
1 / 49

Transactional Information Systems:

Theory, Algorithms, and

the

Practice of

Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

“

Teamwork is essential. It allows you to blame someone else.

”

(Anonymous)

© 2002 Morgan Kaufmann

ISBN 1

-

55860

-

508

-

8

2 / 49

Part II: Concurrency Control

•

3 Concurrency Control: Notions of Correctness for the Page Model

•

4 Concurrency Control Algorithms

•

5 Multiversion Concurrency Control

•

6 Concurrency Control on Objects: Notions of Correctness

•

7 Concurrency Control Algorithms on Objects

•

8 Concurrency Control on Relational Databases

•

9 Concurrency Control on Search Structures

•

10 Implementation and Pragmatic Issues

3 / 49

Chapter 3: Concurrency Control

–

Notions of

Correctness for the Page Model

•

3.2 Canonical Synchronization Problems

•

3.3 Syntax of Histories and Schedules

•

3.4 Correctness of Histories and Schedules

•

3.5 Herbrand Semantics of Schedules

•

3.6 Final

-

State Serializability

•

3.7 View Serializability

•

3.8 Conflict Serializability

•

3.9 Commit Serializability

•

3.10 An Alternative Criterion: Interleaving Specifications

•

3.11 Lessons Learned

“

Nothing is as practical as a good theory.

”

(Albert Einstein)

4 / 49

Lost Update Problem

P1

Time

P2

/* x = 100 */

r (x)

1

2

r (x)

x := x+100

4

x := x+200

w (x)

5

/* x = 200 */

6

w (x)

/* x = 300 */

update

“

lost

”

4 / 49

Lost Update Problem

P1

Time

P2

/* x = 100 */

r (x)

1

2

r (x)

x := x+100

4

x := x+200

w (x)

5

/* x = 200 */

6

w (x)

/* x = 300 */

update

“

lost

”

Observation:

problem is the interleaving

r

1

(x)

r

2

(x)

w

1

(x)

w

2

(x)

5 / 49

Inconsistent Read Problem

P1

Time

P2

1

r (x)

2

x := x

–

10

3

w (x)

sum := 0

4

r (x)

5

r (y)

6

sum := sum +x

7

sum := sum + y

8

9

r (y)

10

y := y + 10

11

w (y)

“

sees

”

wrong sum

5 / 49

Inconsistent Read Problem

P1

Time

P2

1

r (x)

2

x := x

–

10

3

w (x)

sum := 0

4

r (x)

5

r (y)

6

sum := sum +x

7

sum := sum + y

8

9

r (y)

10

y := y + 10

11

w (y)

“

sees

”

wrong sum

Observations:

problem is the interleaving

r

2

(x) w

2

(x)

r

1

(x) r

1

(y)

r

2

(y) w

2

(y)

no problem with sequential execution

6 / 49

Dirty Read Problem

P1

Time

P2

r (x)

1

x := x + 100

2

w (x)

3

4

r (x)

5

x := x

-

100

failure & rollback

6

7

w (x)

cannot rely on validity

of previously read data

6 / 49

Dirty Read Problem

P1

Time

P2

r (x)

1

x := x + 100

2

w (x)

3

4

r (x)

5

x := x

-

100

failure & rollback

6

7

w (x)

cannot rely on validity

of previously read data

Observation:

transaction rollbacks could affect concurrent transactions

7 / 49

Chapter 3: Concurrency Control

–

Notions of

Correctness for the Page Model

•

3.2 Canonical Synchronization Problems

•

3.3 Syntax of Histories and Schedules

•

3.4 Correctness of Histories and Schedules

•

3.5 Herbrand Semantics of Schedules

•

3.6 Final

-

State Serializability

•

3.7 View Serializability

•

3.8 Conflict Serializability

•

3.9 Commit Serializability

•

3.10 An Alternative Criterion: Interleaving Specifications

•

3.11 Lessons Learned

8 / 49

Schedules and Histories

Definition 3.1 (Schedules and histories):

Let T={t

1

, ..., t

n

} be a set of transactions, where each t

i

∈

T

has the form t

i

=(op

i

, <

i

) with op

i

denoting the operations of t

i

and <

i

their ordering.

(i)

A

history

for T is a pair s=(op(s),<

s

) s.t.

(a) op(s)

⊆

∪

i=1..n

op

i

∪

∪

i=1..n

{a

i

, c

i

}

(b) for all i, 1

≤

i

≤

n: c

i

∈

op(s)

⇔

a

i

∉

op(s)

(c)

∪

i=1..n

<

i

⊆

<

s

(d) for all i, 1

≤

i

≤

n, and all p

∈

op

i

: p <

s

c

i

or p <

s

a

i

(e) for all p, q

∈

op(s) s.t. at least one of them is a write

and both access the same data item: p <

s

q or q <

s

p

(ii) A

schedule

is a prefix of a history.

8 / 49

Schedules and Histories

Definition 3.1 (Schedules and histories):

Let T={t

1

, ..., t

n

} be a set of transactions, where each t

i

∈

T

has the form t

i

=(op

i

, <

i

) with op

i

denoting the operations of t

i

and <

i

their ordering.

(i)

A

history

for T is a pair s=(op(s),<

s

) s.t.

(a) op(s)

⊆

∪

i=1..n

op

i

∪

∪

i=1..n

{a

i

, c

i

}

(b) for all i, 1

≤

i

≤

n: c

i

∈

op(s)

⇔

a

i

∉

op(s)

(c)

∪

i=1..n

<

i

⊆

<

s

(d) for all i, 1

≤

i

≤

n, and all p

∈

op

i

: p <

s

c

i

or p <

s

a

i

(e) for all p, q

∈

op(s) s.t. at least one of them is a write

and both access the same data item: p <

s

q or q <

s

p

(ii) A

schedule

is a prefix of a history.

Definition 3.2 (Serial history):

A history s is

serial

if for any two transactions t

i

and t

j

in s,

where i

≠

j, all operations from t

i

are ordered in s before all

operations from t

j

or vice versa.

9 / 49

Example Schedules and Notation

r

1

(x)

w

1

(x)

c

1

r

1

(z)

r

2

(x)

w

2

(y)

c

2

r

3

(z)

w

3

(y)

c

3

w

3

(z)

Example 3.4:

Example 3.6:

r

1

(x)

r

2

(z)

r

3

(x)

w

2

(x)

w

1

(x)

r

3

(y)

r

1

(y)

w

1

(y)

w

2

(z)

w

3

(z)

c

1

a

3

trans(s):=

{t

i

| s contains step of t

i

}

commit(s):=

{t

i

∈

trans(s) | c

i

∈

s}

abort(s):=

{t

i

∈

trans(s) | a

i

∈

s}

active(s):=

trans(s)

–

(commit(s)

∪

abort(s))

10 / 49

Chapter 3: Concurrency Control

–

Notions of

Correctness for the Page Model

•

3.2 Canonical Synchronization Problems

•

3.3 Syntax of Histories and Schedules

•

3.4 Correctness of Histories and Schedules

•

3.5 Herbrand Semantics of Schedules

•

3.6 Final

-

State Serializability

•

3.7 View Serializability

•

3.8 Conflict Serializability

•

3.9 Commit Serializability

•

3.10 An Alternative Criterion: Interleaving Specifications

•

3.11 Lessons Learned

11 / 49

Correctness of Schedules

1.

