

     
raph):

  

   
Let s be a schedule. The 

     
conflict graph

     
G(s) = (V, E) is a directed graph

  

   
with vertices V := commit(s) and 

  

   
edges E := {(t, t') | t 

     
≠

     
t' and there are steps p 

     
∈

     
t, q 

     
∈

     
t' with (p, q) 

     
∈

     
conf(s)}.
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∈
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∈
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∈
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Theorem 3.

       
1

       
0:

   

    
Let s be a schedule. Then s 

       
∈

       
CSR iff G(s) is acyclic.

   

    
Corollary 3.4:

   

    
Testing if a schedule is in CSR can be done in time polynomial

   

    
to the schedule's number of transactions.
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Conflict Graph

  

   
Definition 3.

     
15

     
(Conflict 

     
G

     
raph):

  

   
Let s be a schedule. The 

     
conflict graph

     
G(s) = (V, E) is a directed graph

  

   
with vertices V := commit(s) and 

  

   
edges E := {(t, t') | t 

     
≠

     
t' and there are steps p 

     
∈

     
t, q 

     
∈

     
t' with (p, q) 

     
∈

     
conf(s)}.

  

    
Theorem 3.

       
1

       
0:

   

    
Let s be a schedule. Then s 

       
∈

       
CSR iff G(s) is acyclic.

   

    
Corollary 3.4:

   

    
Testing if a schedule is in CSR can be done in time polynomial

   

    
to the schedule's number of transactions.

   

    
Example

       
3.12

       
:

   

    
s = 

       
r

       
1

       
(y)

       
r

       
3

       
(w) 

       
r

       
2

       
(y)

       
w

       
1

       
(y)

       
w

       
1

       
(x)

       
w

       
2

       
(x) w

       
2

       
(z)

       
w

       
3

       
(x) 

       
c

       
1

       
c

       
3 

       
c

       
2

   

    
G(s): 

       
t1

       
t2

   

    
t3
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Activity

   
  

•
   
  

What is a characterization (in a 
   
  

mathematical sense)?

   
  

•
   
  

How do you prove a necessary and 
   
  

sufficient condition?

   
  

•
   
  

What needs to be shown for the 
   
  

serializability theorem?
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Proof of the Conflict

     
-

     
Graph Theorem

  

   
(i) 

     
Let s be a schedule in CSR. So there is a serial schedule s' with conf(s) = conf(s').

  

   
Now assume that G(s) has a cycle t

     
1

     
→

     
t
     
2

     
→

     
... 

     
→

     
t
     
k

     
→

     
t
     
1

     
. 

  

   
This implies that there are pairs (p

     
1

     
, q

     
2

     
), (p

     
2

     
, q

     
3

     
), ... , (p

     
k

     
, q

     
1

     
)

  

   
with p

     
i
     
∈

     
t
     
i
     
, q

     
i
     
∈

     
t
     
i
     
, p

     
i
     
<

     
s
     
q

     
(i+1)

     
, and p

     
i
     
in conflict with q

     
(i+1)

     
.
  

   
Because s' 

     
≈

     
c
     
s, it also implies that p

     
i
     
<

     
s'

     
q

     
(i+1)

     
. 

  

   
Because s' is serial, we obtain t

     
i
     
<

     
s'

     
t
     
(i+1)

     
for i=1, ..., k

     
-

     
1, and t

     
k

     
<

     
s'

     
t
     
1

     
. 

  

   
By transitivity we infer t

     
1

     
<

     
s'

     
t
     
2

     
and t

     
2

     
<

     
s'

     
t
     
1

     
, which is impossible. 

  

   
This contradiction shows that the initial assumption is wrong. So G(s) is acyclic.

  

   
(ii)

     
Let G(s) be acyclic. So it must have at least one source node.

  

   
The following topological sort produces a total order < of transactions:

  

   
a) start with a source node (i.e., a node without incoming edges),

  

   
b) remove this node and all its outgoing edges,

  

   
c) iterate a) and b) until all nodes have been added to the sorted list.

