### **Transactional Information Systems:**

Theory, Algorithms, and the Practice of Concurrency Control and Recovery

#### Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann ISBN 1-55860-508-8

"Teamwork is essential. It allows you to blame someone else." (Anonymous)



## Part II: Concurrency Control

- 3 Concurrency Control: Notions of Correctness for the Page Model
- 4 Concurrency Control Algorithms
- 5 Multiversion Concurrency Control
- 6 Concurrency Control on Objects: Notions of Correctness
- 7 Concurrency Control Algorithms on Objects
- 8 Concurrency Control on Relational Databases
- 9 Concurrency Control on Search Structures
- 10 Implementation and Pragmatic Issues

## 6 Concurrency Control on Objects: Notions of Correctness

#### • 6.2 Histories and Schedules

- 6.3 CSR for Flat Object Transactions
- 6.4 Tree Reducibility
- 6.5 Sufficient Conditions for Tree Reducibility
- 6.6 Exploiting State-Based Commutativity
- 6.7 Lessons Learned

"No matter how complicated a problem is, it usually can be reduced to a simple comprehensible form which is often the best solution" (An Wang)

"Every problem has a simple, easy-to-understand, wrong answer." (Anonymous)

# **Object Model**

#### **Definition 2.3 (Object Model Transaction):**

A transaction t is a (finite) tree of labeled nodes with

- the transaction identifier as the label of the root node,
- the names and parameters of invoked operations as labels of inner nodes, and
- page-model read/write operations as labels of leaf nodes, along with a partial order < on the leaf nodes such that for all leaf-node operations p and q with p of the form w(x) and q of the form r(x) or w(x) or vice versa, we have p<q v q<p</li>

**Special case:** layered transactions (all leaves have same distance from root)

Derived inner-node ordering: a < b if all leaf-node descendants of a precede all leaf-node descendants of b

### **Example: DBS Internal Layers**



#### **Example: Business Objects**



# **Object-Model Schedules**

#### **Definition 6.1 (Object Model History):**

For transaction trees  $\{t_1, ..., t_n\}$  a **history** s is a **partially ordered forest** (op(s), <<sub>s</sub>) with node set op(s) and partial order <<sub>s</sub> of leaves such that

- $\bullet \ op(s) \subseteq \ \cup_{i=1..n} \ op_i \ \cup \ \cup_{i=1..n} \ \{c_i,a_i\} \ and \ \cup_{i=1..n} \ op_i \subseteq op(s)$
- for all  $t_i: c_i \in op(s) \Leftrightarrow a_i \notin op(s)$
- $a_i$  or  $c_i$  is a leaf node with  $t_i$  as parent
- $\bigcup_{i=1..n} < i \subseteq <_s$
- for all  $t_i$  and for all  $p \in op_i$ :  $p <_s a_i$  or  $p <_s c_i$
- for all leaves p, q that access the same data item with p or q being a write: either  $p <_s q$  or  $q <_s p$

# **Object-Model Schedules**

#### **Definition 6.1 (Object Model History):**

For transaction trees  $\{t_1, ..., t_n\}$  a **history** s is a **partially ordered forest** (op(s), <<sub>s</sub>) with node set op(s) and partial order <<sub>s</sub> of leaves such that

- $\bullet \text{ op}(s) \subseteq \ \cup_{i=1..n} \text{ op}_i \ \cup \ \cup_{i=1..n} \ \{c_i, a_i\} \text{ and } \ \cup_{i=1..n} \text{ op}_i \subseteq \text{ op}(s)$
- for all  $t_i: c_i \in op(s) \Leftrightarrow a_i \notin op(s)$
- $a_i$  or  $c_i$  is a leaf node with  $t_i$  as parent
- $\bigcup_{i=1..n} < i \subseteq <_s$
- for all  $t_i$  and for all  $p \in op_i$ :  $p <_s a_i$  or  $p <_s c_i$
- for all leaves p, q that access the same data item with p or q being a write: either  $p <_s q$  or  $q <_s p$

#### **Definition 6.2 (Tree Consistent Node Ordering):**

In history  $s = (op(s), <_s)$  the leaf ordering  $<_s$  is extended to arbitrary nodes:  $p <_s q$  if for all leaf-level descendants p' of p and q' of q: p'  $<_s q'$ .