Define equivalence relation

≈≈

on set S of all schedules.

2.

“

Good

”

schedules are those in the equivalence classes

of serial schedules.

•

Equivalence must be efficiently decidable.

•

“

Good

”

equivalence classes should be

“

sufficiently large

”

.

For the moment,

disregard aborts: assume that all transactions are committed.

12 / 49

Activity

•

What is an equivalence relation?

•

List the three defining conditions!

13 / 49

Chapter 3: Concurrency Control

–

Notions of

Correctness for the Page Model

•

3.2 Canonical Synchronization Problems

•

3.3 Syntax of Histories and Schedules

•

3.4 Correctness of Histories and Schedules

•

3.5 Herbrand Semantics of Schedules

•

3.6 Final

-

State Serializability

•

3.7 View Serializability

•

3.8 Conflict Serializability

•

3.9 Commit Serializability

•

3.10 An Alternative Criterion: Interleaving Specifications

•

3.11 Lessons Learned

14 / 49

Herbrand Semantics of Schedules

Definition 3.3 (Herbrand

S

emantics of

S

teps):

For schedule s the

Herbrand semantics H

s

of steps r

i

(x), w

i

(x)

∈

op(s) is:

(i)

H

s

[r

i

(x)] := H

s

[w

j

(x)] where w

j

(x) is the last write on x in s before r

i

(x).

(ii)

H

s

[w

i

(x)] := f

ix

(H

s

[r

i

(y

1

)], ..., H

s

[r

i

(y

m

)]) where

the r

i

(y

j

), 1

≤

j

≤

m, are all read operations of t

i

that occcur in s before w

i

(x)

and f

ix

is an uninterpreted m

-

ary function symbol.

14 / 49

Herbrand Semantics of Schedules

Definition 3.3 (Herbrand

S

emantics of

S

teps):

For schedule s the

Herbrand semantics H

s

of steps r

i

(x), w

i

(x)

∈

op(s) is:

(i)

H

s

[r

i

(x)] := H

s

[w

j

(x)] where w

j

(x) is the last write on x in s before r

i

(x).

(ii)

H

s

[w

i

(x)] := f

ix

(H

s

[r

i

(y

1

)], ..., H

s

[r

i

(y

m

)]) where

the r

i

(y

j

), 1

≤

j

≤

m, are all read operations of t

i

that occcur in s before w

i

(x)

and f

ix

is an uninterpreted m

-

ary function symbol.

Definition 3.4 (Herbrand

U

niverse):

For data items D={x, y, z, ...} and transactions t

i

,

1

≤

i

≤

n,

the

Herbrand universe HU

is the smallest set of symbols s.t.

(i)

f

0x

()

∈

HU for each x

∈

D where f

0x

is a constant, and

(ii)

if w

i

(x)

∈

op

i

for some t

i

, there are m read operations r

i

(y

1

), ..., r

i

(y

m

)

that precede w

i

(x) in t

i

, and v

1

, ..., v

m

∈

HU, then f

ix

(v

1

, ..., v

m

)

∈

HU.

14 / 49

Herbrand Semantics of Schedules

Definition 3.3 (Herbrand

S

emantics of

S

teps):

For schedule s the

Herbrand semantics H

s

of steps r

i

(x), w

i

(x)

∈

op(s) is:

(i)

H

s

[r

i

(x)] := H

s

[w

j

(x)] where w

j

(x) is the last write on x in s before r

i

(x).

(ii)

H

s

[w

i

(x)] := f

ix

(H

s

[r

i

(y

1

)], ..., H

s

[r

i

(y

m

)]) where

the r

i

(y

j

), 1

≤

j

≤

m, are all read operations of t

i

that occcur in s before w

i

(x)

and f

ix

is an uninterpreted m

-

ary function symbol.

Definition 3.4 (Herbrand

U

niverse):

For data items D={x, y, z, ...} and transactions t

i

,

1

≤

i

≤

n,

the

Herbrand universe HU

is the smallest set of symbols s.t.

(i)

f

0x

()

∈

HU for each x

∈

D where f

0x

is a constant, and

(ii)

if w

i

(x)

∈

op

i

for some t

i

, there are m read operations r

i

(y

1

), ..., r

i

(y

m

)

that precede w

i

(x) in t

i

, and v

1

, ..., v

m

∈

HU, then f

ix

(v

1

, ..., v

m

)

∈

HU.

Definition 3.5 (Schedule

S

emantics):

The

Herbrand semantics of a schedule

s is the mapping

H[s]: D

→

HU defined by H[s](x) := H

s

[w

i

(x)],

where w

i

(x) is the last operation from s writing x, for each x

∈

D.

15 / 49

Herbrand Semantics: Example

s =

w

0

(x) w

0

(y) c

0

r

1

(x)

r

2

(y) w

2

(x)

w

1

(y)

c

2

c

1

H

s

[

w

0

(x)

] = f

0x

()

H

s

[

w

0

(y)

] = f

0y

()

H

s

[

r

1

(x)

] = H

s

[

w

0

(x)

] = f

0x

()

H

s

[r

2

(y)] = H

s

[

w

0

(y)

] = f

0y

()

H

s

[w

2

(x)] = f

2x

(H

s

[r

2

(y)]) = f

2x

(f

0y

())

H

s

[

w

1

(y)

] = f

1y

(H

s

[

r

1

(x)

]) = f

1y

(f

0x

())

H[s](x) = H

s

[w

2

(x)] = f

2x

(f

0y

())

H[s](y) = H

s

[

w

1

(y)

] = f

1y

(f

0x

())

16 / 49

Chapter 3: Concurrency Control

–

Notions of

Correctness for the Page Model

•

3.2 Canonical Synchronization Problems

•

3.3 Syntax of Histories and Schedules

•

3.4 Correctness of Histories and Schedules

•

3.5 Herbrand Semantics of Schedules

•

3.6 Final

-

State Serializability

•

3.7 View Serializability

•

3.8 Conflict Serializability

•

3.9 Commit Serializability

•

3.10 An Alternative Criterion: Interleaving Specifications

•

3.11 Lessons Learned

17 / 49

Final

-

State Equivalence

Definition 3.6 (Final

S

tate

E

quivalence):

Schedules s and s' are called

final

state equivalent

, denoted s

≈

f

s',

if op(s)=op(s') and H[s]=H[s'].

17 / 49

Final

-

State Equivalence

Definition 3.6 (Final

S

tate

E

quivalence):

Schedules s and s' are called

final

state equivalent

, denoted s

≈

f

s',

if op(s)=op(s') and H[s]=H[s'].

Example a:

s=

r

1

(x)

r

2

(y)

w

1

(y)

r

3

(z) w

3

(z)

r

2

(x)

w

2

(z)

w

1

(x)

s'= r

3

(z) w

3

(z)

r

2

(y) r

2

(x) w

2

(z)

r

1

(x)

w

1

(y) w

1

(x)

H[s](x) = H

s

[

w

1

(x)

] = f

1x

(f

0x

()) = H

s'

[

w

1

(x)

] = H[s'](x)

H[s](y) = H

s

[

w

1

(y)

] = f

1y

(f

0x

()) = H

s'

[

w

1

(y)

] = H[s'](y)

H[s](z) = H

s

[

w

2

(z)

] = f

2z

(f

0x

(), f

0y

()) = H

s'

[

w

2

(z)

] = H[s'](z)

⇒

s

≈

f

s'

17 / 49

Final

-

State Equivalence

Definition 3.6 (Final

S

tate

E

quivalence):

Schedules s and s' are called

final

state equivalent

, denoted s

≈

f

s',

if op(s)=op(s') and H[s]=H[s'].

