Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann ISBN 1-55860-508-8

"Teamwork is essential. It allows you to blame someone else." (Anonymous)

Part II: Concurrency Control

- 3 Concurrency Control: Notions of Correctness for the Page Model
- 4 Concurrency Control Algorithms
- 5 Multiversion Concurrency Control
- 6 Concurrency Control on Objects: Notions of Correctness
- 7 Concurrency Control Algorithms on Objects
- 8 Concurrency Control on Relational Databases
- 9 Concurrency Control on Search Structures
- 10 Implementation and Pragmatic Issues

Chapter 5: Multiversion Concurrency Control

• 5.2 Multiversion Schedules

- 5.3 Multiversion Serializability
- 5.4 Limiting the Number of Versions
- 5.5 Multiversion Concurrency Control Protocols
- 5.6 Lessons Learned

"A book is a version of the world. If you do not like it, ignore it; or offer your own version in return." (Salmon Rushdie)

Motivation

Example 5.1:

 $s = r_1(x) w_1(x) r_2(x) w_2(y) r_1(y) w_1(z) c_1 c_2 \longrightarrow \notin CSR$

but: schedule would be tolerable if $r_1(y)$ could read the **old version** y_0 of y to be consistent with $r_1(x)$

 \rightarrow s would then be equivalent to serial s' = t₁ t₂

Motivation

Example 5.1:

 $s = r_1(x) w_1(x) r_2(x) w_2(y) r_1(y) w_1(z) c_1 c_2 \longrightarrow \notin CSR$

but: schedule would be tolerable if $r_1(y)$ could read the **old version** y_0 of y to be consistent with $r_1(x)$

 \rightarrow s would then be equivalent to serial s' = t₁ t₂

Approach:

- each w step creates a new version
- each r step can choose which version it wants/needs to read
- versions are transparent to application and transient (i.e., subject to garbage collection)

Multiversion Schedules

Definition 5.1 (Version Function):

Let s be a history with initial transaction t_0 and final transaction t_{∞} . A **version function** for s is a function h which associates with each read step of s a previous write step on the same data item, and the identity for writes.

Multiversion Schedules

Definition 5.1 (Version Function):

Let s be a history with initial transaction t_0 and final transaction t_{∞} .

A version function for s is a function h which associates with each read step of s

a previous write step on the same data item, and the identity for writes.

Definition 5.2 (Multiversion Schedule):

A **multiversion (mv) history** for transactions $T = \{t_1, ..., t_n\}$ is a pair $m=(op(m), <_m)$ where $<_m$ is an order on op(m) and

- (1) $op(m) = \bigcup_{i=1}^{n} h(op(t_i))$ for some version function h,
- (2) for all $t \in T$ and all $p, q \in op(t_i)$: $p <_t q \Rightarrow h(p) <_m h(q)$,
- (3) if $h(r_j(x)) = w_j(x_i)$, $i \neq j$, then c_i is in m and $c_i <_m c_j$.

A multiversion (mv) schedule is a prefix of a multiversion history.

Example 5.2: $r_1(x_0) w_1(x_1) r_2(x_1) w_2(y_2) r_1(y_0) w_1(z_1) c_1 c_2$

with $h(r_1(y)) = w_0(y_0)$

Multiversion Schedules

Definition 5.1 (Version Function):

Let s be a history with initial transaction t_0 and final transaction t_{∞} .

A version function for s is a function h which associates with each read step of s

a previous write step on the same data item, and the identity for writes.

Definition 5.2 (Multiversion Schedule):

A **multiversion (mv) history** for transactions $T = \{t_1, ..., t_n\}$ is a pair $m=(op(m), <_m)$ where $<_m$ is an order on op(m) and

- (1) $op(m) = \bigcup_{i=1,n} h(op(t_i))$ for some version function h,
- $(2) \ \ \text{for all } t \in T \text{ and all } p,q \in \text{ op}(t_i) \text{: } p <_t q \Rightarrow h(p) <_m h(q),$
- (3) if $h(r_j(x)) = w_j(x_i)$, $i \neq j$, then c_i is in m and $c_i <_m c_j$.

