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“Teamwork is essential. It allows you to blame someone else.” (Anonymous)
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“The optimist believes we live in the best of all possible worlds.
The pessimist fears this is true.”(Robert Oppenheimer)



Transaction Scheduler

Client 1 Client 2 Client 3 Clients
Requests
..."H.......“@ Data
Layer 5
. e [ Y B s Server
Transaction s Layer 4
Manager R S A
(TM) 13 | Layer 3
Data | [T 4] [T
Manager< '\ (ALHp Layer 2
(DM) 1 Layer 1

Database @



Scheduler Actions and Transaction
States

begin

active

block
@ blocked
resume

commit

restart



Scheduler Actions and Transaction
States

begin

active

block
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Definition 4.1 (CSR Safety):
For a scheduler S, Gen(S) denotes the set of all schedules that
S can generate. A scheduler is called CSR safe if Gen(S) c CSR.
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General Locking Rules

For each step the scheduler requests a lock on behalf of the step's transaction.
Each lock is requested in a specific mode (read or write).

If the data item is not yet locked in an incompatible mode the lock is granted;
otherwise there is a lock conflict and the transaction becomes blocked
(suffers a lock wait) until the current lock holder releases the lock.
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General Locking Rules

For each step the scheduler requests a lock on behalf of the step's transaction.
Each lock is requested in a specific mode (read or write).

If the data item is not yet locked in an incompatible mode the lock is granted;
otherwise there is a lock conflict and the transaction becomes blocked
(suffers a lock wait) until the current lock holder releases the lock.

Compatibility of locks: il (x) Wli(x) lock requestor

lock |+ |-

holder

wl(x)| — -

General locking rules:

LR1: Each data operation o;(x) must be preceded by ol;,(x) and followed by ou,(x).
LR2: For each x and t; there is at most one ol,(x) and at most one ou,(x).

LR3: No ol,(x) or ou,(x) is redundant.

LR4: If x is locked by both t; and t;, then these locks are compatible.
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Two-Phase Locking (2PL)

Definition 4.2 (2PL):
A locking protocol is two-phase (2PL) if for every output schedule s and every
transaction t; € trans(s) no ql; step follows the first oy, step (q, o € {r, w}).

Example 4.4:
s =W (X) 1,(x) W (y) Wy (2) 15(2) ¢; Wy(y) Ws(y) ¢, W5(2) ¢5
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Two-Phase Locking (2PL)

Definition 4.2 (2PL):
A locking protocol is two-phase (2PL) if for every output schedule s and every

transaction t; € trans(s) no ql; step follows the first oy, step (q, o € {r, w}).

Example 4.4:
s = w;(X) 1,(x) W,(y) W,(2) 13(z) ¢; W, (y) W3(y) ¢, W5(2) ¢;

w(x) wi(y)  wy(2)

wl (x) w,y(x) Wl (y) w,(y) wl,(2) wy(z) wu,(X) rl,(X) r,(x) wu,(y) wu,(z) c,

113(2) 13(2) Wl,(y) w,(y) wu,(y) ru,(X) ¢,
wi;(y) wi(y) wi;(z) w5(z) wu,(z) wus(y) ¢4




Correctness and Properties of 2PL

Theorem 4.1:
Gen(2PL) c CSR (i.e., 2PL is CSR-safe).

Example 4.5:
s =w,(x) 1,(x) ¢, 13(y) ¢ w,(y) ¢, € CSR
but ¢ Gen(2PL) for wu,(x) < rl,(x) and ru,(y) < wl,(y),
rl,(x) < 1,(x) and r;(y) < rus(y), and r,(x) < r5(y)
would imply wu,(x) < wl,(y) which contradicts the two-phase property.




Correctness and Properties of 2PL

Theorem 4.1:
Gen(2PL) c CSR (i.e., 2PL is CSR-safe).

Example 4.5:
s =w,(x) 1,(x) ¢, 13(y) ¢ w,(y) ¢, € CSR
but ¢ Gen(2PL) for wu,(x) < rl,(x) and ru,(y) < wl,(y),
rl,(x) < 1,(x) and r;(y) < rus(y), and r,(x) < r5(y)
would imply wu,(x) < wl,(y) which contradicts the two-phase property.