# **Object-Model Schedules**

#### **Definition 6.1 (Object Model History):**

For transaction trees  $\{t_1, ..., t_n\}$  a **history** s is a **partially ordered forest** (op(s), <<sub>s</sub>) with node set op(s) and partial order <<sub>s</sub> of leaves such that

- $\bullet \text{ op}(s) \subseteq \ \cup_{i=1..n} \text{ op}_i \ \cup \ \cup_{i=1..n} \ \{c_i,a_i\} \text{ and } \ \cup_{i=1..n} \text{ op}_i \subseteq \text{op}(s)$
- for all  $t_i: c_i \in op(s) \Leftrightarrow a_i \notin op(s)$
- $a_i$  or  $c_i$  is a leaf node with  $t_i$  as parent
- $\bigcup_{i=1..n} < i \subseteq <_s$
- for all  $t_i$  and for all  $p \in op_i$ :  $p <_s a_i$  or  $p <_s c_i$
- for all leaves p, q that access the same data item with p or q being a write: either  $p <_s q$  or  $q <_s p$

#### **Definition 6.2 (Tree Consistent Node Ordering):**

In history  $s = (op(s), <_s)$  the leaf ordering  $<_s$  is extended to arbitrary nodes:  $p <_s q$  if for all leaf-level descendants p' of p and q' of q: p'  $<_s q'$ .

#### **Definition 6.3 (Object Model Schedule):**

A **prefix** of history  $s = (op(s), <_s)$  is a forest s'  $(op(s'), <_s')$  with  $op(s') \subseteq op(s)$ and  $<_s' \subseteq <_s$  s.t. for each  $p \in op(s')$  all ancestors of p and all nodes q with  $q <_s p$ are in op(s') and  $<_s'$  equals  $<_s$  when restricted to op(s'). An **object model schedule** is a prefix of an object model history.

#### Notation:

withdraw(a)

r(p)

 $t_1$ 

#### Notation:



#### Notation:

## **Layered Schedules**

#### **Definition 6.4 (Serial Object Model Schedule):**

An object model schedule is **serial** if its roots  $t_1, ..., t_n$  are totally ordered and for each  $t_i$  and each i > 0 the descendants with distance i from  $t_i$  are totally ordered.

## **Layered Schedules**

#### **Definition 6.4 (Serial Object Model Schedule):**

An object model schedule is **serial** if its roots  $t_1, ..., t_n$  are totally ordered and for each  $t_i$  and each i > 0 the descendants with distance i from  $t_i$  are totally ordered.

#### **Definition 6.5 (Isolated Subtree):**

A node p and the corresponding subtree in a schedule are called **isolated** if

- for all nodes q other than ancestors or descendants of p the property holds that for all leaves w of q either w < p or p < w
- for each i > 0 the descendants of p with distance i from p are totally ordered

## **Layered Schedules**

#### **Definition 6.4 (Serial Object Model Schedule):**

An object model schedule is **serial** if its roots  $t_1, ..., t_n$  are totally ordered and for each  $t_i$  and each i > 0 the descendants with distance i from  $t_i$  are totally ordered.

#### **Definition 6.5 (Isolated Subtree):**

A node p and the corresponding subtree in a schedule are called **isolated** if

- for all nodes q other than ancestors or descendants of p the property holds that for all leaves w of q either w < p or p < w
- for each i > 0 the descendants of p with distance i from p are totally ordered

#### Definition 6.6 (Layered History and Schedule):

An object model history is **layered** if all leaves other than c or a have identical distance from their roots; for leaf-to-root distance n this is called an **n-level history**. Operations with distance i from the leaves are called **level-i** ( $L_i$ ) operations. A **layered schedule** is a prefix of a layered history.






























## 6 Concurrency Control on Objects: Notions of Correctness

#### • 6.2 Histories and Schedules

#### • 6.3 CSR for Flat Object Transactions

- 6.4 Tree Reducibility
- 6.5 Sufficient Conditions for Tree Reducibility
- 6.6 Exploiting State-Based Commutativity
- 6.7 Lessons Learned

## **Flat Object Schedules**

#### **Definition 6.7 (Flat Object Schedule):**

A 2-level schedule s is called **flat** if for each p, q of  $L_1$  operations:

- for all p'∈ child(p) and all q'∈ child(q): p' <<sub>s</sub> q' or for all p'∈ child(p) and all q'∈ child(q): q' <<sub>s</sub> p', and
- for all  $p', p'' \in child(p)$ :  $p' <_s p''$  or  $p'' <_s p'$

**Definition 6.8** ((State-independent) Commutative Operations): Operations p and q are commutative if for all possible sequences of operations  $\alpha$  and  $\omega$  the return parameters in the sequence  $\alpha$  p q  $\omega$ are identical to those in  $\alpha$  q p  $\omega$ .

