Transactional Information Systems:

Theory, Algorithms, and the Practice of
Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann
ISBN 1-55860-508-8

“Teamwork is essential. It allows you to blame someone else.” (Anonymous)
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“A book is a version of the world. If you do not like it, ignore it;
or offer your own version in return.” (Salmon Rushdie)



Motivation

Example 5.1:
s =1,(X) W,(X) ry(x) wy(y) 1,(y) w,(z) ¢, C, — ¢ CSR

but: schedule would be tolerable
if r,(y) could read the old version y, of y
to be consistent with r,(x)

— s would then be equivalent to serial s' =t t,
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Example 5.1:
s =1,(X) W,(X) ry(x) wy(y) 1,(y) w,(z) ¢, C, — ¢ CSR

but: schedule would be tolerable
if r,(y) could read the old version y, of y
to be consistent with r,(x)

— s would then be equivalent to serial s' =t t,

Approach:
* each w step creates a new version
* each r step can choose which version it wants/needs to read
* versions are transparent to application and
transient (i.e., subject to garbage collection)




Multiversion Schedules

Definition 5.1 (Version Function):

Let s be a history with initial transaction t; and final transaction t_.

A version function for s is a function h which associates with each read step of s
a previous write step on the same data item, and the identity for writes.




Multiversion Schedules

Definition 5.1 (Version Function):

Let s be a history with initial transaction t; and final transaction t_.

A version function for s is a function h which associates with each read step of s
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1 = WolYo
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Definition 5.1 (Version Function):

Let s be a history with initial transaction t; and final transaction t_.

A version function for s is a function h which associates with each read step of s
a previous write step on the same data item, and the identity for writes.

Definition 5.2 (Multiversion Schedule):

A multiversion (mv) history for transactions T ={t,, ..., t,} is a pair
m=(op(m), <) where < is an order on op(m) and

(1) op(m) =4y, , h(op(t;)) for some version function h,

(2) forallte T andall p, qe op(t): p<.q = h(p) <, h(q),

(3) if h(rj(x)) = w;(x,), i#}, then ¢; is in m and ¢; <, ¢;.

A multiversion (mv) schedule is a prefix of a multiversion history.

Example 5.2: r,(x,) w,(X,) 1,(x;) W,(¥,) 1,(Y) W,(z) ¢, ¢, I\:/(irtlzy)) = wo(y)
1 = WolYo

Definition 5.3 (Monoversion Schedule):
A multiversion schedule is a monoversion schedule if its version
function maps each read to the last preceding write on the same data item.

Example: r,(x,) w,(x;) 1,(x,) W,(y,) 1(y,) W,(z) ¢, ¢,
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Multiversion View Serializability

Definition 5.4 (Reads-from Relation):
For mv schedule m the reads-from relation of m is
RF(m) = {(t, x, ) | 1;(x;) € op(m)}.
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Multiversion View Serializability

Definition 5.4 (Reads-from Relation):
For mv schedule m the reads-from relation of m is
RF(m) = {(t, x, ) | 1;(x;) € op(m)}.

Definition 5.5 (View Equivalence):
mv histories m and m' with trans(m)=trans(m') are view equivalent,
m =, m‘, if RF(m) = RF(m).

Definition 5.6 (Multiversion View Serializability):

m is multiversion view serializable if there is a serial monoversion history m'
st.m= m'

MYVSR is the class of multiversion view serializable histories.

Example 5.5:

m = w(X) Wo(¥o) € 11(X) T(¥o) Wi (X)) Wi (y1) € Ty(Xg) T2(¥1) €, ¢ MVSR
Example 5.6:

m = w(Xo) Wo(Yo) € Wi (X)) € Ix(X)) 13(X) W3(X3) C3 Wy(Y,) €, =LGLH1TG
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Theorem 5.1: VSR c MVSR

Example: s = r,(x) w,(X) r,(x) w,(y) r,(y) w,(z) ¢, ¢,
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| Theorem 5.1: VSR c MVSR

Example: s = r,(x) w,(X) r,(x) w,(y) r,(y) w,(z) ¢, ¢,

’ Theorem 5.2: Deciding if a mv history is in MVSR is NP-complete.