Example a:

s=

r

1

(x)

r

2

(y)

w

1

(y)

r

3

(z) w

3

(z)

r

2

(x)

w

2

(z)

w

1

(x)

s'= r

3

(z) w

3

(z)

r

2

(y) r

2

(x) w

2

(z)

r

1

(x)

w

1

(y) w

1

(x)

H[s](x) = H

s

[

w

1

(x)

] = f

1x

(f

0x

()) = H

s'

[

w

1

(x)

] = H[s'](x)

H[s](y) = H

s

[

w

1

(y)

] = f

1y

(f

0x

()) = H

s'

[

w

1

(y)

] = H[s'](y)

H[s](z) = H

s

[

w

2

(z)

] = f

2z

(f

0x

(), f

0y

()) = H

s'

[

w

2

(z)

] = H[s'](z)

⇒

s

≈

f

s'

s')

Example b:

s=

r

1

(x)

r

2

(y)

w

1

(y)

w

2

(y)

s'=

r

1

(x) w

1

(y)

r

2

(y) w

2

(y)

H[s](y) = H

s

[

w

2

(y)

] = f

2y

(f

0y

())

H[s'](y) = H

s'

[

w

2

(y)

] = f

2y

(f

1y

(f

0x

()))

⇒

¬

(s

≈

f

18 / 49

Definition 3.7 (Reads

-

from

R

elation;

U

seful,

A

live, and

D

ead

S

teps):

Given a schedule s, extended with an initial and a final transaction, t

0

and t

∞

.

(i)

r

j

(x) reads x in s from w

i

(x)

if w

i

(x) is the last write on x s.t. w

i

(x) <

s

r

j

(x).

(ii)

The

reads

-

from relation

of s is

RF(s) := {(t

i

, x, t

j

) | an r

j

(x) reads x from a w

i

(x)}.

(iii)

Step p is

directly useful

for step q, denoted p

→

q, if q reads from p,

or p is a read step and q is a subsequent write step of the same transaction.

→

*, the

“

useful

”

relation

, denotes the reflexive and transitive closure of

→

.

(iv)

Step p is

alive

in s if it is useful for some step from t

∞

, and

dead

otherwise.

(v)

The

live

-

reads

-

from relation

of s is

LRF(s) := {(t

i

, x, t

j

) | an alive r

j

(x) reads x from w

i

(x)}

Reads

-

from Relation

18 / 49

Definition 3.7 (Reads

-

from

R

elation;

U

seful,

A

live, and

D

ead

S

teps):

Given a schedule s, extended with an initial and a final transaction, t

0

and t

∞

.

(i)

r

j

(x) reads x in s from w

i

(x)

if w

i

(x) is the last write on x s.t. w

i

(x) <

s

r

j

(x).

(ii)

The

reads

-

from relation

of s is

RF(s) := {(t

i

, x, t

j

) | an r

j

(x) reads x from a w

i

(x)}.

(iii)

Step p is

directly useful

for step q, denoted p

→

q, if q reads from p,

or p is a read step and q is a subsequent write step of the same transaction.

→

*, the

“

useful

”

relation

, denotes the reflexive and transitive closure of

→

.

(iv)

Step p is

alive

in s if it is useful for some step from t

∞

, and

dead

otherwise.

(v)

The

live

-

reads

-

from relation

of s is

LRF(s) := {(t

i

, x, t

j

) | an alive r

j

(x) reads x from w

i

(x)}

Reads

-

from Relation

Example 3.7:

s=

r

1

(x)

r

2

(y)

w

1

(y)

w

2

(y)

s'=

r

1

(x) w

1

(y)

r

2

(y) w

2

(y)

RF(s) = {(t

0

,x,t

1

), (t

0

,y,t

2

), (t

0

,x,t

∞

), (t

2

,y,t

∞

)}

RF(s') = {(t

0

,x,t

1

), (t

1

,y,t

2

), (t

0

,x,t

∞

), (t

2

,y,t

∞

)}

LRF(s) =

{(t

0

,y,t

2

), (t

0

,x,t

∞

), (t

2

,y,t

∞

)}

LRF(s') = {(t

0

,x,t

1

), (t

1

,y,t

2

), (t

0

,x,t

∞

), (t

2

,y,t

∞

)}

19 / 49

Final

-

State Serializability

Theorem 3.1:

For schedules s and s' the following statements hold.

(i)

s

≈

f

s' iff op(s)=op(s') and LRF(s)=LRF(s').

(ii)

For s let the step graph D(s)=(V,E) be a directed graph with vertices

V:=op(s) and edges E:={(p,q) | p

→

q}, and the reduced step graph D

1

(s) be

derived from D(s) by removing all vertices that correspond to dead steps.

Then LRF(s)=LRF(s') iff D

1

(s)=D

1

(s').

19 / 49

Final

-

State Serializability

Theorem 3.1:

For schedules s and s' the following statements hold.

(i)

s

≈

f

s' iff op(s)=op(s') and LRF(s)=LRF(s').

(ii)

For s let the step graph D(s)=(V,E) be a directed graph with vertices

V:=op(s) and edges E:={(p,q) | p

→

q}, and the reduced step graph D

1

(s) be

derived from D(s) by removing all vertices that correspond to dead steps.

Then LRF(s)=LRF(s') iff D

1

(s)=D

1

(s').

Corollary 3.1:

Final

-

state equivalence of two schedules s and s' can be decided in time that

is polynomial in the length of the two schedules.

19 / 49

Final

-

State Serializability

Theorem 3.1:

For schedules s and s' the following statements hold.

(i)

s

≈

f

s' iff op(s)=op(s') and LRF(s)=LRF(s').

(ii)

For s let the step graph D(s)=(V,E) be a directed graph with vertices

V:=op(s) and edges E:={(p,q) | p

→

q}, and the reduced step graph D

1

(s) be

derived from D(s) by removing all vertices that correspond to dead steps.

Then LRF(s)=LRF(s') iff D

1

(s)=D

1

(s').

Corollary 3.1:

Final

-

state equivalence of two schedules s and s' can be decided in time that

is polynomial in the length of the two schedules.

Definition 3.8 (Final

S

tate

S

erializability):

A schedule s is

final

state serializable

if there is a serial schedule s' s.t. s

≈

f

s'.

FSR denotes the class of all final

-

state serializable histories.

20 / 49

FSR: Example 3.9

s'=

r

1

(x) w

1

(y)

r

2

(y) w

2

(y)

w

0

(x)

r

1

(x)

r

∞

(x)

w

0

(y)

r

2

(y)

w

1

(y)

w

2

(y)

s=

r

1

(x)

r

2

(y)

w

1

(y)

w

2

(y)

r

∞

(y)

D(s):

w

0

(x)

r

1

(x)

r

∞

(x)

w

0

(y)

w

1

(y)

r

2

(y)

w

2

(y)

r

∞

(y)

D(s'):

dead

steps

21 / 49

Chapter 3: Concurrency Control

–

Notions of

Correctness for the Page Model

•

3.2 Canonical Synchronization Problems

•

3.3 Syntax of Histories and Schedules

•

3.4 Correctness of Histories and Schedules

•

3.5 Herbrand Semantics of Schedules

•

3.6 Final

-

State Serializability

•

3.7 View Serializability

•

3.8 Conflict Serializability

•

3.9 Commit Serializability

•

3.10 An Alternative Criterion: Interleaving Specifications

•

3.11 Lessons Learned

22 / 49

Canonical Anomalies Reconsidered

•

Lost update anomaly:

L =

r

1

(x)

r

2

(x)

w

1

(x)

w

2

(x)

c

1

c

2

→

history is not FSR

•

Inconsistent read anomaly:

I =

r

2

(x) w

2

(x)

r

1

(x)

r

1

(y)

r

2

(y) w

2

(y)

c

1

c

2

→

history is FSR !

