Transactional Information Systems:

Theory, Algorithms, and the Practice of
Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann
ISBN 1-55860-508-8

“Teamwork is essential. It allows you to blame someone else.” (Anonymous)

Part Il: Concurrency Control

* 3 Concurrency Control: Notions of Correctness for the Page Model
* 4 Concurrency Control Algorithms

* 5 Multiversion Concurrency Control

* 6 Concurrency Control on Objects: Notions of Correctness

* 7 Concurrency Control Algorithms on Objects

* 8 Concurrency Control on Relational Databases

* 9 Concurrency Control on Search Structures

* 10 Implementation and Pragmatic Issues

Chapter 5: Multiversion
Concurrency Control

* 5.2 Multiversion Schedules

* 5.3 Multiversion Serializability

* 5.4 Limiting the Number of Versions

* 5.5 Multiversion Concurrency Control Protocols
* 5.6 Lessons Learned

“A book is a version of the world. If you do not like it, ignore it;
or offer your own version in return.” (Salmon Rushdie)

Motivation

Example 5.1:
s =1,(X) W,(X) ry(x) wy(y) 1,(y) w,(z) ¢, C, — ¢ CSR

but: schedule would be tolerable
if r,(y) could read the old version y, of y
to be consistent with r,(x)

— s would then be equivalent to serial s' =t t,

Motivation

Example 5.1:
s =1,(X) W,(X) ry(x) wy(y) 1,(y) w,(z) ¢, C, — ¢ CSR

but: schedule would be tolerable
if r,(y) could read the old version y, of y
to be consistent with r,(x)

— s would then be equivalent to serial s' =t t,

Approach:
* each w step creates a new version
* each r step can choose which version it wants/needs to read
* versions are transparent to application and
transient (i.e., subject to garbage collection)

Multiversion Schedules

Definition 5.1 (Version Function):

Let s be a history with initial transaction t; and final transaction t_.

A version function for s is a function h which associates with each read step of s
a previous write step on the same data item, and the identity for writes.

Multiversion Schedules

Definition 5.1 (Version Function):

Let s be a history with initial transaction t; and final transaction t_.

A version function for s is a function h which associates with each read step of s
a previous write step on the same data item, and the identity for writes.

Definition 5.2 (Multiversion Schedule):

A multiversion (mv) history for transactions T ={t,, ..., t,} is a pair
m=(op(m), <) where < is an order on op(m) and

(1) op(m) =4y, , h(op(t;)) for some version function h,

(2) forallte T andall p, qe op(t): p<.q = h(p) <, h(q),

(3) if h(rj(x)) = w;(x,), i#}, then ¢; is in m and ¢; <, ¢;.

A multiversion (mv) schedule is a prefix of a multiversion history.

Example 5.2: r,(x,) w,(X,) 1,(x;) W,(¥,) 1,(Y) W,(z) ¢, ¢, I\:/(irtlzy)) = wo(y)
1 = WolYo

Multiversion Schedules

Definition 5.1 (Version Function):

Let s be a history with initial transaction t; and final transaction t_.

A version function for s is a function h which associates with each read step of s
a previous write step on the same data item, and the identity for writes.

Definition 5.2 (Multiversion Schedule):

A multiversion (mv) history for transactions T ={t,, ..., t,} is a pair
m=(op(m), <) where < is an order on op(m) and

(1) op(m) =4y, , h(op(t;)) for some version function h,

(2) forallte T andall p, qe op(t): p<.q = h(p) <, h(q),

(3) if h(rj(x)) = w;(x,), i#}, then ¢; is in m and ¢; <, ¢;.

A multiversion (mv) schedule is a prefix of a multiversion history.

Example 5.2: r,(x,) w,(X,) 1,(x;) W,(¥,) 1,(Y) W,(z) ¢, ¢, I\:/(irtlzy)) = wo(y)
1 = WolYo

Definition 5.3 (Monoversion Schedule):
A multiversion schedule is a monoversion schedule if its version
function maps each read to the last preceding write on the same data item.