A multiversion (mv) schedule is a prefix of a multiversion history.

Example 5.2: $r_1(x_0) w_1(x_1) r_2(x_1) w_2(y_2) r_1(y_0) w_1(z_1) c_1 c_2$

with $h(r_1(y)) = w_0(y_0)$

Definition 5.3 (Monoversion Schedule):

A multiversion schedule is a **monoversion schedule** if its version function maps each read to the last preceding write on the same data item.

Example: $r_1(x_0) w_1(x_1) r_2(x_1) w_2(y_2) r_1(y_2) w_1(z_1) c_1 c_2$

Chapter 5: Multiversion Concurrency Control

- 5.2 Multiversion Schedules
- 5.3 Multiversion Serializability
- 5.4 Limiting the Number of Versions
- 5.5 Multiversion Concurrency Control Protocols
- 5.6 Lessons Learned

Definition 5.4 (Reads-from Relation):

For mv schedule m the reads-from relation of m is $\mathbf{RF}(\mathbf{m}) = \{(t_i, x, t_i) | r_i(x_i) \in op(m)\}.$

Definition 5.4 (Reads-from Relation):

For mv schedule m the reads-from relation of m is $\mathbf{RF}(\mathbf{m}) = \{(t_i, x, t_i) \mid r_i(x_i) \in op(m)\}.$

Definition 5.5 (View Equivalence):

mv histories m and m' with trans(m)=trans(m') are view equivalent,

 $\mathbf{m} \approx_{\mathbf{v}} \mathbf{m}^{\mathbf{i}}$, if $RF(\mathbf{m}) = RF(\mathbf{m}')$.

Definition 5.4 (Reads-from Relation):

For my schedule m the reads-from relation of m is $\mathbf{RF}(\mathbf{m}) = \{(t_i, x, t_i) \mid r_i(x_i) \in op(\mathbf{m})\}.$

Definition 5.5 (View Equivalence):

mv histories m and m' with trans(m)=trans(m') are view equivalent,

 $\mathbf{m} \approx_{\mathbf{v}} \mathbf{m}^{\mathbf{*}}, \text{ if } RF(\mathbf{m}) = RF(\mathbf{m}').$

Definition 5.6 (Multiversion View Serializability):

m is multiversion view serializable if there is a serial monoversion history m' s.t. m ≈, m'.

MVSR is the class of multiversion view serializable histories.

Definition 5.4 (Reads-from Relation):

For mv schedule m the reads-from relation of m is $\mathbf{RF}(\mathbf{m}) = \{(t_i, x, t_j) \mid r_j(x_i) \in op(m)\}.$

Definition 5.5 (View Equivalence):

mv histories m and m' with trans(m)=trans(m') are view equivalent,

 $\mathbf{m} \approx_{\mathbf{v}} \mathbf{m}^{\mathbf{i}}$, if $RF(\mathbf{m}) = RF(\mathbf{m}')$.

Definition 5.6 (Multiversion View Serializability):

m is multiversion view serializable if there is a serial monoversion history m' s.t. $m \approx_v m'$. **MVSR** is the class of multiversion view serializable histories.

Example 5.5:

 $\mathbf{m} = \mathbf{w}_0(\mathbf{x}_0) \ \mathbf{w}_0(\mathbf{y}_0) \ \mathbf{c}_0 \ \mathbf{r}_1(\mathbf{x}_0) \ \mathbf{r}_1(\mathbf{y}_0) \ \mathbf{w}_1(\mathbf{x}_1) \ \mathbf{w}_1(\mathbf{y}_1) \ \mathbf{c}_1 \ \mathbf{r}_2(\mathbf{x}_0) \ \mathbf{r}_2(\mathbf{y}_1) \ \mathbf{c}_2$

∉ MVSR

Example 5.6:

 $\mathbf{m} = \mathbf{w}_0(\mathbf{x}_0) \ \mathbf{w}_0(\mathbf{y}_0) \ \mathbf{c}_0 \ \mathbf{w}_1(\mathbf{x}_1) \ \mathbf{c}_1 \ \mathbf{r}_2(\mathbf{x}_1) \ \mathbf{r}_3(\mathbf{x}_0) \ \mathbf{w}_3(\mathbf{x}_3) \ \mathbf{c}_3 \ \mathbf{w}_2(\mathbf{y}_2) \ \mathbf{c}_2 \qquad \qquad \approx_{\mathbf{v}} \mathbf{t}_0 \ \mathbf{t}_3 \ \mathbf{t}_1 \ \mathbf{t}_2$

Properties of MVSR

Theorem 5.1: $VSR \subset MVSR$

Example: $s = r_1(x) w_1(x) r_2(x) w_2(y) r_1(y) w_1(z) c_1 c_2$

Properties of MVSR

Theorem 5.1: $VSR \subset MVSR$

Example: $s = r_1(x) w_1(x) r_2(x) w_2(y) r_1(y) w_1(z) c_1 c_2$

Theorem 5.2: Deciding if a mv history is in MVSR is NP-complete.

Properties of MVSR

Theorem 5.1: VSR \subset MVSR

Example: $s = r_1(x) w_1(x) r_2(x) w_2(y) r_1(y) w_1(z) c_1 c_2$

Theorem 5.2: Deciding if a mv history is in MVSR is NP-complete.

Theorem 5.3: The conflict graph of an my schedule m is a directed graph G(m) with transactions as nodes and an edge from t_i to t_i if $r_i(x_i) \in op(m)$. For all my schedules m, m': m $\approx_{\mathbf{w}}$ m' \Rightarrow G(m) = G(m').

Example:

Testing MVSR

Definition 5.8 (Multiversion Serialization Graph (MVSG)): A version order for data item x, denoted $<<_x$, is a total order among all versions of x. A **version order** for mv schedule m is the union of version orders for items written in m. The **mv serialization graph** for m and a given version order <<, **MVSG (m, <<)**, is a graph with transactions as nodes and the following edges:

(i) all edges of G(m) are in MVSG(m, <<)

(i.e., for $r_k(x_j)$ in op(m) there is an edge from t_j to t_k)

- (ii) for $r_k(x_i)$, $w_i(x_i)$ in op(m): if $x_i \ll x_j$ then there is an edge from t_i to t_j
- (iii) for $r_k(x_i)$, $w_i(x_i)$ in op(m): if $x_i \ll x_i$ then there is an edge from t_k to t_i

Testing MVSR

Definition 5.8 (Multiversion Serialization Graph (MVSG)): A version order for data item x, denoted $<<_x$, is a total order among all versions of x. A **version order** for mv schedule m is the union of version orders for items written in m. The **mv serialization graph** for m and a given version order <<, **MVSG (m, <<)**, is a graph with transactions as nodes and the following edges: (i) all edges of G(m) are in MVSG(m, <<) (i.e., for $r_k(x_i)$ in op(m) there is an edge from t_i to t_k)

- (ii) for $r_k(x_i)$, $w_i(x_i)$ in op(m): if $x_i \ll x_i$ then there is an edge from t_i to t_i
- (iii) for $r_k(x_i)$, $w_i(x_i)$ in op(m): if $x_i \ll x_i$ then there is an edge from t_k to t_i

Theorem 5.4:

m is in MVSR iff there exists a version order << s.t. MVSG(m, <<) is acyclic.

MVSG Example

Examples 5.7 and 5.8:

$$\begin{split} \mathbf{m} &= \mathbf{w}_0(\mathbf{x}_0) \; \mathbf{w}_0(\mathbf{y}_0) \; \mathbf{w}_0(\mathbf{z}_0) \; \mathbf{c}_0 \\ & \mathbf{r}_1(\mathbf{x}_0) \; \mathbf{r}_2(\mathbf{x}_0) \; \mathbf{r}_2(\mathbf{z}_0) \; \mathbf{r}_3(\mathbf{z}_0) \\ & \mathbf{w}_1(\mathbf{y}_1) \; \mathbf{w}_2(\mathbf{x}_2) \; \mathbf{w}_3(\mathbf{y}_3) \; \mathbf{w}_3(\mathbf{z}_3) \; \mathbf{c}_1 \; \mathbf{c}_2 \; \mathbf{c}_3 \\ & \mathbf{r}_4(\mathbf{x}_2) \; \mathbf{r}_4(\mathbf{y}_3) \; \mathbf{r}_4(\mathbf{z}_3) \; \mathbf{c}_4 \end{split}$$

with version order <<:

$$x_0 << x_2$$

 $y_0 << y_1 << y_3$
 $z_0 << z_3$

MVSG Example

Examples 5.7 and 5.8:

 $\mathbf{m} = \mathbf{w}_{0}(\mathbf{x}_{0}) \ \mathbf{w}_{0}(\mathbf{y}_{0}) \ \mathbf{w}_{0}(\mathbf{z}_{0}) \ \mathbf{c}_{0} \\ \mathbf{r}_{1}(\mathbf{x}_{0}) \ \mathbf{r}_{2}(\mathbf{x}_{0}) \ \mathbf{r}_{2}(\mathbf{z}_{0}) \ \mathbf{r}_{3}(\mathbf{z}_{0}) \\ \mathbf{w}_{1}(\mathbf{y}_{1}) \ \mathbf{w}_{2}(\mathbf{x}_{2}) \ \mathbf{w}_{3}(\mathbf{y}_{3}) \ \mathbf{w}_{3}(\mathbf{z}_{3}) \ \mathbf{c}_{1} \ \mathbf{c}_{2} \ \mathbf{c}_{3} \\ \mathbf{r}_{4}(\mathbf{x}_{2}) \ \mathbf{r}_{4}(\mathbf{y}_{3}) \ \mathbf{r}_{4}(\mathbf{z}_{3}) \ \mathbf{c}_{4}$

with version order <<:

$$x_0 \ll x_2$$

 $y_0 \ll y_1 \ll y_3$
 $z_0 \ll z_3$

Notice: Testing whether appropriate << exists for given m is not necessarily polynomial \Rightarrow NP-completeness result remains

Definition 5.9 (Multiversion Conflict):

A multiversion conflict in m is a pair $r_i(x_j)$ and $w_k(x_k)$ such that $r_i(x_j) <_m w_k(x_k)$.

Definition 5.9 (Multiversion Conflict):

A multiversion conflict in m is a pair $r_i(x_j)$ and $w_k(x_k)$ such that $r_i(x_j) <_m w_k(x_k)$.

Definition 5.10 (Multiversion Reducibility):

An mv history is **multiversion reducible** if it can be transformed into a serial monoversion history by exchanging the order of adjacent steps other than multiversion conflict pairs.

Definition 5.9 (Multiversion Conflict):

A multiversion conflict in m is a pair $r_i(x_j)$ and $w_k(x_k)$ such that $r_i(x_j) <_m w_k(x_k)$.

Definition 5.10 (Multiversion Reducibility):

An mv history is **multiversion reducible** if it can be transformed into a serial monoversion history by exchanging the order of adjacent steps other than multiversion conflict pairs.

Definition 5.11 (Multiversion Conflict Serializability): An my history is **multiversion conflict serializable** if there is a serial more supervised by the series temperature and

serial monoversion history with the same transactions and the same (ordering of) multiversion conflict pairs. **MCSR** denotes the class of all multiversion conflict serializable histories.

Definition 5.9 (Multiversion Conflict):

A multiversion conflict in m is a pair $r_i(x_j)$ and $w_k(x_k)$ such that $r_i(x_j) <_m w_k(x_k)$.

Definition 5.10 (Multiversion Reducibility):

An mv history is **multiversion reducible** if it can be transformed into a serial monoversion history by exchanging the order of adjacent steps other than multiversion conflict pairs.

Definition 5.11 (Multiversion Conflict Serializability): An mv history is **multiversion conflict serializable** if there is a serial monoversion history with the same transactions and the same (ordering of) multiversion conflict pairs. **MCSR** denotes the class of all multiversion conflict serializable histories.