Theorem 4.2:
Gen(2PL) — OCSR

Example:
w1 (X) 1y(X) 13(y) 1,(2) W,(y) €5 ¢; €,




Proof of 2PL Correctness

Let s be the output of a 2PL scheduler, and let G be the conflict graph of

CP (DT(s)) where DT is the projection onto data and termination operations

and CP is the committed projection.

The following holds (Lemma 4.2):

(i) If (t, t) is an edge in G, then pu;(x) < ql,(x) for some x with conflicting p, g.
(i) If (t;, ty, ..., t) is a path in G, then pu,(x) < ql,(y) for some x, y.

(iii) G is acyclic.

This can be shown as follows:

(i) By locking rules LR1 through LR4.

(i) By induction on n.

(iii)) Assume G has a cycle of the form (t;, t,, ..., t,, t;).
By (ii), pu,(x) < ql,(y) for some x, y,
which contradicts the two-phase property.
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Deadlock Detection

Deadlocks are caused by cyclic lock waits
(e.g., in conjunction with lock conversions).

Example: (x) w,(y)

r
l] I T T
wo(y)  Wo(x)

Deadlock detection:
(i) Maintain dynamic waits-for graph (WFG) with
active transactions as nodes and
an edge from t; to t; if t; waits for a lock held by t..
(i) Test WFG for cycles
* continuously (i.e., upon each lock wait) or
e periodically.



Deadlock Resolution

Choose a transaction on a WFG cycle as a deadlock victim
and abort this transaction,
and repeat until no more cycles.

Possible victim selection strategies:
Last blocked

Random

Youngest

Minimum locks

Minimum work

Most cycles

Most edges

SN Ph g B I 1=




lllustration of Victim Selection Strategies

Example WFG:

/ES \ te ts ty / tg\
t; ‘\ j . }3 /0

1
— B

Most-cycles strategy would select t; (or t3) to break all 5 cycles.



lllustration of Victim Selection Strategies

Example WFG:

/ES \ te ts ty / tg\
t; ‘\ j . }3 /0

1
— B

Most-cycles strategy would select t; (or t3) to break all 5 cycles.

N
Example WFG: t,—t,

— N

t,—t, ts — t,

Most-edges strategy would select t; to remove 4 edges.



Deadlock Prevention

Restrict lock waits to ensure acyclic WFG at all times.

Reasonable deadlock prevention strategies:
1. Wait-die:
upon t; blocked by t;:
if t started before t; then wait else abort t;
2. Wound—walt
upon t; blocked by t;:
if t started before t; then abort t; else wait
3. Immediate restart:
upon t; blocked by t;: abort t;
4. Runnlng priority:
upon t; blocked by t;:
if t is itself blocked then abort t; else wait
5. Timeout:
abort waiting transaction when a timer expires
Abort entails later restart.
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Variants of 2PL
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Definition 4.3 (Conservative 2PL): fime

Under static or conservative 2PL (C2PL)
each transaction acquires all its locks
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Variants of 2PL

general 2PL

Definition 4.3 (Conservative 2PL):

Under static or conservative 2PL (C2PL)
each transaction acquires all its locks

before the first data operation (preclaiming).

Definition 4.4 (Strict 2PL):

Under strict 2PL (S2PL)

each transaction holds all its write locks
until the transaction terminates.

Definition 4.5 (Strong 2PL):

Under strong 2PL (SS2PL)

each transaction holds all its locks (i.e., both
r and w) until the transaction terminates.

locks

locks

locks

R

time

B

time

J—'—'—'i

time




Properties of S2PL and SS2PL

Theorem 4.3:
Gen(SS2PL) ¢ Gen(S2PL) ¢ Gen(2PL)

Theorem 4.4:
Gen(SS2PL) ¢ COCSR
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Ordered Sharing of Locks

Motivation:

Example 4.6:

51 =W (X) 1,(x) 15(y) ¢3 W () ¢ Wy(2) ¢, € COCSR, but
¢ Gen(2PL)

Observation:

the schedule were feasible if write locks could be shared
s.t. the order of lock acquisitions dictates the order of data operations