LRF(L) = {(t

0

,x,t

2

), (t

2

,x,t

∞

)}

LRF(t

1

t

2

) = {(t

0

,x,t

1

), (t

1

,x,t

2

), (t

2

,x,

t

∞

)}

LRF(t

2

t

1

) = {(t

0

,x,t

2

), (t

2

,x,t

1

), (t

1

,x,

t

∞

)}

LRF(I) = {(t

0

,x,t

2

), (t

0

,y,t

2

), (t

2

,x,t

∞

),

(t

2

,y,t

∞

)}

LRF(t

1

t

2

) =

{(t

0

,x,t

2

), (t

0

,y,t

2

), (t

2

,x,t

∞

),

(t

2

,y,t

∞

)}

LRF(t

2

t

1

) =

{(t

0

,x,t

2

), (t

0

,y,t

2

), (t

2

,x,t

∞

),

(t

2

,y,t

∞

)}

22 / 49

Canonical Anomalies Reconsidered

•

Lost update anomaly:

L =

r

1

(x)

r

2

(x)

w

1

(x)

w

2

(x)

c

1

c

2

→

history is not FSR

•

Inconsistent read anomaly:

I =

r

2

(x) w

2

(x)

r

1

(x)

r

1

(y)

r

2

(y) w

2

(y)

c

1

c

2

→

history is FSR !

LRF(L) = {(t

0

,x,t

2

), (t

2

,x,t

∞

)}

LRF(t

1

t

2

) = {(t

0

,x,t

1

), (t

1

,x,t

2

), (t

2

,x,

t

∞

)}

LRF(t

2

t

1

) = {(t

0

,x,t

2

), (t

2

,x,t

1

), (t

1

,x,

t

∞

)}

LRF(I) = {(t

0

,x,t

2

), (t

0

,y,t

2

), (t

2

,x,t

∞

),

(t

2

,y,t

∞

)}

LRF(t

1

t

2

) =

{(t

0

,x,t

2

), (t

0

,y,t

2

), (t

2

,x,t

∞

),

(t

2

,y,t

∞

)}

LRF(t

2

t

1

) =

{(t

0

,x,t

2

), (t

0

,y,t

2

), (t

2

,x,t

∞

),

(t

2

,y,t

∞

)}

Observation:

(Herbrand) semantics of all read steps matters!

23 / 49

View Serializability

Definition 3.9 (View

E

quivalence):

Schedules s and s' are

view equivalent

, denoted s

≈

v

s', if the following hold:

(i)

op(s)=op(s')

(ii)

H[s] = H[s']

(iii)

H

s

[p] = H

s'

[p] for all (read or write) steps

23 / 49

View Serializability

Definition 3.9 (View

E

quivalence):

Schedules s and s' are

view equivalent

, denoted s

≈

v

s', if the following hold:

(i)

op(s)=op(s')

(ii)

H[s] = H[s']

(iii)

H

s

[p] = H

s'

[p] for all (read or write) steps

Theorem 3.2:

For schedules s and s' the following statements hold.

(i)

s

≈

v

s' iff op(s)=op(s') and RF(s)=RF(s')

(ii)

s

≈

v

s' iff D(s)=D(s')

23 / 49

View Serializability

Definition 3.9 (View

E

quivalence):

Schedules s and s' are

view equivalent

, denoted s

≈

v

s', if the following hold:

(i)

op(s)=op(s')

(ii)

H[s] = H[s']

(iii)

H

s

[p] = H

s'

[p] for all (read or write) steps

Theorem 3.2:

For schedules s and s' the following statements hold.

(i)

s

≈

v

s' iff op(s)=op(s') and RF(s)=RF(s')

(ii)

s

≈

v

s' iff D(s)=D(s')

Corollary 3.2:

View equivalence of two schedules s and s' can be decided in time that

is polynomial in the length of the two schedules.

23 / 49

View Serializability

Definition 3.9 (View

E

quivalence):

Schedules s and s' are

view equivalent

, denoted s

≈

v

s', if the following hold:

(i)

op(s)=op(s')

(ii)

H[s] = H[s']

(iii)

H

s

[p] = H

s'

[p] for all (read or write) steps

Theorem 3.2:

For schedules s and s' the following statements hold.

(i)

s

≈

v

s' iff op(s)=op(s') and RF(s)=RF(s')

(ii)

s

≈

v

s' iff D(s)=D(s')

Corollary 3.2:

View equivalence of two schedules s and s' can be decided in time that

is polynomial in the length of the two schedules.

Definition 3.

10

(View

S

erializability):

A schedule s is

view serializable

if there exists a serial schedule s' s.t. s

≈

v

s'.

VSR denotes the class of all view

-

serializable histories.

24 / 49

Inconsistent Read Reconsidered

•

Inconsistent read anomaly:

I =

r

2

(x) w

2

(x)

r

1

(x) r

1

(y)

r

2

(y) w

2

(y)

c

1

c

2

→

history is not VSR !

RF(I) = {(t

0

,x,t

2

), (t

2

,x,t

1

), (t

0

,y,t

1

), (t

0

,y,t

2

), (t

2

,x,t

∞

),

(t

2

,y,t

∞

)}

RF(t

1

t

2

) =

{(t

0

,x,t

1

), (t

0

,y,t

1

), (t

0

,x,t

2

), (t

0

,y,t

2

), (t

2

,x,t

∞

),

(t

2

,y,t

∞

)}

RF(t

2

t

1

) =

{(t

0

,x,t

2

), (t

0

,y,t

2

), (t

2

,x,t

1

), (t

2

,y,t

1

), (t

2

,x,t

∞

),

(t

2

,y,t

∞

)}

24 / 49

Inconsistent Read Reconsidered

•

Inconsistent read anomaly:

I =

r

2

(x) w

2

(x)

r

1

(x) r

1

(y)

r

2

(y) w

2

(y)

c

1

c

2

→

history is not VSR !

RF(I) = {(t

0

,x,t

2

), (t

2

,x,t

1

), (t

0

,y,t

1

), (t

0

,y,t

2

), (t

2

,x,t

∞

),

(t

2

,y,t

∞

)}

RF(t

1

t

2

) =

{(t

0

,x,t

1

), (t

0

,y,t

1

), (t

0

,x,t

2

), (t

0

,y,t

2

), (t

2

,x,t

∞

),

(t

2

,y,t

∞

)}

RF(t

2

t

1

) =

{(t

0

,x,t

2

), (t

0

,y,t

2

), (t

2

,x,t

1

), (t

2

,y,t

1

), (t

2

,x,t

∞

),

(t

2

,y,t

∞

)}

Observation:

VSR properly captures our intuition

25 / 49

Relationship Between VSR and FSR

Theorem 3.