Properties of MVSR

| Theorem 5.1: VSR c MVSR

Example: s =r,(x) w,(X) r,(x) w,(y) 1,(y) w,(z) ¢, ¢,

’ Theorem 5.2: Deciding if a mv history is in MVSR is NP-complete.

Theorem 5.3:

The conflict graph of an mv schedule m is a directed graph G(m) with
transactions as nodes and an edge from t; to t; if r;(x;) € op(m).

For all mv schedules m, m"m = m' = G(m)=G(m).

Example:
m = w,(Xy) 1,(Xo) W,(y;) 1,(¥,) ¢; ¢, } G(m) = G(m'"),

m'= w,(x,) W,(y,) ¢, 1(X;) 15(¥o) €, but not m =, m’



Testing MVSR

Definition 5.8 (Multiversion Serialization Graph (MVSG)):
A version order for data item x, denoted <<_, is a total order among all versions of x.
A version order for mv schedule m is the
union of version orders for items written in m.
The myv serialization graph for m and a given version order <<, MVSG (m, <<),
is a graph with transactions as nodes and the following edges:

(1) all edges of G(m) are in MVSG(m, <<)

(i.e., for ry(x;) in op(m) there is an edge from ¢, to t,)
(i) for r(x;), wi(x;) in op(m): if X; << X; then there is an edge from t; to ¢;
(iii) for r(x;), wi(x;) in op(m): if X; << X; then there is an edge from ¢ to t;




Testing MVSR

Definition 5.8 (Multiversion Serialization Graph (MVSG)):
A version order for data item x, denoted <<_, is a total order among all versions of x.
A version order for mv schedule m is the
union of version orders for items written in m.
The myv serialization graph for m and a given version order <<, MVSG (m, <<),
is a graph with transactions as nodes and the following edges:

(1) all edges of G(m) are in MVSG(m, <<)

(i.e., for ry(x;) in op(m) there is an edge from ¢, to t,)
(i) for r(x;), wi(x;) in op(m): if X; << X; then there is an edge from t; to ¢;
(iii) for r(x;), wi(x;) in op(m): if X; << X; then there is an edge from ¢ to t;

Theorem 5.4:
m is in MV SR iff there exists a version order << s.t. MVSG(m, <<) is acyclic.




MVSG Example

Examples 5.7 and 5.8:
m = wy(Xq) Wo(Yo) Wo(Zg) Co with version order <<:
1, (X,) 15(X0) 1,(20) 15(Z) X << X,
wWi(y1) Wy(Xp) Wi(y3) Wa(z3) € ¢y ¢4 Yo <<Y1<<Y;
r,(X,) 1,(y3) 14(25) ¢4 2y << 14
MVSG(m, <<): / t \
0 \ l % g



MVSG Example

Examples 5.7 and 5.8:

m = wy(Xq) Wo(Yo) Wo(Zg) Co with version order <<:
1, (X,) 15(X0) 1,(20) 15(Z) X << X,
wWi(y1) Wy(Xp) Wi(y3) Wa(z3) € ¢y ¢4 Yo <<Y1<<Y;
r,(X,) 1,(y3) 14(25) ¢4 2y << 14

MVSG(m, <<): t \

Notice: Testing whether appropriate << exists for given m is
not necessarily polynomial = NP-completeness result remains



Multiversion Conflict Serializability

Definition 5.9 (Multiversion Conflict):
A multiversion conflict in m is a pair r;(x;) and wy(x) such that r,(x;) <, Wy(X).
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An mv history is multiversion reducible if it can be transformed into a
serial monoversion history by exchanging the order of adjacent steps
other than multiversion conflict pairs.
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MCSR denotes the class of all multiversion conflict serializable histories.




Multiversion Conflict Serializability

Definition 5.9 (Multiversion Conflict):
A multiversion conflict in m is a pair r;(x;) and wy(x) such that r,(x;) <, Wy(X).

Definition 5.10 (Multiversion Reducibility):

An mv history is multiversion reducible if it can be transformed into a
serial monoversion history by exchanging the order of adjacent steps
other than multiversion conflict pairs.