Notation:
pL(x) = ql(x) (with ;#) for pli(x) <, ql;(x) A p;i(x) <, q;(x)

Example reconsidered with ordered sharing of locks:
wl; (%) w(x) rl,(x) 1,(X) 1l5(y) 15(y) ru3(y) €4
wli(y) wi(y) wu (x) wu,(y) ¢ wly(z) w,(2) ruy(x) wu,(2) ¢,



LocK Compatibility Tables With Ordered

haring
LT, |rl(x) wl(x

()| + -

wli(x)| — —
LT, |rl(x) wl(x) LT; | rl(x) wl(x) LT, |rl(x) wl(x)
x|+ | = x|+ | = x|+ | =
wl(x)| — - wlx)| = | = wl(x)| — -
LT | 1l(x) wl(x) LTy | rl(x) [wl(x) LT, |1l(x) |wl(x)
)| + | = )| + | — |+ |
wi)| 7 | - wix)| 7 | 7 Wil - | 7

LT | rl(x) [wl(x)

x|+ | =

wli(x) — | =




Additional Locking Rules for O2PL

OS1 (lock acquisition):
Assuming that pl(x) — ql(x) is permitted,
if pli(x) < qlj(x) then p;(x) <, g;(x) must hold.

Satisfies OS1,

Example:
Wl (%) W (0 Why(0) Wy(x) Why(y) wy(y) wu,(x) wus(y) e, LR1-LR4,
is two-phase,

wli (y) wy(y) wu (x) wuy(y) ¢, but € CSR




Additional Locking Rules for O2PL

OS1 (lock acquisition):
Assuming that pl(x) — ql(x) is permitted,
if pli(x) < qlj(x) then p;(x) <, g;(x) must hold.

Example: Satisfies OS],
1 1 1 LR1 - LR4,

Wl (x) W (X) Wlh(X) Wy (X) Wiy (y) W,(y) wuy(X) wu,(y) ¢, is two-phase

wl w wu,(X) wu c J ’
1) wy(y) 1(x) 1) ¢ but & CSR

OS2 (lock release):

If pli(x) — ql;(x) and t;has not yet released any lock, then

t; is order-dependent on t,. If such t, exists, then ¢ is on hold.
While a transaction is on hold, it must not release any locks.

O2PL:locking with rules LR1 - LR4, two-phase property,
rules OS1 - OS2, and lock table LT,




O2PL Example

Example 4.7:
s =1,(x) W,o(X) 13(y) Wa(y) ¢, W5(2) c51,(2) ¢,
rp(x) ry(2)
v —
Wy (X) wo(y) ¢
u e o] I
r3(y) W3(Z) C3
3 I % % I

1 (X) 1(x) Wl (X) wo(x) 1l5(y) 13(y) Wlh(y) Wy (y)
wls(z) w3(2) rus(y) wWus(z) c5 1l (2) 1r1(2) rug(x) ru;(z) wu,(x) wus(y) ¢, ¢4



Correctness and Properties of O2PL

Theorem 4.5:

Let LT, denote the locking protocol with ordered sharing
according to lock compatibility table LT.

For each i, 1<i <8, Gen(LT,) c CSR.




Correctness and Properties of O2PL

Theorem 4.5:

Let LT, denote the locking protocol with ordered sharing
according to lock compatibility table LT.

For each i, 1<i <8, Gen(LT,) c CSR.

Theorem 4.6:
Gen(O2PL) ¢ OCSR




Correctness and Properties of O2PL

Theorem 4.5:

Let LT, denote the locking protocol with ordered sharing
according to lock compatibility table LT.

For each i, 1<i <8, Gen(LT,) c CSR.