Definition 5.12 (Multiversion Conflict Graph):

For an mv schedule m the **multiversion conflict graph** is a graph with transactions as nodes and an edge from t_i to t_k if there are steps $r_i(x_i)$ and $w_k(x_k)$ such that $r_i(x_i) <_m w_k(x_k)$.

Properties of MCSR

Theorem:

m is in MCSR \Leftrightarrow m is multiversion reducible \Leftrightarrow m's mv conflict graph is acyclic

Properties of MCSR

Theorem:

m is in MCSR \Leftrightarrow m is multiversion reducible \Leftrightarrow m's mv conflict graph is acyclic

Theorem 5.6: MCSR ⊂ MVSR

Example:

 $m = \frac{w_0(x_0) w_0(y_0) w_0(z_0) c_0}{r_{\infty}(x_2) r_{\infty}(y_1) r_{\infty}(z_0) c_{\infty}} \xrightarrow{r_2(y_0) r_3(z_0) w_3(x_3) c_3 r_1(x_3)} \underbrace{w_1(y_1) c_1 w_2(x_2) c_2}_{\rightarrow \notin MCSR}$

$$\rightarrow \in \text{MVSR}$$
$$m \approx_v \mathbf{t}_0 \mathbf{t}_3 \mathbf{t}_2 \mathbf{t}_1 \mathbf{t}_\infty$$

Chapter 5: Multiversion Concurrency Control

- 5.2 Multiversion Schedules
- 5.3 Multiversion Serializability
- 5.4 Limiting the Number of Versions
- 5.5 Multiversion Concurrency Control Protocols
- 5.6 Lessons Learned

MVTO Protocol

Multiversion timestamp ordering (MVTO):

- each transaction t_i is assigned a unique timestamp ts(t_i)
- $r_i(x)$ is mapped to $r_i(x_k)$ where x_k is the version that carries the largest timestamp $\leq ts(t_i)$
- $w_i(x)$ is
 - rejected if there is $r_i(x_k)$ with $ts(t_k) < ts(t_i) < ts(t_i)$
 - mapped into $w_i(x_i)$ otherwise
- c_i is delayed until c_j of all transactions t_j that have written versions read by t_i

Correctness of MVTO (i.e., $Gen(MVTO) \subseteq MVSR$):

 $x_i \ll x_j \iff ts(t_i) < ts(t_j)$

Multiversion 2PL (MV2PL) Protocol

General approach:

- use write locking to ensure that at each time there is at most one uncommitted version
- for t_i that is not yet issuing its final step:
 - $r_i(x)$ is mapped to "current version" (i.e., the most recent committed version)

or an uncommitted version

- $w_i(x)$ is executed only if x is not write-locked, otherwise it is blocked
- t_i's final step is delayed until after the commit of:
 - all t_i that have read from a current version of a data item that t_i has written
 - all t_i from which t_i has read

Multiversion 2PL (MV2PL) Protocol

General approach:

- use write locking to ensure that at each time there is at most one uncommitted version
- for t_i that is not yet issuing its final step:

• $r_i(x)$ is mapped to "current version" (i.e., the most recent committed version)

or an uncommitted version

- $w_i(x)$ is executed only if x is not write-locked, otherwise it is blocked
- t_i's final step is delayed until after the commit of:
 - all t_i that have read from a current version of a data item that t_i has written
 - all t_i from which t_i has read

Example 5.9:

for input schedule

 $\mathbf{s} = \mathbf{r}_1(\mathbf{x}) \mathbf{w}_1(\mathbf{x}) \mathbf{r}_2(\mathbf{x}) \mathbf{w}_2(\mathbf{y}) \mathbf{r}_1(\mathbf{y}) \mathbf{w}_2(\mathbf{x}) \mathbf{c}_2 \mathbf{w}_1(\mathbf{y}) \mathbf{c}_1$

MV2PL produces the output schedule

 $r_1(x_0) w_1(x_1) r_2(x_1) w_2(y_2) r_1(y_0) w_1(y_1) c_1 w_2(x_2) c_2$

Specialization: 2V2PL Protocol

2-Version (before/after image) 2PL:

- request write lock wl_i(x) for writing a new uncommitted version and ensuring that at most one such version exists at any time
- request read lock rl_i(x) for reading the current version (i.e., most recent committed version)
- request certify lock cl_i(x) for final step of t_i on all data items in t_i's write set

Correctness of 2V2PL (i.e., Gen(2V2PL) \subseteq MVSR): $x_i \ll x_j \iff f_i < f_j$ (for final "certify" steps of t_i, t_j)

2V2PL Example

Example 5.10:

 $s = r_1(x) w_2(y) r_1(y) w_1(x) c_1 r_3(y) r_3(z) w_3(z) w_2(x) c_2 w_4(z) c_4 c_3$

2V2PL Example

Example 5.10:

 $s = r_1(x) w_2(y) r_1(y) w_1(x) c_1 r_3(y) r_3(z) w_3(z) w_2(x) c_2 w_4(z) c_4 c_3$

2V2PL Example

Example 5.10:

 $s = r_1(x) w_2(y) r_1(y) w_1(x) c_1 r_3(y) r_3(z) w_3(z) w_2(x) c_2 w_4(z) c_4 c_3$

 $\begin{array}{l} rl_1(x) \; r_1(x_0) \; wl_2(y) \; w_2(y_2) \; rl_1(y) \; r_1(y_0) \; wl_1(x) \; w_1(x_1) \; cl_1(x) \; u_1 \; c_1 \\ rl_3(y) \; r_3(y_0) \; rl_3(z) \; r_3(z_0) \; wl_2(x) \; cl_2(x) \; wl_3(y) \; w_3(z_3) \; cl_3(y) \; u_3 \; c_3 \\ cl_2(y) \; u_2 \; c_2 \; wl_4(z) \; w_4(z_4) \; cl_4(z) \; u_4 \; c_4 \end{array}$

Multiversion Serialization Graph Testing (MVSGT)

Idea:

build version order and MVSG simultaneously (and incrementally)

Protocol rules:

```
• r_i(x) is mapped to r_i(x_i) such that
     • there is no path t_i \rightarrow \dots \rightarrow t_k \rightarrow \dots \rightarrow t_i with previous w_k(x_k)
        (eliminate "too old" transactions)
     • there is no path t_i \rightarrow ... \rightarrow t_i
        (eliminate "too young" transactions)
  abort t<sub>i</sub> if no such t<sub>i</sub> exists
• upon W_i(X_i)
  add edges t_i \rightarrow t_i for all t_i with previous r_i(x_k)
  abort t, when detecting cycle
• upon r_i(x_i)
  add edge t_i \rightarrow t_i and
  edges t_k \rightarrow t_i or t_i \rightarrow t_k for all t_k with previous w_k(x_k)
```

ROMV Protocol

Read-only Multiversion Protocol (ROMV):

- each update transactions uses 2PL on both its read and write set but each write creates a new version and timestamps it with the transaction's commit time
- each read-only transaction t_i is timestamped with its begin time
- r_i(x) is mapped to r_i(x_k) where x_k is the version that carries the largest timestamp ≤ ts(t_i) (i.e., the most recent committed version as of the begin of t_i)

Correctness of ROMV (i.e., $Gen(ROMV) \subseteq MVSR$):

$$x_i \ll x_j \iff c_i < c_j$$

ROMV Example

Chapter 5: Multiversion Concurrency Control

- 5.2 Multiversion Schedules
- 5.3 Multiversion Serializability
- 5.4 Limiting the Number of Versions
- 5.5 Multiversion Concurrency Control Protocols
- 5.6 Lessons Learned

Lessons Learned

- Transient and transparent versioning adds a degree of freedom to concurrency control protocols, making MVSR considerably more powerful than VSR
- The most striking benefit is for long read transactions that execute concurrently with writers.
- This specific benefit is achieved with relatively simple protocols like ROMV.

Summary

- Concurrency control in the page model allows for many approaches, yet locking dominates
- Non-locking algorithms may be used in special situations
- Multiple versions can help making concurrency control more flexible