Definition 5.11 (Multiversion Conflict Serializability):

An mv history is multiversion conflict serializable if there is a

serial monoversion history with the same transactions and

the same (ordering of) multiversion conflict pairs.

MCSR denotes the class of all multiversion conflict serializable histories.

Definition 5.12 (Multiversion Conflict Graph):

For an mv schedule m the multiversion conflict graph is a graph with
transactions as nodes and an edge from t, to t,_ if there are steps

r;(x;) and wy (x,) such that r;(x,) <, W, (x)-




Properties of MCSR

Theorem:
m is in MCSR & m is multiversion reducible < m's mv conflict graph is acyclic




Properties of MCSR

Theorem:
m is in MCSR & m is multiversion reducible < m's mv conflict graph is acyclic

Theorem 5.6:
MCSR c MVSR

Example:
m = W (Xo) Wo(Yo) Wo(Zg) o I(Yo) T3(Zg) W3(X3) €5 11(X3) W,(y)) € Wh(Xy) €,
I (X,) r.(y,) rm(zo) Co

— ¢ MCSR

— € MVSR
m= {1t t,
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MVTO Protocol

Multiversion timestamp ordering (MVTO):

* each transaction t; is assigned a unique timestamp ts(t,)
* 1,(x) 1s mapped to r;(x,) where x, is the version
that carries the largest timestamp < ts(t;)
* w,(X) is
* rejected if there is rj(xk) with ts(t,) < ts(t) < ts(tj)
 mapped into w;(X;) otherwise
* ¢; is delayed until ¢; of all transactions
that have written versions read by t;

Correctness of MVTO (i.e., Gen(MVTO) c MVSR):
X; <<X; & ts(t,) < ts(tj)



MVTO Example

1,(Xp) 1,(¥o) |
1 % I

(X)) Wi(Xy) 15(¥g) Wa(y,)
o % % %

1;3(X,)  15(Z¢)

14(Xy) Wy(xg) 14(yy) Wy(ys)
o % % { abort

15(y,)  15(Z0)



MVTO Example

r
1(};0) |

l (X)) Wi(Xy) 15(¥g) Wa(y,)
| | | |
T T T

T

1;3(X,)  15(Z¢)

14(Xy) Wy(xg) 14(yy) Wy(ys)
o % % %

15(y,)  15(Z0)

interleaving
impossible w/o
multiple versions

abort



MVTO Example

r
1(};0) I

l (X)) Wi(Xy) 15(¥g) Wa(y,)
| | | |
T T T

T

r3(xy)  13(20)

Ir4ﬁxz) W4€X4) r4€)’2> W4€Y4)

¥

ty | T T T

15(y,)  15(Z0)

T

interleaving
impossible w/o
multiple versions

needs to wait for t,
to commit

abort



MVTO Example

Irl(lx(J) rl(}f(J) I ) )
T —q interleaving
impossible w/o
g o) wal%) nlyg) wily) multiple versions
t2 I T T T T I
13(xy)  13(20) needs to wait for t,
t, I } to commit

(X)) Wy(Xy) 14(ys) Wylys)
t, I f f f — abort since last write
is too late (in the
presence of ts)

15(y,)  15(Z0)



Multiversion 2PL (MV2PL) Protocol

General approach:

* use write locking to ensure that
at each time there is at most one uncommitted version

« for t; that is not yet issuing its final step:
* 1,(x) is mapped to “current version” (i.e., the most recent committed
version)

or an uncommitted version

* w,(x) is executed only if x is not write-locked, otherwise it is blocked

* t;'s final step is delayed until after the commit of:
« all t. that have read from a current version of a data item that t, has written
« all ; from which ¢, has read




Multiversion 2PL (MV2PL) Protocol

General approach:

* use write locking to ensure that
at each time there is at most one uncommitted version

« for t; that is not yet issuing its final step:
* 1,(x) is mapped to “current version” (i.e., the most recent committed
version)

or an uncommitted version

* w,(x) is executed only if x is not write-locked, otherwise it is blocked

* t;'s final step is delayed until after the commit of:
« all t; that have read from a current version of a data item that t, has written
« all ; from which ¢, has read