Theorem 4.6:
Gen(O2PL) ¢ OCSR

Theorem 4.7:
OCSR < Gen(O2PL)

Corollary 4.1:
Gen(O2PL) = OCSR
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Altruistic Locking (AL)

Motivation:
Example 4.8: concurrent executions of
t; =w,(a) wi(b) w,(c) w,(d) w,(e) w,(f) w,(g)
t, =1,(a) 1,(b)
t; =13(c) 13(0)
Observations:
- t, and t; access subsets of the data items accessed by t,
- t, knows when it is “finished” with a data item
- t, could “pass over” locks on specific data items to
transactions that access only data items that t, is finished with
(such transactions are “in the wake” of t,)
Notation:
d,(x) for t, donating its lock on X to other transactions

Example with donation of locks:
wl,(a) wy(a) d,(a) rl,(a) r,(a) wl;(b) w,(b) d;(b) rl,(b) 1,(b) wl,(c) w,(c) ...
... TU,(a) ruy(b) ... wu,(a) wu,(b) wu,(c) ...



Additional Locking Rules for AL

AL1: Once t, has donated a lock on x, it can no longer access x.
AL2: After t; has donated a lock x, t; must eventually unlock x.

AL3: t; and t; can simultaneously hold conflicting locks
only if t; has donated its lock on x.




Additional Locking Rules for AL

AL1: Once t, has donated a lock on x, it can no longer access x.
AL2: After t; has donated a lock x, t; must eventually unlock x.

AL3: t; and t; can simultaneously hold conflicting locks
only if t; has donated its lock on x.

Definition 4.27:
@) pj(x) is in the wake of t; (i) in s if d;(x) < pj(x) <, 0u;(X).
(ii) t; is in the wake of t; if some operation of t; is in the wake of t;.
t; is completely in the wake of t; if all its operations are in the wake of t,.
(i) £ is indebted to t; in s if there are steps 0;(x), d;(x), p;(X) s.t.
pj(x) is in the wake of t; and ( p;(x) and 0,(x) are in conflict or
there is g, (x) conflicting with both p;(x) and 0;(x) and 0;(x) <, q,(X) < p;(X).




Additional Locking Rules for AL

AL1: Once t, has donated a lock on x, it can no longer access x.
AL2: After t; has donated a lock x, t; must eventually unlock x.

AL3: t; and t; can simultaneously hold conflicting locks
only if t; has donated its lock on x.

Definition 4.27:
@) pj(x) is in the wake of t; (i) in s if d;(x) < pj(x) <, 0u;(X).
(ii) t; is in the wake of t; if some operation of t; is in the wake of t;.
t; is completely in the wake of t; if all its operations are in the wake of t,.
(i) £ is indebted to t; in s if there are steps 0;(x), d;(x), p;(X) s.t.
pj(x) is in the wake of t; and ( p;(x) and 0,(x) are in conflict or
there is g, (x) conflicting with both p;(x) and 0;(x) and 0;(x) <, q,(X) < p;(X).

AL4: When t; is indebted to t,
t; must remain completely in the wake of t.

AL: locking with rules LR1 - LR4, two-phase property,
donations, and rules AL1 - AL4 .




AL Example

Example:
rl,(a) r,(a) d,(a) wl;(a) ws(a) wus(a) c,
rl,(a) r,(a) wl,(b) ru,(a) w,(b) wu,(b) ¢, rl,(b) r,(b) ru,(a) ru,(b) c,

— disallowed by AL (even ¢ CSR)

Example corrected using rules AL1- AL4:
rl,(a) r,(a) d,(a) wly(a) ws(a) wu,(a) c,
rl,(a) ry(a) rl,(b) r;(b) ru,(a) ru,(b) ¢, wl,(b) ru,(a) w,(b) wu,(b) c,

— admitted by AL (t, stays completely in the wake of t,)



Correctness and Properties of AL

Theorem 4.8:
Gen(2PL) < Gen(AL).

Theorem 4.9:
Gen(AL) c CSR

Example:
S =1,(X) 15(2) 15(2) W,(X) ¢, W(y) c5 1,(y) 1,(2) ¢, — e CSR,
but ¢ Gen(AL)




Chapter 4: Concurrency Control
Algorithms

* 4.2 General Scheduler Design
* 4.3 Locking Schedulers
* 4.3.1 Introduction
* 4.3.2 Two-Phase Locking (2PL)
* 4.3.3 Deadlock Handling
* 4.3.4 Variants of 2PL
* 4.3.5 Ordered Sharing of Locks (O2PL)
¢ 4.3.6 Altruistic Locking (AL)