3

:

VSR

⊂

FSR.

Theorem 3.

4

:

Let s be a history without dead steps. Then s

∈

VSR iff s

∈

FSR.

26 / 49

On the Complexity of Testing VSR

Theorem 3.

5

:

The problem of deciding for a given schedule s whether s

∈

VSR holds

is NP

-

complete.

27 / 49

Properties of VSR

Definition 3.11 (Monotone Classes of Histories)

Let s be a schedule and T

⊆

trans(s).

Π

T

(s) denotes the projection of s onto T.

A class E of histories is called

monotone

if the following holds:

if s is in E, then

Π

T

(s) is in E for each T

⊆

trans(s).

VSR is not monotone.

Example:

s =

w

1

(x)

w

2

(x) w

2

(y) c

2

w

1

(y)

c

1

w

3

(x) w

3

(y) c

3

Π

{t1, t2}

(s) =

w

1

(x)

w

2

(x) w

2

(y) c

2

w

1

(y)

c

1

→

∈

VSR

→

∉

VSR

28 / 49

Chapter 3: Concurrency Control

–

Notions of

Correctness for the Page Model

•

3.2 Canonical Synchronization Problems

•

3.3 Syntax of Histories and Schedules

•

3.4 Correctness of Histories and Schedules

•

3.5 Herbrand Semantics of Schedules

•

3.6 Final

-

State Serializability

•

3.7 View Serializability

•

3.8 Conflict Serializability

•

3.9 Commit Serializability

•

3.10 An Alternative Criterion: Interleaving Specifications

•

3.11 Lessons Learned

29 / 49

Conflict Serializability

Definition 3.

12

(Conflicts and

C

onflict

R

elations):

Let s be a schedule, t, t'

∈

trans(s), t

≠

t'.

(i)

Two data operations p

∈

t and q

∈

t' are in

conflict

in s if

they access the same data item and at least one of them is a write.

(ii)

{(p, q)} | p, q are in conflict and p <

s

q} is the

conflict relation

of s.

29 / 49

Conflict Serializability

Definition 3.

12

(Conflicts and

C

onflict

R

elations):

Let s be a schedule, t, t'

∈

trans(s), t

≠

t'.

(i)

Two data operations p

∈

t and q

∈

t' are in

conflict

in s if

they access the same data item and at least one of them is a write.

(ii)

{(p, q)} | p, q are in conflict and p <

s

q} is the

conflict relation

of s.

Definition 3.

13

(Conflict

E

quivalence):

Schedules s and s' are

conflict equivalent

, denoted s

≈

c

s', if

op(s) = op(s') and conf(s) = conf(s').

29 / 49

Conflict Serializability

Definition 3.

12

(Conflicts and

C

onflict

R

elations):

Let s be a schedule, t, t'

∈

trans(s), t

≠

t'.

(i)

Two data operations p

∈

t and q

∈

t' are in

conflict

in s if

they access the same data item and at least one of them is a write.

(ii)

{(p, q)} | p, q are in conflict and p <

s

q} is the

conflict relation

of s.

Definition 3.

13

(Conflict

E

quivalence):

Schedules s and s' are

conflict equivalent

, denoted s

≈

c

s', if

op(s) = op(s') and conf(s) = conf(s').

Definition 3.

14

(Conflict

S

erializability):

Schedule s is

conflict serializable

if there is a serial schedule s' s.t. s

≈

c

s'.

CSR denotes the class of all conflict serializable schedules.

29 / 49

Conflict Serializability

Definition 3.

12

(Conflicts and

C

onflict

R

elations):

Let s be a schedule, t, t'

∈

trans(s), t

≠

t'.

(i)

Two data operations p

∈

t and q

∈

t' are in

conflict

in s if

they access the same data item and at least one of them is a write.

(ii)

{(p, q)} | p, q are in conflict and p <

s

q} is the

conflict relation

of s.

Definition 3.

13

(Conflict

E

quivalence):

Schedules s and s' are

conflict equivalent

, denoted s

≈

c

s', if

op(s) = op(s') and conf(s) = conf(s').

Definition 3.

14

(Conflict

S

erializability):

Schedule s is

conflict serializable

if there is a serial schedule s' s.t. s

≈

c

s'.

CSR denotes the class of all conflict serializable schedules.

Example

a

:

r

1

(x)

r

2

(x)

r

1

(z)

w

1

(x)

w

2

(y)

r

3

(z) w

3

(y)

c

1

c

2

w

3

(z) c

3

Example

b

:

r

2

(x) w

2

(x)

r

1

(x) r

1

(y)

r

2

(y) w

2

(y)

c

1

c

2

→

∈

CSR

→

∉

CSR

30 / 49

Properties of CSR

Theorem 3.

8

:

CSR

⊂

VSR

Example:

s =

w

1

(x)

w

2

(x) w

2

(y) c

2

w

1

(y)

c

1

w

3

(x) w

3

(y) c

3

s

∈

VSR, but s

∉

CSR.

Theorem 3.

9

:

(i)

CSR is monotone.

(ii)

s

∈

CSR

⇔

Π

T

(s)

∈

VSR for all T

⊆

trans(s)

(i.e., CSR is the largest monotone subset of VSR).

31 / 49

Activity

•

What is a directed graph?

•

Think of ways to associate a graph with a

schedule!

32 / 49

Conflict Graph

Definition 3.

15

(Conflict

G

raph):

Let s be a schedule. The

conflict graph

G(s) = (V, E) is a directed graph

with vertices V := commit(s) and

edges E := {(t, t') | t

≠

t' and there are steps p

∈

t, q

∈

t' with (p, q)

∈

conf(s)}.

32 / 49

Conflict Graph

Definition 3.

15

(Conflict

G

raph):

Let s be a schedule. The

conflict graph

G(s) = (V, E) is a directed graph

with vertices V := commit(s) and

edges E := {(t, t') | t

≠

t' and there are steps p

∈

t, q

∈

t' with (p, q)

∈

conf(s)}.

Theorem 3.

1

0:

Let s be a schedule. Then s

∈

CSR iff G(s) is acyclic.

Corollary 3.4:

Testing if a schedule is in CSR can be done in time polynomial

to the schedule's number of transactions.

32 / 49

Conflict Graph

Definition 3.

15

(Conflict

G

raph):

Let s be a schedule. The

conflict graph

G(s) = (V, E) is a directed graph

with vertices V := commit(s) and

edges E := {(t, t') | t

≠

t' and there are steps p

∈

t, q

∈

t' with (p, q)

∈

conf(s)}.

Theorem 3.

1

0:

Let s be a schedule. Then s

∈

CSR iff G(s) is acyclic.

Corollary 3.4:

Testing if a schedule is in CSR can be done in time polynomial

to the schedule's number of transactions.

Example

3.12

:

s =

r

1

(y)

r

3

(w)

r

2

(y)

w

1

(y)

w

1

(x)

w

2

(x) w

2

(z)

w

3

(x)

c

1

c

3

c

2

G(s):

t1

t2

t3

33 / 49

Activity

•

What is a characterization (in a

mathematical sense)?

•

How do you prove a necessary and

sufficient condition?

•

What needs to be shown for the

serializability theorem?

34 / 49

Proof of the Conflict

-

Graph Theorem

(i)

Let s be a schedule in CSR. So there is a serial schedule s' with conf(s) = conf(s').