Example: r,(x,) w,(x;) 1,(x,) W,(y,) 1(y,) W,(z) ¢, ¢,

Chapter 5: Multiversion
Concurrency Control

¢ 5.2 Multiversion Schedules

* 5.3 Multiversion Serializability

* 5.4 Limiting the Number of Versions
* 5.5 Multiversion Concurrency Control Protocols
* 5.6 Lessons Learned

Multiversion View Serializability

Definition 5.4 (Reads-from Relation):
For mv schedule m the reads-from relation of m is
RF(m) = {(t, x,) | 1;(x;) € op(m)}.

Multiversion View Serializability

Definition 5.4 (Reads-from Relation):
For mv schedule m the reads-from relation of m is
RF(m) = {(t, x,) | 1;(x;) € op(m)}.

Definition 5.5 (View Equivalence):
mv histories m and m' with trans(m)=trans(m') are view equivalent,
m = m°, if RF(m) = RF(m’).

Multiversion View Serializability

Definition 5.4 (Reads-from Relation):
For mv schedule m the reads-from relation of m is
RF(m) = {(t, x,) | 1;(x;) € op(m)}.

Definition 5.5 (View Equivalence):
mv histories m and m' with trans(m)=trans(m') are view equivalent,
m = m°, if RF(m) = RF(m’).

Definition 5.6 (Multiversion View Serializability):

m is multiversion view serializable if there is a serial monoversion history m'
st.m= m'

MYVSR is the class of multiversion view serializable histories.

Multiversion View Serializability

Definition 5.4 (Reads-from Relation):
For mv schedule m the reads-from relation of m is
RF(m) = {(t, x,) | 1;(x;) € op(m)}.

Definition 5.5 (View Equivalence):
mv histories m and m' with trans(m)=trans(m') are view equivalent,
m =, m‘, if RF(m) = RF(m).

Definition 5.6 (Multiversion View Serializability):

m is multiversion view serializable if there is a serial monoversion history m'
st.m= m'

MYVSR is the class of multiversion view serializable histories.

Example 5.5:

m = w(X) Wo(¥o) € 11(X) T(¥o) Wi (X)) Wi (y1) € Ty(Xg) T2(¥1) €, ¢ MVSR
Example 5.6:

m = w(Xo) Wo(Yo) € Wi (X)) € Ix(X)) 13(X) W3(X3) C3 Wy(Y,) €, =LGLH1TG

Properties of MVSR

Theorem 5.1: VSR c MVSR

Example: s = r,(x) w,(X) r,(x) w,(y) r,(y) w,(z) ¢, ¢,

Properties of MVSR

| Theorem 5.1: VSR c MVSR

Example: s = r,(x) w,(X) r,(x) w,(y) r,(y) w,(z) ¢, ¢,

’ Theorem 5.2: Deciding if a mv history is in MVSR is NP-complete.

Properties of MVSR

| Theorem 5.1: VSR c MVSR

Example: s =r,(x) w,(X) r,(x) w,(y) 1,(y) w,(z) ¢, ¢,

’ Theorem 5.2: Deciding if a mv history is in MVSR is NP-complete.

Theorem 5.3:

The conflict graph of an mv schedule m is a directed graph G(m) with
transactions as nodes and an edge from t; to t; if r;(x;) € op(m).

For all mv schedules m, m"m = m' = G(m)=G(m).

Example:
m = w,(Xy) 1,(Xo) W,(y;) 1,(¥,) ¢; ¢, } G(m) = G(m'"),

m'= w,(x,) W,(y,) ¢, 1(X;) 15(¥o) €, but not m =, m’

Testing MVSR

Definition 5.8 (Multiversion Serialization Graph (MVSG)):
A version order for data item x, denoted <<_, is a total order among all versions of x.
A version order for mv schedule m is the
union of version orders for items written in m.
The myv serialization graph for m and a given version order <<, MVSG (m, <<),
is a graph with transactions as nodes and the following edges:

(1) all edges of G(m) are in MVSG(m, <<)

(i.e., for ry(x;) in op(m) there is an edge from ¢, to t,)
(i) for r(x;), wi(x;) in op(m): if X; << X; then there is an edge from t; to ¢;
(iii) for r(x;), wi(x;) in op(m): if X; << X; then there is an edge from ¢ to t;