* 4.3.7 Non-Two-Phase Locking (WTL, RWTL)

* 4.3.8 Geometry of Locking
* 4.4 Non-Locking Schedulers
* 4.5 Hybrid Protocols
* 4.6 Lessons Learned



(Write-only) Tree Locking

Motivating example:
concurrent executions of transactions with access patterns

a
b

that comply with organizing data items into a virtual tree T~
d

t,=w,(a) w,(b) w,(d) w,(e) w,(1) w,(k)
t, = Wo(a) W,(b) W,(c) wo(d) w,(h) f/\g



(Write-only) Tree Locking

Motivating example:
concurrent executions of transactions with access patterns

a

\
that comply with organizing data items into a virtual tree /yb\
t,=w,(a) w,(b) w,(d) w,(e) w,(1) w,(k) d
t, = Wa(a) Wy(b) W(c) wy(d) w,(h) f/\g oo

Definition (Write-only Tree Locking (WTL)):
Under the write-only tree locking protocol (WTL) lock requests and releases
must obey LR1 - LR4 and the following additional rules:
WTL1: A lock on a node x other than the tree root can be acquired only
if the transaction already holds a lock on the parent of x.
WTL2: After a wu(x) no further wl;(x) is allowed (on the same Xx).

Example:
wl, (a) w,(a) wl,(b) wu,(a) w,(b) wl,(a) w,(a) wl,(d) w,(d) wu,(d) wl,(e) wu,(b)

w,(e) wl,(b) wu,(a) wy(b) ...



Correctness and Properties of WTL

Lemma 4.6:
If t; locks x before t; does in schedule s, then for each successor v of x
that is locked by both t; and t; the following holds: wl,(v) < wuy(v) <, wl(v).

Theorem 4.10:
Gen(WTL) < CSR.

Theorem 4.11:
WTL is deadlock-free.

Comment: WTL is applicable even if a transaction's access patterns
are not tree-compliant, but then locks must still be obtained
along all relevant paths in the tree using the WTL rules.




Read-Write Tree Locking

Problem: t; locks root before t; does,
but t; passes t; within a “read zone”

Example:
rl;(a) r1;(b) r;(a) ry(b) wl;(a) wy(a) wl;(b) ul,(a) rl,(a) r,(a) 2‘1
w,(b) r1,(e) ul;(b) 11,(b) 1,(b) ul,(a) rl,(e) rl,(i) uly(b) r,(e) r,(e) b
1,(1) wly(i) w,(i) wl,y(k) ul,(e) ul,(@) rl, (i) ul,(e) ry() ... 4\
C c
— appears to follow TL rules \ .
but ¢ CSR f/\g h IS
J

Solution: formalize “read zone”
and enforce two-phase property on “read zones”




Locking Rules of RWTL

For transaction t with read set RS(t) and write set WS(t)
let C,, ..., C,, be the connected components of RS(t).

A pitfall of t is a set of the form

C,u {x € WS(t) | x is a child or parent of some y € C,}.

Definition (read-write tree locking (RWTL)):
Under the read-write tree locking protocol (RWTL) lock requests and releases
Must obey LR1 - LR4, WTL1, WTL2, and the two-phase property within each pitfall.

Example:
t with RS(t)={f, i, g} and WS(t)={c, 1, j, k, o}
has pitfalls pf,={c, f, i, 1, j} and pf,={g, c, k}.




Correctness and Generalization of
RWTL

Theorem 4.12:
Gen (RWTL) ¢ CSR.

RWTL can be generalized for a DAG organization of data items
into a DAG locking protocol with the following additional rule:
t. is allowed to lock data item x only if holds locks on
a majority of the predecessors of x.
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(Basic) Timestamp Ordering

Timestamp ordering rule (TO rule):

Each transaction t; is assigned a unique timestamp ts(t;)
(e.g., the time of t;'s beginning).

If p;(x) and q;(x) are in conflict, then the following must hold:
Pi(x) <, q;(x) iff ts(t;) < ts(t;) for every schedule s.

Theorem 4.15:
Gen (TO) < CSR.