  

   
The total transaction ordering order < preserves the edges in G(s); 

  

   
therefore it yields a serial schedule s' for which s'

     
≈

     
c
     
s.
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Commutativity and Ordering Rules

   
  

Commutativity rules:

   
  

C1: r
   
  

i
   
  

(x) r
   
  

j
   
  

(y) ~ r
   
  

j
   
  

(y) r
   
  

i
   
  

(x) if i
   
  

≠
   
  

j

   
  

C2: r
   
  

i
   
  

(x) w
   
  

j
   
  

(y) ~ w
   
  

j
   
  

(y) r
   
  

i
   
  

(x) if i
   
  

≠
   
  

j
   
  

and x
   
  

≠
   
  

y

   
  

C3: w
   
  

i
   
  

(x) w
   
  

j
   
  

(y) ~ w
   
  

j
   
  

(y) w
   
  

i
   
  

(x) if i
   
  

≠
   
  

j
   
  

and x
   
  

≠
   
  

y

   
  

Ordering rule:

   
  

C4: o
   
  

i
   
  

(x), p
   
  

j
   
  

(y) unordered ~> o
   
  

i
   
  

(x) p
   
  

j
   
  

(y) 

   
  

if x
   
  

≠
   
  

y or both o and p are reads

   
  

Example for transformations of schedules:

   
  

s 
   
  

= 
   
  

w
   
  

1
   
  

(x)
   
  

r
   
  

2
   
  

(x)
   
  

w
   
  

1
   
  

(y)
   
  

w
   
  

1
   
  

(z)
   
  

r
   
  

3
   
  

(z) 
   
  

w
   
  

2
   
  

(y)
   
  

w
   
  

3
   
  

(y) w
   
  

3
   
  

(z)

   
  

~>[C2] 
   
  

w
   
  

1
   
  

(x) w
   
  

1
   
  

(y)
   
  

r
   
  

2
   
  

(x)
   
  

w
   
  

1
   
  

(z)
   
  

w
   
  

2
   
  

(y)
   
  

r
   
  

3
   
  

(z) w
   
  

3
   
  

(y) w
   
  

3
   
  

(z)

   
  

~>[C2] 
   
  

w
   
  

1
   
  

(x) w
   
  

1
   
  

(y) w
   
  

1
   
  

(z)
   
  

r
   
  

2
   
  

(x) w
   
  

2
   
  

(y)
   
  

r
   
  

3
   
  

(z) w
   
  

3
   
  

(y) w
   
  

3
   
  

(z)

   
  

= 
   
  

t
   
  

1
   
  

t
   
  

2
   
  

t
   
  

3
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Commutativity

     
-

     
based Reducibility

  

   
Definition 3.

     
16

     
(Commutativity

     
B

     
ased 

     
E

     
quivalence):

  

   
Schedules s and s' s.t. op(s)=op(s') are 

     
commutativity

     
based equivalent

     
,
  

   
denoted s ~* s', if s can be transformed into s' by applying rules

  

   
C1, C2, C3, C4 finitely many times.

  

   
Theorem 3.

     
11

     
:

  

   
Let s and s' be schedules s.t. op(s)=op(s'). Then s 

     
≈

     
c 

     
s' iff s ~* s'.
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11
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Let s and s' be schedules s.t. op(s)=op(s'). Then s 

     
≈

     
c 

     
s' iff s ~* s'.

  

    
Definition 3.

       
17

       
(Commutativity

       
B

       
ased 

       
R

       
educibility):

   

    
Schedule s is 

       
commutativity

       
-

       
based reducible

       
if there is a serial schedule s'

   

    
s.t. s ~* s'.

   

    
Corollary 3.

       
5

       
:

   

    
Schedule s is commutativity

       
-

       
based reducible iff s 

       
∈

       
CSR.

   



37 / 49

   
Order Preserving Conflict Serializability

  

   
Definition 3.

     
1

     
8 (Order 

     
P

     
reservation):

  

   
Schedule s is 

     
order

     
preserving conflict serializable

     
if it is 

  

   
conflict equivalent to a serial schedule s' and 

  

   
for all t, t' 

     
∈

     
trans(s): if t completely precedes t' in s, then the same holds in s'.

  

   
OCSR denotes the class of all schedules with this property.

  

   
Theorem 3.

     
12

     
:

  

   
OCSR 

     
⊂

     
CSR.

  

   
Example

     
3.13

     
:

  

   
s = 

     
w

     
1

     
(x)

     
r

     
2

     
(x) c

     
2

     
w

     
3

     
(y) c

     
3 

     
w

     
1

     
(y) c

     
1

  
   
→

     
∈

     
CSR

  

   
→

     
∉

     
OCSR

  



38 / 49

   
Commit

     
-

     
order Preserving Conflict 

  

   
Serializability

  

   
Definition 3.