Testing MVSR

Definition 5.8 (Multiversion Serialization Graph (MVSG)):
A version order for data item x, denoted <<_, is a total order among all versions of x.
A version order for mv schedule m is the
union of version orders for items written in m.
The myv serialization graph for m and a given version order <<, MVSG (m, <<),
is a graph with transactions as nodes and the following edges:

(1) all edges of G(m) are in MVSG(m, <<)

(i.e., for ry(x;) in op(m) there is an edge from ¢, to t,)
(i) for r(x;), wi(x;) in op(m): if X; << X; then there is an edge from t; to ¢;
(iii) for r(x;), wi(x;) in op(m): if X; << X; then there is an edge from ¢ to t;

Theorem 5.4:
m is in MV SR iff there exists a version order << s.t. MVSG(m, <<) is acyclic.

MVSG Example

Examples 5.7 and 5.8:
m = wy(Xq) Wo(Yo) Wo(Zg) Co with version order <<:
1, (X,) 15(X0) 1,(20) 15(Z) X << X,
wWi(y1) Wy(Xp) Wi(y3) Wa(z3) € ¢y ¢4 Yo <<Y1<<Y;
r,(X,) 1,(y3) 14(25) ¢4 2y << 14
MVSG(m, <<): / t \
0 \ l % g

MVSG Example

Examples 5.7 and 5.8:

m = wy(Xq) Wo(Yo) Wo(Zg) Co with version order <<:
1, (X,) 15(X0) 1,(20) 15(Z) X << X,
wWi(y1) Wy(Xp) Wi(y3) Wa(z3) € ¢y ¢4 Yo <<Y1<<Y;
r,(X,) 1,(y3) 14(25) ¢4 2y << 14

MVSG(m, <<): t \

Notice: Testing whether appropriate << exists for given m is
not necessarily polynomial = NP-completeness result remains

Multiversion Conflict Serializability

Definition 5.9 (Multiversion Conflict):
A multiversion conflict in m is a pair r;(x;) and wy(x) such that r,(x;) <, Wy(X).

Multiversion Conflict Serializability

Definition 5.9 (Multiversion Conflict):
A multiversion conflict in m is a pair r;(x;) and wy(x) such that r,(x;) <, Wy(X).

Definition 5.10 (Multiversion Reducibility):

An mv history is multiversion reducible if it can be transformed into a
serial monoversion history by exchanging the order of adjacent steps
other than multiversion conflict pairs.

Multiversion Conflict Serializability

Definition 5.9 (Multiversion Conflict):
A multiversion conflict in m is a pair r;(x;) and wy(x) such that r,(x;) <, Wy(X).

Definition 5.10 (Multiversion Reducibility):

An mv history is multiversion reducible if it can be transformed into a
serial monoversion history by exchanging the order of adjacent steps
other than multiversion conflict pairs.

Definition 5.11 (Multiversion Conflict Serializability):

An mv history is multiversion conflict serializable if there is a

serial monoversion history with the same transactions and

the same (ordering of) multiversion conflict pairs.

MCSR denotes the class of all multiversion conflict serializable histories.

Multiversion Conflict Serializability

Definition 5.9 (Multiversion Conflict):
A multiversion conflict in m is a pair r;(x;) and wy(x) such that r,(x;) <, Wy(X).

Definition 5.10 (Multiversion Reducibility):

An mv history is multiversion reducible if it can be transformed into a
serial monoversion history by exchanging the order of adjacent steps
other than multiversion conflict pairs.

Definition 5.11 (Multiversion Conflict Serializability):

An mv history is multiversion conflict serializable if there is a

serial monoversion history with the same transactions and

the same (ordering of) multiversion conflict pairs.

MCSR denotes the class of all multiversion conflict serializable histories.