Basic timestamp ordering protocol (BTO):
* For each data item x maintain max-r (x) = max{ts(t,) | r;(x) has been scheduled
and max-w (x) = max{ts(tj) [ Wj(X) has been scheduled}.
* Operation p;(x) is compared to max-q (x) for each conflicting q:
* if ts(t,) < max-q (x) for some q then abort t;
* else schedule p;(x) for execution and set max-p (x) to ts(t;)




BTO Example
s =1,(X) W,(X) 15(y) W,(y) ¢, W5(z) c51,(2) ¢,

r(x) r(2)
t | i L abort
wo(X)  w(y)
t, I—Q—F abort

r3(y) ws(z) C3

|
t,5 I T T

r,(x) Wy (X) 15(y) a, W5(z) ¢4 a,
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Serialization Graph Testing (SGT)

SGT protocol:

* For p,(x) create a new node in the graph if it is the first operation of

* Insert edges (t;, ;) for each q;(x) < p;(x) that is in conflict with p,(x) (i#).

« If the graph has become cyclic then abort t, (and remove it from the graph)
else schedule p;(x) for execution.
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SGT protocol:

* For p,(x) create a new node in the graph if it is the first operation of

* Insert edges (t;, ;) for each q;(x) < p;(x) that is in conflict with p,(x) (i#).

« If the graph has become cyclic then abort t, (and remove it from the graph)
else schedule p;(x) for execution.

Theorem 4.16:
Gen (SGT) = CSR.




Serialization Graph Testing (SGT)

SGT protocol:

* For p,(x) create a new node in the graph if it is the first operation of

* Insert edges (t;, ;) for each q;(x) < p;(x) that is in conflict with p,(x) (i#).

« If the graph has become cyclic then abort t, (and remove it from the graph)
else schedule p;(x) for execution.

Theorem 4.16:
Gen (SGT) = CSR.

Node deletion rule:
A node t; in the graph (and its incident edges) can be removed
when t; is terminated and is a source node (i.e., has no incoming edges).

Example:

11(X) Wo(X) W,(y) ¢, 14(y) ¢,

removing node t, at the time of c,

would make it impossible to detect the cycle.
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Optimistic Protocols

Motivation: conflicts are infrequent

Approach:
divide each transaction t into three phases:
read phase:
execute transaction with writes into private workspace
validation phase (certifier):
upon t's commit request
test if schedule remains CSR if t is committed now
based on t's read set RS(t) and write set WS(t)
write phase:
upon successful validation
transfer the workspace contents into the database
(deferred writes)
otherwise abort t (i.e., discard workspace)




Backward-oriented Optimistic CC
(BOCC)

Execute a transaction's validation and write phase together as a critical section:
while t; being in the val-write phase, no other t, can enter its val-write phase

BOCC validation of t;:

compare t; to all previously committed t,

accept t; if one of the following holds

* t; has ended before t; has started, or

* RS(t;) M WS(t;) = D and t; has validated before




Backward-oriented Optimistic CC
(BOCC)

Execute a transaction's validation and write phase together as a critical section:
while t; being in the val-write phase, no other t, can enter its val-write phase

BOCC validation of t;:

compare t; to all previously committed t,

accept t; if one of the following holds

* t; has ended before t; has started, or

* RS(t;) M WS(t;) = D and t; has validated before

Theorem 4.46:
Gen (BOCC) c CSR.

Proof:

Assume that G(s) is acyclic. Adding a newly validated transaction
can insert only edges into the new node, but no outgoing edges
(i.e., the new node is last in the serialization order).




BOCC Example

read write
phase phase
— —
r(x) r(y)  val wi(x)
| I ] | , |
t 1 L
,(y) 1,(2) val. w,(z)
| - | | [ |
t, ‘ N —
13(X) 13(y) val.
t I | | % abort
14(X) lval. lw4(x)
1 1

7 [ -



Forward-oriented Optimistic CC
(FOCC)

Execute a transaction's val -write phase as a strong critical section:
while t; being in the val-write phase, no other t, can perform any steps.

FOCC validation of t;:
compare t; to all concurrently active t; (which must be in their read phase)
accept t; if WS(t;) N RS*(t) = & where RS*(t;) is the current read set of t,




Forward-oriented Optimistic CC
(FOCC)

Execute a transaction's val -write phase as a strong critical section:
while t; being in the val-write phase, no other t, can perform any steps.