## **Example: Flat Object Schedule**



#### (State-independent) Commutativity table:

| utativity table.         |                          |                         |                |   |
|--------------------------|--------------------------|-------------------------|----------------|---|
| ·                        | withdraw $(x, \Delta_2)$ | deposit $(x, \Delta_2)$ | getbalance (x) |   |
| withdraw $(x, \Delta_1)$ | _                        | _                       | _              | - |
| deposit $(x, \Delta_1)$  | _                        | +                       | _              |   |
| getbalance (x)           | _                        | _                       | +              |   |

## **Commutativity-based Reducibility**

#### **Definition 6.9 (Commutativity Based Reducibility):**

A flat object schedule s is **commutativity based reducible** if it can be transformed into a serial schedule by apply the following rules:

#### • Commutativity rule:

the order of ordered operations p, q, say  $p \leq_s q$ , can be reversed if

- both are isolated, adjacent, and commutative and
- the operations belong to different transactions.

#### •Ordering rule:

Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

## **Commutativity-based Reducibility**

#### **Definition 6.9 (Commutativity Based Reducibility):**

A flat object schedule s is **commutativity based reducible** if it can be transformed into a serial schedule by apply the following rules:

#### • Commutativity rule:

the order of ordered operations p, q, say  $p \leq_s q$ , can be reversed if

- both are isolated, adjacent, and commutative and
- the operations belong to different transactions.

#### •Ordering rule:

Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

# **Definition 6.10 (Conflict Equivalence and Conflict Serializability):** Two flat object schedules s and s' are **conflict equivalent** if they consist of the same operations and have the same ordering for all non-commutative pairs of $L_1$ operations.

s is **conflict serializable** if it is conflict equivalent to a serial schedule.

## **Commutativity-based Reducibility**

#### **Definition 6.9 (Commutativity Based Reducibility):**

A flat object schedule s is **commutativity based reducible** if it can be transformed into a serial schedule by apply the following rules:

#### • Commutativity rule:

the order of ordered operations p, q, say  $p <_s q$ , can be reversed if

- both are isolated, adjacent, and commutative and
- the operations belong to different transactions.

#### •Ordering rule:

Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

**Definition 6.10 (Conflict Equivalence and Conflict Serializability):** Two flat object schedules s and s' are **conflict equivalent** if they consist of the same operations and have the same ordering for all non-commutative pairs of  $L_1$  operations.

s is **conflict serializable** if it is conflict equivalent to a serial schedule.

#### Theorem 6.1:

For a flat object schedule s the following three conditions are equivalent: s is conflict serializable, s has an acyclic conflict graph, s is commutativity-based reducible.

## 6 Concurrency Control on Objects: Notions of Correctness

- 6.2 Histories and Schedules
- 6.3 CSR for Flat Object Transactions

#### • 6.4 Tree Reducibility

- 6.5 Sufficient Conditions for Tree Reducibility
- 6.6 Exploiting State-Based Commutativity
- 6.7 Lessons Learned

store(z)

 $t_1$ 

r(t) r(p) r(q)

16 / 36



r(t) r(p) r(q) r(t) r(p)

16 / 36











## **Tree Reducibility**

#### Definition 6.11 (Tree Reducibility):

Object-model history  $s = (op(s), <_s)$  is **tree reducible** if it can be transformed into a total order of its roots by early the following rules

transformed into a total order of its roots by apply the following rules:

• Commutativity rule:

the order of ordered leaf operations p, q, say  $p \leq_s q$ , can be reversed if

- both are isolated, adjacent, and commutative, and
- the operations belong to different transactions, and
- p and q do not have ancestors, p' and q', that are non-commutative and totally ordered in the order p' <s q'.</li>

• Ordering rule:

Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

• Tree pruning rule:

An isolated subtree can be replaced by its root.

An object-model schedule is tree reducible if its committed projection is tree reducible.