     
19

     
(Commit

     
O

     
rder 

     
P

     
reservation):

  

   
Schedule s is 

     
commit

     
order

     
preserving conflict serializable

     
if 

  

   
for all t

     
i
     
, t

     
j
     
∈

     
trans(s): if there are p 

     
∈

     
t
     
i
     
, q 

     
∈

     
t
     
j 

     
with (p,q) 

     
∈

     
conf(s) then c

     
i
     
<

     
s
     
c

     
j
     
.
  

   
COCSR denotes the class of all schedules with this property.

  

   
Theorem 3.

     
13

     
:

  

   
COCSR 

     
⊂

     
CSR.
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⇔
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c
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⇔
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3
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3

       
w

       
1

       
(x)

       
r

       
2
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2

       
w

       
1

       
(y) c

       
1
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∈
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→

       
∉
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⊂

       
OCSR.

   



39 / 49

   
  

Chapter 3: Concurrency Control 
   
  

–
   
  

Notions of 

   
  

Correctness for the Page Model

   
  

•
   
  

3.2 Canonical Synchronization Problems

   
  

•
   
  

3.3 Syntax of Histories and Schedules

   
  

•
   
  

3.4 Correctness of Histories and Schedules

   
  

•
   
  

3.5 Herbrand Semantics of Schedules

   
  

•
   
  

3.6 Final
   
  

-
   
  

State Serializability

   
  

•
   
  

3.7 View Serializability

   
  

•
   
  

3.8 Conflict Serializability

   
  

•
   
  

3.9 Commit Serializability

   
  

•
   
  

3.10 An Alternative Criterion: Interleaving Specifications

   
  

•
   
  

3.11 Lessons Learned



40 / 49

   
Commit Serializability
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20 

     
(Closure 

     
P

     
roperties of 

     
S

     
chedule 

     
C

     
lasses):

  

   
Let E be a class of schedules.

  

   
For schedule s let CP(s) denote the projection 

     
Π

     
commit(s) 

     
(s).

  

   
E is 

     
prefix

     
-

     
closed

     
if the following holds: s 

     
∈

     
E 

     
⇔

     
p 

     
∈

     
E for each prefix of s.

  

   
E is 

     
commit

     
-

     
closed

     
if the following holds: s 

     
∈

     
E 

     
⇒

     
CP(s) 

     
∈

     
E.

  

   
Theorem 3.

     
16

     
:

  

   
CSR is prefix

     
-

     
commit

     
-

     
closed, i.e., prefix

     
-

     
closed and commit

     
-

     
closed.
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Definition 3.

       
21

       
(Commit 

       
S

       
erializability):

   

    
Schedule s is 

       
commit

       
-

        
Θ

        
-

       
serializable

       
if CP(p) is 

       
Θ

       
-

       
serializable for each

   

    
prefix p of s, where 

       
Θ

       
can be FSR, VSR, or CSR.

   

    
The resulting classes of commit

       
-

       
Θ

       
-

       
serializable schedules are denoted

   

    
CMFSR, CMVSR, and CMCSR.

   

    
Theorem 3.

       
1

       
7:

   

    
(i)

       
CMFSR, CMVSR, CMCSR are prefix

       
-

       
commit

       
-

       
closed.

   

    
(ii)

       
CMCSR 

       
⊂

       
CMVSR 

       
⊂

       
CMFSR
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Interleaving Specifications: Motivation

  

   
Example:

     
all transactions known in advance

  

   
transfer transactions on checking accounts a and b and savings account c:

  

   
t
     
1

     
= 

     
r

     
1

     
(a) w

     
1

     
(a) r

     
1

     
(c) w

     
1

     
(c)

  

   
t
     
2

     
= 

     
r

     
2

     
(b) w

     
2

     
(b) r

     
2

     
(c) w

     
2

     
(c)

  

   
balance transaction:

  

   
t
     
3

     
= r

     
3

     
(a) r

     
3

     
(b) r

     
3

     
(c)

  

   
audit transaction:

  

   
t
     
4

     
= 

     
r

     
4

     
(a) r

     
4

     
(b) r

     
4

     
(c) w

     
4

     
(z)

  

   
Possible schedules:

  

   
r

     
1

     
(a) w

     
1

     
(a)

     
r

     
2

     
(b) w

     
2

     
(b) r

     
2

     
(c) w

     
2

     
(c)

     
r

     
1

     
(c) w

     
1

     
(c)

  

   
r

     
1

     
(a) w

     
1

     
(a)

     
r

     
3

     
(a) r

     
3

     
(b) r

     
3

     
(c) 

     
r

     
1

     
(c) w

     
1

     
(c)

  

   
r

     
1

     
(a) w

     
1

     
(a)

     
r

     
2

     
(b) w

     
2

     
(b)

     
r

     
1

     
(c)

     
r

     
2

     
(c) w

     
2

     
(c)

     
w

     
1

     
(c)

  

   
r

     
1

     
(a) w

     
1

     
(a)

     
r

     
4

     
(a) r

     
4

     
(b) r

     
4

     
(c) w

     
4

     
(z)

     
r

     
1

     
(c) w

     
1

     
(c)

  

   
→

     
∈

     
CSR

  

   
→

     
∉

     
CSR

  

   
→

     
∉

     
CSR

  

   
→

     
∉

     
CSR

  

   
application

     
-

     
tolerable

  

   
interleavings

  

   
non

     
-

     
admissable

  

   
interleavings
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r
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(c) w
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→

     
∈

     
CSR

  

   
→

     
∉

     
CSR
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∉

     
CSR
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∉
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-
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Observations:

       
application may tolerate non

       
-

       
CSR schedules

   

    
a priori knowledge of all transactions impractical
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Indivisible Units

  

   
Definition 3.

     
22

     
(Indivisible 

     
U

     
nits):

  

   
Let T={t

     
1

     
, ..., t

     
n

     
} be a set of transactions. For t

     
i
     
, t

     
j
     
∈

     
T, t

     
i
     
≠

     
t
     
j
     
, an 

     
indivisible unit 

  

   
of t

     
i
     
relative to t

     
j
     
is a sequence of consecutive steps of t

     
i
     
s.t. no operations of t

     
j
  

   
are allowed to interleave with this sequence.

  

   
IU(t

     
i
     
, t

     
j
     
)

     
denotes the ordered sequence of indivisible units of t

     
i
     
relative to t

     
j
     
.
  

   
IU

     
k

     
(t

     
i
     
, t

     
j
     
) denotes the k

     
th

     
element of IU(t

     
i
     
, t

     
j
     
).
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Example 3.

       
14:

   

    
t
       
1

       
= 

       
r

       
1

       
(x) w

       
1

       
(x) w

       
1

       
(z) r

       
1

       
(y)

   

    
t
       
2

       
= 

       
r

       
2

       
(y) w

       
2

       
(y) r

       
2

       
(x)

   

    
t
       
3

       
= w

       
3

       
(x) w

       
3

       
(y) w

       
3

       
(z)

   

    
IU(

       
t
       
1

       
,
       
t
       
2

       
) = < [

       
r

       
1

       
(x) w

       
1

       
(x)

       
], [

       
w

       
1

       
(z) r

       
1

       
(y)

       
] >

   

    
IU(

       
t
       
1

       
, t

       
3

       
) = < [

       
r

       
1

       
(x) w

       
1

       
(x)

       
], [

       
w

       
1

       
(z)

       
], [

       
r

       
1

       
(y)

       
] >

   

    
IU(

       
t
       
2

       
, 

       
t
       
1

       
) = < [

       
r

       
2

       
(y)

       
], [

       
w

       
2

       
(y) r

       
2

       
(x)

       
] >

   

    
IU(

       
t
       
2

       
, t

       
3

       
) = < [

       
r

       
2

       
(y) w

       
2

       
(y)

       
], [

       
r

       
2

       
(x)

       
] >

   

    
IU(t

       
3

       
, 

       
t
       
1

       
) = < [w

       
3

       
(x) w

       
3

       
(y)], [w

       
3

       
(z)] >

   

    
IU(t

       
3

       
, 

       
t
       
2

       
) = < [w

       
3

       
(x) w

       
3

       
(y)], [w

       
3

       
(z)] >
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3
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3
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s

       
1

       
= 

       
r

       
2

       
(y)

       
r

       
1

       
(x) w

       
1

       
(x)

       
w

       
2

       
(y) r

       
2

       
(x)

       
w

       
1

       
(z)

       
w

       
3

       
(x) w

       
3
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r

       
1

       
(y)

       
w

       
3

       
(z)