FOCC validation of t;:
compare t; to all concurrently active t; (which must be in their read phase)
accept t; if WS(t;) N RS*(t) = & where RS*(t;) is the current read set of t,

Remarks:
* FOCC is much more flexible than BOCC:
upon unsuccessful validation of t; it has three options:
* abort t;
« abort one of the active t, for which RS*(t;) and WS(t;) intersect
* wait and retry the validation of t; later
(after the commit of the intersecting t,)
* Read-only transactions do not need to validate at all.




Correctness of FOCC

Theorem 4.18:
Gen (FOCC) c CSR.

Proof:
Assume that G(s) has been acyclic and that validating t; would create a cycle.
So t; would have to have an outgoing edge to an already committed t,.
However, for all previously committed ¢ the following holds:
¢ If t, was committed before t; started, then no edge (t;, t,) is possible.
e If was in its read phase when t, validated, then WS(t,) must be
disjoint with RS*(t;) and all later reads of t; and all writes of t;
must follow t, (because of the strong critical section);
so neither a wr nor a ww/rw edge (t;, t,) is possible.




FOCC Example

write
phase
val. w;(x)
B —
15(2) val. w,(z)
% —t+—+
13(2)

t I—Qi abort

14(x) 14(y) val.l wy(y)

o ! —

15(X) r5(y)
ts I f f
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Hybrid Protocols

Idea: Combine different protocols,
each handling different types of conflicts (rw/wr vs. ww) or data partitions

Caveat: The combination must guarantee that the union of the
underlying “local” conflict graphs is acyclic.
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Idea: Combine different protocols,
each handling different types of conflicts (rw/wr vs. ww) or data partitions

Caveat: The combination must guarantee that the union of the
underlying “local” conflict graphs is acyclic.

Example 4.15:
use SS2PL for rw/wr synchronization and TO or TWR for ww
with TWR (Thomas* write rule) as follows:
for w;(x): if ts(t;) > max-w (x) then execute w;(x) else do nothing

h 2PL/TWR
s; = W (X) 1(y) W,(X) Wy(y) ¢, Wi(y) ¢ } both accepted by SS2PL/TW

with ts(t,) < ts(t,),
8= W (X) 1y(y) Wo(X) Wy(y) ¢, 11(y) Wy(y) ¢, but s, is not CSR



Hybrid Protocols

Idea: Combine different protocols,
each handling different types of conflicts (rw/wr vs. ww) or data partitions

Caveat: The combination must guarantee that the union of the
underlying “local” conflict graphs is acyclic.

Example 4.15:
use SS2PL for rw/wr synchronization and TO or TWR for ww
with TWR (Thomas* write rule) as follows:
for w;(x): if ts(t;) > max-w (x) then execute w;(x) else do nothing

h 2PL/TWR
s; = W (X) 1(y) W,(X) Wy(y) ¢, Wi(y) ¢ } both accepted by SS2PL/TW

with ts(t,) < ts(t,),
8= W (X) 1y(y) Wo(X) Wy(y) ¢, 11(y) Wy(y) ¢, but s, is not CSR

Problem with s,: needs synch among the two “local” serialization orders

Solution: assign timestamps such that the serialization orders
of SS2PL and TWR are in line —ts(1) < ts(j) & ¢ <
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Lessons Learned

* S2PL is the most versatile and robust protocol
and widely used in practice
* Knowledge about specifically restricted access patterns
facilitates non-two-phase locking protocols (e.g., TL, AL)
* O2PL and SGT are more powerful but have more overhead
* FOCC can be attractive for specific workloads

* Hybrid protocols are conceivable but non-trivial



	Chapter 4
	General Scheduler Design
	Locking Schedulers
	Two-Phase Locking
	Deadlock Handling
	Variants of 2PL
	Ordered Sharing of Locks
	Altruistic Locking
	Non-Two-Phase Locking
	Timestamp Ordering
	Serialization-Graph Testing
	Optimistic Protocols
	Hybrid Protocols
	Lessons Learned