Example 5.9:
for input schedule
s =1(X) Wi(%) 1,(x) Wo(y) 1,(y) Wx(X) ¢, Wy(y) ¢,
MV2PL produces the output schedule
11(Xo) Wy (X)) 13(X1) Wy(y,) 11(¥e) Wi(y)) € Wa(Xy) €,




Specialization: 2V2PL Protocol

2-Version (before/after image) 2PL:

* request write lock wl,(x) for writing a new uncommitted version
and ensuring that at most one such version exists at any time

« request read lock rl(x) for reading the current version

(i.e., most recent committed version)
« request certify lock cl,(x) for final step of t

on all data items in t's write set

lock
holder

rli(x)

Wl;(X

cl.(X

rli(x)

wli(x)

+ [+

Cli(x)

Correctness of 2V2PL (i.e., Gen(2V2PL) c MVSR):
x; <<x; & f; <f; (for final “certify” steps of t; ;)

lock requestor



2V2PL Example

Example 5.10:
s =1(X) Wy(y) 11(y) W (%) ¢; 15(y) 13(2) W5(2) Wy(X) ¢, Wy(2) ¢4 C5



2V2PL Example

Example 5.10:
s =1(X) Wy(y) 11(y) W (%) ¢; 15(y) 13(2) W5(2) Wy(X) ¢, Wy(2) ¢4 C5

r1(Xo) ri(yp) wi(x))
| | | I

T T I

Wa(y2) Wy(X,) €y

13(yo) 13(z9) W3(Z3) !
| | |
3 I T T T I

t

4y



2V2PL Example

Example 5.10:
s =1(X) Wy(y) 11(y) W (%) ¢; 15(y) 13(2) W5(2) Wy(X) ¢, Wy(2) ¢4 C5

Irl(Xo) ri(yp) wi(x)) |

[ } } i
: w(ys) Wy(Xy) G
| | |

|
1 T T 1

153

r3§y0) Tagzo) W%(Z3)

t3| T T T

4

rl,(x) 1,(Xg) Wl (y) w,(y,) 1l (y) 1,(y) Wl (X) w(X;) cl;(X) u; ¢,
rl3(y) 13(y) 113(2) 153(2) WI,(X) cly(x) wl(y) W3(23) cli(y) u; ¢;
cly(y) u, ¢, wly(z) wy(z,) cly(z) u, cy



Multiversion Serialization Graph Testing
Idea: (MVSGT)

build version order and MVSG simultaneously (and incrementally)

Protocol rules:

* 1;,(x) 1s mapped to ri(xj) such that
e there isno path t; —> ... = t, = ... = t; with previous w,(x,)
(eliminate “too old” transactions)
e there isno path t; — ... = t.
(eliminate “too young” transactions)
abort t; if no such t; exists
* upon w,(X,)
add edges t; — t; for all t; with previous r;(x,)
abort t; when detecting cycle
* upon ri(xj)
add edge t; > t; and
edges t, — t, or t; — t, for all t, with previous w,(x,)




ROMYV Protocol

Read-only Multiversion Protocol (ROMY):

* each update transactions uses 2PL on both its read and write set
but each write creates a new version and
timestamps it with the transaction's commit time
* each read-only transaction t, is timestamped with its begin time
* r,(x) is mapped to r;(x,) where x, is the version
that carries the largest timestamp < ts(t;)
(i.e., the most recent committed version as of the begin of t,)

Correctness of ROMYV (i.e., Gen(ROMV) c MVSR):



ROMV Example

l r1(Xp) rl(}fﬂ) |
4y ‘ 1
1(Xg) Wa(Xy) 12(¥o) Wz(Yz)l
t | } } } } |
13(X5) w3(X3)
t3 ””””””””””””
l 14(z) r4(Xg) I
ty | } } |
15(20) r5(X,)

t5| T T
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Lessons Learned

* Transient and transparent versioning adds a degree of
freedom to concurrency control protocols, making
MVSR considerably more powerful than VSR

* The most striking benefit is for long read transactions
that execute concurrently with writers.

* This specific benefit is achieved with relatively simple

protocols like ROMV.



Summary

» Concurrency control in the page model
allows for many approaches, yet locking
dominates

* Non-locking algorithms may be used in
special situations

e Multiple versions can help making
concurrency control more flexible
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