Definition 5.12 (Multiversion Conflict Graph):

For an mv schedule m the multiversion conflict graph is a graph with
transactions as nodes and an edge from t, to t,_ if there are steps

r;(x;) and wy (x,) such that r;(x,) <, W, (x)-

Properties of MCSR

Theorem:
m is in MCSR & m is multiversion reducible < m's mv conflict graph is acyclic

Properties of MCSR

Theorem:
m is in MCSR & m is multiversion reducible < m's mv conflict graph is acyclic

Theorem 5.6:
MCSR c MVSR

Example:
m = W (Xo) Wo(Yo) Wo(Zg) o I(Yo) T3(Zg) W3(X3) €5 11(X3) W,(y)) € Wh(Xy) €,
I (X,) r.(y,) rm(zo) Co

— ¢ MCSR

— € MVSR
m= {1t t,

Chapter 5: Multiversion
Concurrency Control

¢ 5.2 Multiversion Schedules
* 5.3 Multiversion Serializability
¢ 5.4 Limiting the Number of Versions

* 5.5 Multiversion Concurrency Control Protocols

¢ 5.6 Lessons Learned

MVTO Protocol

Multiversion timestamp ordering (MVTO):

* each transaction t; is assigned a unique timestamp ts(t,)
* 1,(x) 1s mapped to r;(x,) where x, is the version
that carries the largest timestamp < ts(t;)
* w,(X) is
* rejected if there is rj(xk) with ts(t,) < ts(t) < ts(tj)
 mapped into w;(X;) otherwise
* ¢; is delayed until ¢; of all transactions
that have written versions read by t;

Correctness of MVTO (i.e., Gen(MVTO) c MVSR):
X; <<X; & ts(t,) < ts(tj)

MVTO Example

1,(Xp) 1,(¥o) |
1 % I

(X)) Wi(Xy) 15(¥g) Wa(y,)
o % % %

1;3(X,) 15(Z¢)

14(Xy) Wy(xg) 14(yy) Wy(ys)
o % % { abort

15(y,) 15(Z0)

MVTO Example

r
1(};0) |

l (X)) Wi(Xy) 15(¥g) Wa(y,)
| | | |
T T T

T

1;3(X,) 15(Z¢)

14(Xy) Wy(xg) 14(yy) Wy(ys)
o % % %

15(y,) 15(Z0)

interleaving
impossible w/o
multiple versions

abort

MVTO Example

r
1(};0) I

l (X)) Wi(Xy) 15(¥g) Wa(y,)
| | | |
T T T

T

r3(xy) 13(20)

Ir4ﬁxz) W4€X4) r4€)’2> W4€Y4)

¥

ty | T T T

15(y,) 15(Z0)

T

interleaving
impossible w/o
multiple versions

needs to wait for t,
to commit

abort

MVTO Example

Irl(lx(J) rl(}f(J) I))
T —q interleaving
impossible w/o
g o) wal%) nlyg) wily) multiple versions
t2 I T T T T I
13(xy) 13(20) needs to wait for t,
t, I } to commit

(X)) Wy(Xy) 14(ys) Wylys)
t, I f f f — abort since last write
is too late (in the
presence of ts)

15(y,) 15(Z0)

Multiversion 2PL (MV2PL) Protocol

General approach:

* use write locking to ensure that
at each time there is at most one uncommitted version

« for t; that is not yet issuing its final step:
* 1,(x) is mapped to “current version” (i.e., the most recent committed
version)

or an uncommitted version

* w,(x) is executed only if x is not write-locked, otherwise it is blocked

* t;'s final step is delayed until after the commit of:
« all t. that have read from a current version of a data item that t, has written
« all ; from which ¢, has read

Multiversion 2PL (MV2PL) Protocol

General approach:

* use write locking to ensure that
at each time there is at most one uncommitted version

« for t; that is not yet issuing its final step:
* 1,(x) is mapped to “current version” (i.e., the most recent committed
version)

or an uncommitted version

* w,(x) is executed only if x is not write-locked, otherwise it is blocked

* t;'s final step is delayed until after the commit of:
« all t; that have read from a current version of a data item that t, has written
« all ; from which ¢, has read

Example 5.9:
for input schedule
s =1(X) Wi(%) 1,(x) Wo(y) 1,(y) Wx(X) ¢, Wy(y) ¢,
MV2PL produces the output schedule
11(Xo) Wy (X)) 13(X1) Wy(y,) 11(¥e) Wi(y)) € Wa(Xy) €,

Specialization: 2V2PL Protocol

2-Version (before/after image) 2PL:

* request write lock wl,(x) for writing a new uncommitted version
and ensuring that at most one such version exists at any time