   

    
s

       
2

       
= 

       
r

       
1

       
(x)

       
r

       
2

       
(y)

       
w

       
2

       
(y)

       
w

       
1

       
(x)

       
r

       
2

       
(x)

       
w

       
1

       
(z) r

       
1

       
(y)

   

    
→

       
respects all IUs

   

    
→

       
violates IU

       
1

       
(t

       
1

       
, t

       
2

       
) and IU

       
2

       
(t

       
2

       
, 

   

    
t
       
1

       
)

   

    
but is conflict equivalent to

   

    
an allowed schedule

   

    
Example 3.15:
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Relatively Serializable Schedules

  

   
Definition 3.

     
23

     
(Dependence of 

     
S

     
teps):

  

   
Step q directly 

     
depends on

     
step p in schedule s, denoted p~>q, if p <

     
s
     
q and

  

   
either p, q belong to the same transaction t and p <

     
t
     
q or p and q are in conflict.

  

   
~>* denotes the reflexive and transitive closure of ~>.
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w

       
1

       
(x)

       
w

       
2

       
(y)

       
w

       
3

       
(x) 

       
w

       
1

       
(z)

       
w

       
3

       
(y) 

       
r

       
2

       
(x)

       
r

       
1

       
(y)

       
w

       
3

       
(z)

   

    
Definition 3.

       
24

       
(Relatively 

       
S

       
erial 

       
S

       
chedule):

   

    
s is 

       
relatively serial

       
if for all transactions t

       
i
       
, t

       
j
       
: if q 

       
∈

       
t
       
j
       
is interleaved with some 

   

    
IU

       
k

       
(t

       
i
       
, t

       
j
       
), then there is no operation p 

       
∈

       
IU

       
k

       
(t

       
i
       
, t

       
j
       
) s.t. p~>* q or q~>* p
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Example 3.

       
17

       
:

   

    
s

       
4

       
= 

       
r

       
1

       
(x)

       
r

       
2

       
(y) w

       
2

       
(y)

       
w

       
1

       
(x)

       
w

       
3

       
(x) 

       
r

       
2

       
(x)

       
w

       
1

       
(z)

       
w

       
3

       
(y) 

       
r

       
1

       
(y)

       
w

       
3

       
(z)

   

    
Definition 3.

       
25

       
(Relatively 

       
S

       
erializable Schedule):

   

    
s is 

       
relatively serializable

       
if it is conflict equivalent to a relatively serial schedule.
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Relative Serialization Graph

  

   
Definition 3.

     
26

     
(Push 

     
F

     
orward and 

     
P

     
ull 

     
B

     
ackward):

  

   
Let IU

     
k

     
(t

     
i
     
, t

     
j
     
) be an IU of t

     
i
     
relative to t

     
j
     
. For an operation p

     
i 

     
∈

     
IU

     
k

     
(t

     
i
     
, t

     
j
     
) let

  

   
(i)

     
F(p

     
i
     
, t

     
j
     
)

     
be the last operation in IU

     
k

     
(t

     
i
     
, t

     
j
     
) and

  

   
(ii)

     
B(p

     
i
     
, t

     
j
     
)

     
be the first operation in IU

     
k

     
(t

     
i
     
, t

     
j
     
).

  

   
Definition 3.

     
27

     
(Relative 

     
S

     
erialization 

     
G

     
raph):

  

   
The 

     
relative serialization graph RSG(s)

     
= (V,E) of schedule s is a graph

  

   
with vertices V := op(s) and edge set E 

     
⊆

     
V

     
×

     
V

     
containing four types of edges:

  

   
(i)

     
for consecutive operations p, q of the same transaction (p, q) 

     
∈

     
E 

     
(I

     
-

     
edge)

  

   
(ii)

     
if p ~>* q for p 

     
∈

     
t
     
i
     
, q 

     
∈

     
t
     
j
     
, t

     
i
     
≠

     
t
     
j
     
, then (p, q) 

     
∈

     
E 

     
(D

     
-

     
edge)

  

   
(iii)

     
if (p, q) is a D

     
-

     
edge with p 

     
∈

     
t
     
i
     
, q 

     
∈

     
t
     
j
     
, then (F(p, t

     
j
     
), q) 

     
∈

     
E 

     
(F

     
-

     
edge)

  

   
(iv)

     
if (p,q ) is a D

     
-

     
edge with p 

     
∈

     
t
     
i
     
, q 

     
∈

     
t
     
j
     
, then (p, B(q, t

     
i
     
)) 

     
∈

     
E 

     
(B

     
-

     
edge)

  

   
Theorem 3.