Now assume that G(s) has a cycle t

1

→

t

2

→

...

→

t

k

→

t

1

.

This implies that there are pairs (p

1

, q

2

), (p

2

, q

3

), ... , (p

k

, q

1

)

with p

i

∈

t

i

, q

i

∈

t

i

, p

i

<

s

q

(i+1)

, and p

i

in conflict with q

(i+1)

.

Because s'

≈

c

s, it also implies that p

i

<

s'

q

(i+1)

.

Because s' is serial, we obtain t

i

<

s'

t

(i+1)

for i=1, ..., k

-

1, and t

k

<

s'

t

1

.

By transitivity we infer t

1

<

s'

t

2

and t

2

<

s'

t

1

, which is impossible.

This contradiction shows that the initial assumption is wrong. So G(s) is acyclic.

(ii)

Let G(s) be acyclic. So it must have at least one source node.

The following topological sort produces a total order < of transactions:

a) start with a source node (i.e., a node without incoming edges),

b) remove this node and all its outgoing edges,

c) iterate a) and b) until all nodes have been added to the sorted list.

The total transaction ordering order < preserves the edges in G(s);

therefore it yields a serial schedule s' for which s'

≈

c

s.

35 / 49

Commutativity and Ordering Rules

Commutativity rules:

C1: r

i

(x) r

j

(y) ~ r

j

(y) r

i

(x) if i

≠

j

C2: r

i

(x) w

j

(y) ~ w

j

(y) r

i

(x) if i

≠

j

and x

≠

y

C3: w

i

(x) w

j

(y) ~ w

j

(y) w

i

(x) if i

≠

j

and x

≠

y

Ordering rule:

C4: o

i

(x), p

j

(y) unordered ~> o

i

(x) p

j

(y)

if x

≠

y or both o and p are reads

Example for transformations of schedules:

s

=

w

1

(x)

r

2

(x)

w

1

(y)

w

1

(z)

r

3

(z)

w

2

(y)

w

3

(y) w

3

(z)

~>[C2]

w

1

(x) w

1

(y)

r

2

(x)

w

1

(z)

w

2

(y)

r

3

(z) w

3

(y) w

3

(z)

~>[C2]

w

1

(x) w

1

(y) w

1

(z)

r

2

(x) w

2

(y)

r

3

(z) w

3

(y) w

3

(z)

=

t

1

t

2

t

3

36 / 49

Commutativity

-

based Reducibility

Definition 3.

16

(Commutativity

B

ased

E

quivalence):

Schedules s and s' s.t. op(s)=op(s') are

commutativity

based equivalent

,

denoted s ~* s', if s can be transformed into s' by applying rules

C1, C2, C3, C4 finitely many times.

Theorem 3.

11

:

Let s and s' be schedules s.t. op(s)=op(s'). Then s

≈

c

s' iff s ~* s'.

36 / 49

Commutativity

-

based Reducibility

Definition 3.

16

(Commutativity

B

ased

E

quivalence):

Schedules s and s' s.t. op(s)=op(s') are

commutativity

based equivalent

,

denoted s ~* s', if s can be transformed into s' by applying rules

C1, C2, C3, C4 finitely many times.

Theorem 3.

11

:

Let s and s' be schedules s.t. op(s)=op(s'). Then s

≈

c

s' iff s ~* s'.

Definition 3.

17

(Commutativity

B

ased

R

educibility):

Schedule s is

commutativity

-

based reducible

if there is a serial schedule s'

s.t. s ~* s'.

Corollary 3.

5

:

Schedule s is commutativity

-

based reducible iff s

∈

CSR.

37 / 49

Order Preserving Conflict Serializability

Definition 3.

1

8 (Order

P

reservation):

Schedule s is

order

preserving conflict serializable

if it is

conflict equivalent to a serial schedule s' and

for all t, t'

∈

trans(s): if t completely precedes t' in s, then the same holds in s'.

OCSR denotes the class of all schedules with this property.

Theorem 3.

12

:

OCSR

⊂

CSR.

Example

3.13

:

s =

w

1

(x)

r

2

(x) c

2

w

3

(y) c

3

w

1

(y) c

1

→

∈

CSR

→

∉

OCSR

38 / 49

Commit

-

order Preserving Conflict

Serializability

Definition 3.

19

(Commit

O

rder

P

reservation):

Schedule s is

commit

order

preserving conflict serializable

if

for all t

i

, t

j

∈

trans(s): if there are p

∈

t

i

, q

∈

t

j

with (p,q)

∈

conf(s) then c

i

<

s

c

j

.

COCSR denotes the class of all schedules with this property.

Theorem 3.

13

:

COCSR

⊂

CSR.

38 / 49

Commit

-

order Preserving Conflict

Serializability

Definition 3.

19

(Commit

O

rder

P

reservation):

Schedule s is

commit

order

preserving conflict serializable

if

for all t

i

, t

j

∈

trans(s): if there are p

∈

t

i

, q

∈

t

j

with (p,q)

∈

conf(s) then c

i

<

s

c

j

.

COCSR denotes the class of all schedules with this property.

Theorem 3.

13

:

COCSR

⊂

CSR.

Theorem 3.

14

:

Schedule s is in COCSR iff there is a serial schedule s' s.t. s

≈

c

s' and

for all t

i

, t

j

∈

trans(s): t

i

<

s'

t

j

⇔

c

i

<

s

c

j

.

38 / 49

Commit

-

order Preserving Conflict

Serializability

Definition 3.

19

(Commit

O

rder

P

reservation):

Schedule s is

commit

order

preserving conflict serializable

if

for all t

i

, t

j

∈

trans(s): if there are p

∈

t

i

, q

∈

t

j

with (p,q)

∈

conf(s) then c

i

<

s

c

j

.

COCSR denotes the class of all schedules with this property.

Theorem 3.

13

:

COCSR

⊂

CSR.

Theorem 3.

14

:

Schedule s is in COCSR iff there is a serial schedule s' s.t. s

≈

c

s' and

for all t

i

, t

j

∈

trans(s): t

i

<

s'

t

j

⇔

c

i

<

s

c

j

.

Example:

s = w

3

(y) c

3

w

1

(x)

r

2

(x) c

2

w

1

(y) c

1

→

∈

OCSR

→

∉

COCSR

Theorem 3.

15

:

COCSR

⊂

OCSR.

39 / 49

Chapter 3: Concurrency Control

–

Notions of

Correctness for the Page Model

•

3.2 Canonical Synchronization Problems

•

3.3 Syntax of Histories and Schedules

•

3.4 Correctness of Histories and Schedules

•

3.5 Herbrand Semantics of Schedules

•

3.6 Final

-

State Serializability

•

3.7 View Serializability

•

3.8 Conflict Serializability

•

3.9 Commit Serializability

•

3.10 An Alternative Criterion: Interleaving Specifications

•

3.11 Lessons Learned

40 / 49

Commit Serializability

Definition 3.

20

(Closure

P

roperties of

S

chedule

C

lasses):

Let E be a class of schedules.

For schedule s let CP(s) denote the projection

Π

commit(s)

(s).

E is

prefix

-

closed

if the following holds: s

∈

E

⇔

p

∈

E for each prefix of s.

E is

commit

-

closed

if the following holds: s

∈

E

⇒

CP(s)

∈

E.

Theorem 3.

16

:

CSR is prefix

-

commit

-

closed, i.e., prefix

-

closed and commit

-

closed.