« request read lock rl(x) for reading the current version

(i.e., most recent committed version)
« request certify lock cl,(x) for final step of t

on all data items in t's write set

lock
holder

rli(x)

Wl;(X

cl.(X

rli(x)

wli(x)

+ [+

Cli(x)

Correctness of 2V2PL (i.e., Gen(2V2PL) c MVSR):
x; <<x; & f; <f; (for final “certify” steps of t; ;)

lock requestor

2V2PL Example

Example 5.10:
s =1(X) Wy(y) 11(y) W (%) ¢; 15(y) 13(2) W5(2) Wy(X) ¢, Wy(2) ¢4 C5

2V2PL Example

Example 5.10:
s =1(X) Wy(y) 11(y) W (%) ¢; 15(y) 13(2) W5(2) Wy(X) ¢, Wy(2) ¢4 C5

r1(Xo) ri(yp) wi(x))
| | | I

T T I

Wa(y2) Wy(X,) €y

13(yo) 13(z9) W3(Z3) !
| | |
3 I T T T I

t

4y

2V2PL Example

Example 5.10:
s =1(X) Wy(y) 11(y) W (%) ¢; 15(y) 13(2) W5(2) Wy(X) ¢, Wy(2) ¢4 C5

Irl(Xo) ri(yp) wi(x)) |

[} } i
: w(ys) Wy(Xy) G
| | |

|
1 T T 1

153

r3§y0) Tagzo) W%(Z3)

t3| T T T

4

rl,(x) 1,(Xg) Wl (y) w,(y,) 1l (y) 1,(y) Wl (X) w(X;) cl;(X) u; ¢,
rl3(y) 13(y) 113(2) 153(2) WI,(X) cly(x) wl(y) W3(23) cli(y) u; ¢;
cly(y) u, ¢, wly(z) wy(z,) cly(z) u, cy

Multiversion Serialization Graph Testing
Idea: (MVSGT)

build version order and MVSG simultaneously (and incrementally)

Protocol rules:

* 1;,(x) 1s mapped to ri(xj) such that
e there isno path t; —> ... = t, = ... = t; with previous w,(x,)
(eliminate “too old” transactions)
e there isno path t; — ... = t.
(eliminate “too young” transactions)
abort t; if no such t; exists
* upon w,(X,)
add edges t; — t; for all t; with previous r;(x,)
abort t; when detecting cycle
* upon ri(xj)
add edge t; > t; and
edges t, — t, or t; — t, for all t, with previous w,(x,)

ROMYV Protocol

Read-only Multiversion Protocol (ROMY):

* each update transactions uses 2PL on both its read and write set
but each write creates a new version and
timestamps it with the transaction's commit time
* each read-only transaction t, is timestamped with its begin time
* r,(x) is mapped to r;(x,) where x, is the version
that carries the largest timestamp < ts(t;)
(i.e., the most recent committed version as of the begin of t,)

Correctness of ROMYV (i.e., Gen(ROMV) c MVSR):

ROMV Example

l r1(Xp) rl(}fﬂ) |
4y ‘ 1
1(Xg) Wa(Xy) 12(¥o) Wz(Yz)l
t | } } } } |
13(X5) w3(X3)
t3 ””””””””””””
l 14(z) r4(Xg) I
ty | } } |
15(20) r5(X,)

t5| T T

Chapter 5: Multiversion
Concurrency Control

* 5.2 Multiversion Schedules

* 5.3 Multiversion Serializability

* 5.4 Limiting the Number of Versions

* 5.5 Multiversion Concurrency Control Protocols

* 5.6 Lessons Learned

Lessons Learned

* Transient and transparent versioning adds a degree of
freedom to concurrency control protocols, making
MVSR considerably more powerful than VSR

* The most striking benefit is for long read transactions
that execute concurrently with writers.

* This specific benefit is achieved with relatively simple

protocols like ROMV.

Summary

» Concurrency control in the page model
allows for many approaches, yet locking
dominates

* Non-locking algorithms may be used in
special situations

e Multiple versions can help making
concurrency control more flexible

	Chapter 5
	Multiversion Schedules
	Multiversion Serializability
	Multiversion Concurrency Control Protocols
	Lessons Learned