     
18

     
:

  

   
A schedule s is relatively serializable iff RSG(s) is acyclic.
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RSG Example

   
  

Example 3.
   
  

19
   
  

:

   
  

t
   
  

1
   
  

= 
   
  

w
   
  

1
   
  

(x) r
   
  

1
   
  

(z)

   
  

t
   
  

2
   
  

= 
   
  

r
   
  

2
   
  

(x) w
   
  

2
   
  

(y)

   
  

t
   
  

3
   
  

= r
   
  

3
   
  

(z) r
   
  

3
   
  

(y)

   
  

IU(
   
  

t
   
  

1
   
  

, t
   
  

2
   
  

) = < [
   
  

w
   
  

1
   
  

(x) r
   
  

1
   
  

(z)
   
  

] >

   
  

IU(
   
  

t
   
  

1
   
  

, t
   
  

3
   
  

) = < [
   
  

w
   
  

1
   
  

(x)
   
  

], [
   
  

r
   
  

1
   
  

(z)
   
  

] >

   
  

IU(
   
  

t
   
  

2
   
  

, 
   
  

t
   
  

1
   
  

) = < [
   
  

r
   
  

2
   
  

(x)
   
  

], [
   
  

w
   
  

2
   
  

(y)
   
  

] >

   
  

IU(
   
  

t
   
  

2
   
  

, t
   
  

3
   
  

) = < [
   
  

r
   
  

2
   
  

(x)
   
  

], [
   
  

w
   
  

2
   
  

(y)
   
  

] >

   
  

IU(t
   
  

3
   
  

, 
   
  

t
   
  

1
   
  

) = < [r
   
  

3
   
  

(z)], [r
   
  

3
   
  

(y)] >

   
  

IU(t
   
  

3
   
  

, 
   
  

t
   
  

2
   
  

) = < [r
   
  

3
   
  

(z) r
   
  

3
   
  

(y)] >

   
  

I

   
  

s
   
  

5
   
  

= 
   
  

w
   
  

1
   
  

(x)
   
  

r
   
  

2
   
  

(x)
   
  

r
   
  

3
   
  

(z) 
   
  

w
   
  

2
   
  

(y)
   
  

r
   
  

3
   
  

(y) 
   
  

r
   
  

1
   
  

(z)
   
  

RSG(s
   
  

5
   
  

):

   
  

w
   
  

1
   
  

(x)

   
  

r
   
  

2
   
  

(x)

   
  

r
   
  

3
   
  

(z)

   
  

r
   
  

1
   
  

(z)

   
  

w
   
  

2
   
  

(y)

   
  

r
   
  

3
   
  

(y)   
  

I

   
  

I

   
  

D,B

   
  

B
   
  

D,F

   
  

F

   
  

B

   
  

F   
  

D,B

   
  

D,F
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Chapter 3: Concurrency Control 
   
  

–
   
  

Notions of 

   
  

Correctness for the Page Model

   
  

•
   
  

3.2 Canonical Synchronization Problems

   
  

•
   
  

3.3 Syntax of Histories and Schedules

   
  

•
   
  

3.4 Correctness of Histories and Schedules

   
  

•
   
  

3.5 Herbrand Semantics of Schedules

   
  

•
   
  

3.6 Final
   
  

-
   
  

State Serializability

   
  

•
   
  

3.7 View Serializability

   
  

•
   
  

3.8 Conflict Serializability

   
  

•
   
  

3.9 Commit Serializability

   
  

•
   
  

3.10 An Alternative Criterion: Interleaving Specifications

   
  

•
   
  

3.11 Lessons Learned
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Lessons Learned

   
  

•
   
  

Equivalence to serial history is a natural correctness criterion

   
  

•
   
  

CSR, albeit less general than VSR, 

   
  

is most appropriate for

   
  

•
   
  

complexity reasons

   
  

•
   
  

its monotonicity property

   
  

•
   
  

its generalizability to semantically rich operations

   
  

•
   
  

OCSR and COCSR have additional beneficial properties
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