40 / 49

Commit Serializability

Definition 3.

20

(Closure

P

roperties of

S

chedule

C

lasses):

Let E be a class of schedules.

For schedule s let CP(s) denote the projection

Π

commit(s)

(s).

E is

prefix

-

closed

if the following holds: s

∈

E

⇔

p

∈

E for each prefix of s.

E is

commit

-

closed

if the following holds: s

∈

E

⇒

CP(s)

∈

E.

Theorem 3.

16

:

CSR is prefix

-

commit

-

closed, i.e., prefix

-

closed and commit

-

closed.

Definition 3.

21

(Commit

S

erializability):

Schedule s is

commit

-

Θ

-

serializable

if CP(p) is

Θ

-

serializable for each

prefix p of s, where

Θ

can be FSR, VSR, or CSR.

The resulting classes of commit

-

Θ

-

serializable schedules are denoted

CMFSR, CMVSR, and CMCSR.

Theorem 3.

1

7:

(i)

CMFSR, CMVSR, CMCSR are prefix

-

commit

-

closed.

(ii)

CMCSR

⊂

CMVSR

⊂

CMFSR

41 / 49

Landscape of History Classes

42 / 49

Chapter 3: Concurrency Control

–

Notions of

Correctness for the Page Model

•

3.2 Canonical Synchronization Problems

•

3.3 Syntax of Histories and Schedules

•

3.4 Correctness of Histories and Schedules

•

3.5 Herbrand Semantics of Schedules

•

3.6 Final

-

State Serializability

•

3.7 View Serializability

•

3.8 Conflict Serializability

•

3.9 Commit Serializability

•

3.10 An Alternative Criterion: Interleaving Specifications

•

3.11 Lessons Learned

43 / 49

Interleaving Specifications: Motivation

Example:

all transactions known in advance

transfer transactions on checking accounts a and b and savings account c:

t

1

=

r

1

(a) w

1

(a) r

1

(c) w

1

(c)

t

2

=

r

2

(b) w

2

(b) r

2

(c) w

2

(c)

balance transaction:

t

3

= r

3

(a) r

3

(b) r

3

(c)

audit transaction:

t

4

=

r

4

(a) r

4

(b) r

4

(c) w

4

(z)

Possible schedules:

r

1

(a) w

1

(a)

r

2

(b) w

2

(b) r

2

(c) w

2

(c)

r

1

(c) w

1

(c)

r

1

(a) w

1

(a)

r

3

(a) r

3

(b) r

3

(c)

r

1

(c) w

1

(c)

r

1

(a) w

1

(a)

r

2

(b) w

2

(b)

r

1

(c)

r

2

(c) w

2

(c)

w

1

(c)

r

1

(a) w

1

(a)

r

4

(a) r

4

(b) r

4

(c) w

4

(z)

r

1

(c) w

1

(c)

→

∈

CSR

→

∉

CSR

→

∉

CSR

→

∉

CSR

application

-

tolerable

interleavings

non

-

admissable

interleavings

43 / 49

Interleaving Specifications: Motivation

Example:

all transactions known in advance

transfer transactions on checking accounts a and b and savings account c:

t

1

=

r

1

(a) w

1

(a) r

1

(c) w

1

(c)

t

2

=

r

2

(b) w

2

(b) r

2

(c) w

2

(c)

balance transaction:

t

3

= r

3

(a) r

3

(b) r

3

(c)

audit transaction:

t

4

=

r

4

(a) r

4

(b) r

4

(c) w

4

(z)

Possible schedules:

r

1

(a) w

1

(a)

r

2

(b) w

2

(b) r

2

(c) w

2

(c)

r

1

(c) w

1

(c)

r

1

(a) w

1

(a)

r

3

(a) r

3

(b) r

3

(c)

r

1

(c) w

1

(c)

r

1

(a) w

1

(a)

r

2

(b) w

2

(b)

r

1

(c)

r

2

(c) w

2

(c)

w

1

(c)

r

1

(a) w

1

(a)

r

4

(a) r

4

(b) r

4

(c) w

4

(z)

r

1

(c) w

1

(c)

→

∈

CSR

→

∉

CSR

→

∉

CSR

→

∉

CSR

application

-

tolerable

interleavings

non

-

admissable

interleavings

Observations:

application may tolerate non

-

CSR schedules

a priori knowledge of all transactions impractical

44 / 49

Indivisible Units

Definition 3.

22

(Indivisible

U

nits):

Let T={t

1

, ..., t

n

} be a set of transactions. For t

i

, t

j

∈

T, t

i

≠

t

j

, an

indivisible unit

of t

i

relative to t

j

is a sequence of consecutive steps of t

i

s.t. no operations of t

j

are allowed to interleave with this sequence.

IU(t

i

, t

j

)

denotes the ordered sequence of indivisible units of t

i

relative to t

j

.

IU

k

(t

i

, t

j

) denotes the k

th

element of IU(t

i

, t

j

).

44 / 49

Indivisible Units

Definition 3.

22

(Indivisible

U

nits):

Let T={t

1

, ..., t

n

} be a set of transactions. For t

i

, t

j

∈

T, t

i

≠

t

j

, an

indivisible unit

of t

i

relative to t

j

is a sequence of consecutive steps of t

i

s.t. no operations of t

j

are allowed to interleave with this sequence.

IU(t

i

, t

j

)

denotes the ordered sequence of indivisible units of t

i

relative to t

j

.

IU

k

(t

i

, t

j

) denotes the k

th

element of IU(t

i

, t

j

).

Example 3.

14:

t

1

=

r

1

(x) w

1

(x) w

1

(z) r

1

(y)

t

2

=

r

2

(y) w

2

(y) r

2

(x)

t

3

= w

3

(x) w

3

(y) w

3

(z)

IU(

t

1

,

t

2

) = < [

r

1

(x) w

1

(x)

], [

w

1

(z) r

1

(y)

] >

IU(

t

1

, t

3

) = < [

r

1

(x) w

1

(x)

], [

w

1

(z)

], [

r

1

(y)

] >

IU(

t

2

,

t

1

) = < [

r

2

(y)

], [

w

2

(y) r

2

(x)

] >

IU(

t

2

, t

3

) = < [

r

2

(y) w

2

(y)

], [

r

2

(x)

] >

IU(t

3

,

t

1

) = < [w

3

(x) w

3

(y)], [w

3

(z)] >

IU(t

3

,

t

2

) = < [w

3

(x) w

3

(y)], [w

3

(z)] >

44 / 49

Indivisible Units

Definition 3.

22

(Indivisible

U

nits):

Let T={t

1

, ..., t

n

} be a set of transactions. For t

i

, t

j

∈

T, t

i

≠

t

j

, an

indivisible unit

of t

i

relative to t

j

is a sequence of consecutive steps of t

i

s.t. no operations of t

j

are allowed to interleave with this sequence.

IU(t

i

, t

j

)

denotes the ordered sequence of indivisible units of t

i

relative to t

j

.

IU

k

(t

i

, t

j

) denotes the k

th

element of IU(t

i

, t

j

).

Example 3.

14:

t

1

=

r

1

(x) w

1

(x) w

1

(z) r

1

(y)

t

2

=

r

2

(y) w

2

(y) r

2

(x)

t

3

= w

3

(x) w

3

(y) w

3

(z)

IU(

t

1

,

t

2

) = < [

r

1

(x) w

1

(x)

], [

w

1

(z) r

1

(y)

] >

IU(

t

1

, t

3

) = < [

r

1

(x) w

1

(x)

], [

w

1

(z)

], [

r

1

(y)

] >

IU(

t

2

,

t

1

) = < [

r

2

(y)

], [

w

2

(y) r

2

(x)

] >

IU(

t

2

, t

3

) = < [

r

2

(y) w

2

(y)

], [

r

2

(x)

] >

IU(t

3

,

t

1

) = < [w

3

(x) w

3

(y)], [w

3

(z)] >

IU(t

3

,

t

2

) = < [w

3

(x) w

3

(y)], [w

3

(z)] >

s

1

=

r

2

(y)

r

1

(x) w

1

(x)

w

2

(y) r

2

(x)

w

1

(z)

w

3

(x) w

3

(y)

r

1

(y)

w

3

(z)

s

2

=

r

1

(x)

r

2

(y)

w

2

(y)

w

1

(x)

r

2

(x)

w

1

(z) r

1

(y)

→

respects all IUs

→

violates IU

1

(t

1

, t

2

) and IU

2

(t

2

,

t

1

)

but is conflict equivalent to

an allowed schedule

Example 3.15:

45 / 49

Relatively Serializable Schedules

Definition 3.

23

(Dependence of

S

teps):

Step q directly

depends on

step p in schedule s, denoted p~>q, if p <

s

q and

either p, q belong to the same transaction t and p <

t

q or p and q are in conflict.

~>* denotes the reflexive and transitive closure of ~>.

45 / 49

Relatively Serializable Schedules

Definition 3.

23

(Dependence of

S

teps):

Step q directly

depends on

step p in schedule s, denoted p~>q, if p <

s

q and

either p, q belong to the same transaction t and p <

t

q or p and q are in conflict.

~>* denotes the reflexive and transitive closure of ~>.

Example 3.

16

:

s

3

=

r

1

(x)

r

2

(y)

w

1

(x)

w

2

(y)

w

3

(x)

w

1

(z)

w

3

(y)

r

2

(x)

r

1

(y)

w

3

(z)

Definition 3.

24

(Relatively

S

erial

S

chedule):

s is

relatively serial

if for all transactions t

i

, t

j

: if q

∈

t

j

is interleaved with some

IU

k

(t

i

, t

j

), then there is no operation p

∈

IU

k

(t

i

, t

j

) s.t. p~>* q or q~>* p

45 / 49

Relatively Serializable Schedules

Definition 3.

23

(Dependence of

S

teps):

Step q directly

depends on

step p in schedule s, denoted p~>q, if p <

s

q and

either p, q belong to the same transaction t and p <

t

q or p and q are in conflict.

~>* denotes the reflexive and transitive closure of ~>.

Example 3.

16

:

s

3

=

r

1

(x)

r

2

(y)

w

1

(x)

w

2

(y)

w

3

(x)

w

1

(z)

w

3

(y)

r

2

(x)

r

1

(y)

w

3

(z)

Definition 3.

24

(Relatively

S

erial

S

chedule):

s is

relatively serial

if for all transactions t

i

, t

j

: if q

∈

t

j

is interleaved with some

IU

k

(t

i

, t

j

), then there is no operation p

∈

IU

k

(t

i

, t

j

) s.t. p~>* q or q~>* p

Example 3.

17

:

s

4

=

r

1

(x)

r

2

(y) w

2

(y)

w

1

(x)

w

3

(x)

r

2

(x)

w

1

(z)

w

3

(y)

r

1

(y)

w

3

(z)

Definition 3.

25

(Relatively

S

erializable Schedule):

s is

relatively serializable

if it is conflict equivalent to a relatively serial schedule.

46 / 49

Relative Serialization Graph

Definition 3.

26

(Push

F

orward and

P

ull

B

ackward):

Let IU

k

(t

i

, t

j

) be an IU of t

i

relative to t

j

. For an operation p

i

∈

IU

k

(t

i

, t

j

) let

(i)

F(p

i

, t

j

)

be the last operation in IU

k

(t

i

, t

j

) and

(ii)

B(p

i

, t

j

)

be the first operation in IU

k

(t

i

, t

j

).

Definition 3.

27

(Relative

S

erialization

G

raph):

The

relative serialization graph RSG(s)

= (V,E) of schedule s is a graph

with vertices V := op(s) and edge set E

⊆

V

×

V

containing four types of edges:

(i)

for consecutive operations p, q of the same transaction (p, q)

∈

E

(I

-

edge)

(ii)

if p ~>* q for p

∈

t

i

, q

∈

t

j

, t

i

≠

t

j

, then (p, q)

∈

E

(D

-

edge)

(iii)

if (p, q) is a D

-

edge with p

∈

t

i

, q

∈

t

j

, then (F(p, t

j

), q)

∈

E

(F

-

edge)

(iv)

if (p,q) is a D

-

edge with p

∈

t

i

, q

∈

t

j

, then (p, B(q, t

i

))

∈

E

(B

-

edge)

Theorem 3.

18

:

A schedule s is relatively serializable iff RSG(s) is acyclic.

47 / 49

RSG Example

Example 3.

19

:

t

1

=

w

1

(x) r

1

(z)

t

2

=

r

2

(x) w

2

(y)

t

3

= r

3

(z) r

3

(y)

IU(

t

1

, t

2

) = < [

w

1

(x) r

1

(z)

] >

IU(

t

1

, t

3

) = < [

w

1

(x)

], [

r

1

(z)

] >

IU(

t

2

,

t

1

) = < [

r

2

(x)

], [

w

2

(y)

] >

IU(

t

2

, t

3

) = < [

r

2

(x)

], [

w

2

(y)

] >

IU(t

3

,

t

1

) = < [r

3

(z)], [r

3

(y)] >

IU(t

3

,

t

2

) = < [r

3

(z) r

3

(y)] >

I

s

5

=

w

1

(x)

r

2

(x)

r

3

(z)

w

2

(y)

r

3

(y)

r

1

(z)

RSG(s

5

):

w

1

(x)

r

2

(x)

r

3

(z)

r

1

(z)

w

2

(y)

r

3

(y)

I

I

D,B

B

D,F

F

B

F

D,B

D,F

48 / 49

Chapter 3: Concurrency Control

–

Notions of

Correctness for the Page Model

•

3.2 Canonical Synchronization Problems

•

3.3 Syntax of Histories and Schedules

•

3.4 Correctness of Histories and Schedules

•

3.5 Herbrand Semantics of Schedules

•

3.6 Final

-

State Serializability

•

3.7 View Serializability

•

3.8 Conflict Serializability

•

3.9 Commit Serializability

•

3.10 An Alternative Criterion: Interleaving Specifications

•

3.11 Lessons Learned

49 / 49

Lessons Learned

•

Equivalence to serial history is a natural correctness criterion

•

CSR, albeit less general than VSR,

is most appropriate for

•

complexity reasons

•

its monotonicity property

•

its generalizability to semantically rich operations

•

OCSR and COCSR have additional beneficial properties

	Chapter 3
	Canonical Synchronization Problems
	Syntax of Histories and Schedules
	Correctness of Histories and Schedules
	Herband Semantics of Schedules
	Final State Serializability
	View Serializability
	Conflict Serializability
	Commit Serializability
	Interleaving Specifications
	Lessons Learned