## Example: Non-reducible Layered Object Schedule





t<sub>1</sub>

















## 6 Concurrency Control on Objects: Notions of Correctness

- 6.2 Histories and Schedules
- 6.3 CSR for Flat Object Transactions
- 6.4 Tree Reducibility

#### • 6.5 Sufficient Conditions for Tree Reducibility

- 6.6 Exploiting State-Based Commutativity
- 6.7 Lessons Learned

## **Sufficient Conditions for Tree Reducibility**

#### **Definition 6.13 (Level-to-Level Schedule):**

For an n-level schedule  $s = (op(s), <_s)$  with layers L0, ..., Ln, the **level-to-level schedule from L**<sub>i</sub> to L<sub>(i-1)</sub>, or L<sub>i</sub>-to-L<sub>(i-1)</sub> schedule, is a conventional 2-level schedule  $s^* = (op(s^*), <_s^*)$  with

- op(s') consisting of the  $L_{(i-1)}$  operations of s,
- $<_{s}$  being the restriction of the extended order  $<_{s}$  to the  $L_{(i-1)}$  operations,
- $L_i$  operations of s as roots, and
- the same parent-child relationship as in s.

#### Theorem 6.2:

Let s be an n-level schedule. If for each i,  $0 < i \le n$ , the  $L_i$ -to- $L_{(i-1)}$  schedule derived from s is in OCSR, then s is tree-reducible.

## **Proof Sketch for Theorem 6.2**

Consider adjacent levels L<sub>i</sub>, L<sub>(i-1)</sub>:

- CSR of the  $L_i$ -to- $L_{(i-1)}$  schedules allows isolating the  $L_i$  ops
- Conflicting L<sub>i</sub> ops f, g are not reordered:
  - Because of the L<sub>i</sub> conflict and the L<sub>(i+1)</sub>-to-L<sub>i</sub> schedule being CSR, f and g must be ordered
  - Because of the L<sub>i</sub>-to-L<sub>(i-1)</sub> schedule being **OCSR** this order is not reversed by the L<sub>i</sub>-to-L<sub>(i-1)</sub> serialization

induction on i

## **Sufficient Conditions for Tree Reducibility**

#### **Definition 6.13 (Conflict Faithfulness):**

A layered schedule  $s = (op(s), <_s)$  is **conflict-faithful** if for each pair  $p, q \in op(s)$  s.t. p, q are non-commutative and for each i>0 there is at least one operation pair p', q' s.t. p' and q' are descendants of p and q with distance i and are in conflict.

## **Sufficient Conditions for Tree Reducibility**

#### **Definition 6.13 (Conflict Faithfulness):**

A layered schedule  $s = (op(s), <_s)$  is **conflict-faithful** if for each pair  $p, q \in op(s)$  s.t. p, q are non-commutative and for each i>0 there is at least one operation pair p', q' s.t. p' and q' are descendants of p and q with distance i and are in conflict.

#### Theorem 6.3:

Let s be an n-level schedule. If s is conflict-faithful and for each i,  $0 < i \le n$ , the  $L_i$ -to- $L_{(i-1)}$  schedule derived from s is in CSR, then s is tree-reducible.

## **Proof Sketch for Theorem 6.3**

Consider adjacent levels L<sub>i</sub>, L<sub>(i-1)</sub>:

- CSR of the L<sub>i</sub>-to-L<sub>(i-1)</sub> schedules allows isolating the L<sub>i</sub> ops
- Conflicting L<sub>i</sub> ops f, g are not reordered:
  - Because of the L<sub>i</sub> conflict and the L<sub>(i+1)</sub>-to-L<sub>i</sub> schedule being CSR, f and g must be ordered, say f < g
  - Because of **conflict-faithfulness** f must and g must have conflicting children f', g' with f' < g'
  - CSR cannot reverse the order of f' and g', so the  $L_i$ -to- $L_{(i-1)}$  serialization must be compatible with the  $L_i$  order f < g

induction on i
## **Example: Level-to-level Schedules**



has  $L_2$ -to- $L_1$  and  $L_1$ -to- $L_0$  schedules:

## **Example: Level-to-level Schedules**



has  $L_2$ -to- $L_1$  and  $L_1$ -to- $L_0$  schedules:



## **Example: Level-to-level Schedules**



has  $L_2$ -to- $L_1$  and  $L_1$ -to- $L_0$  schedules:



# Example: Non-reducible Layered Schedule with CSR Level-to-level Schedules



with f and g in conflict, and h commuting with f, g, and h

# Example: Reducible Layered Schedule with Non-OCSR Level-to-level Schedules



with f and g in conflict, and h commuting with f, g, and h

## **Example: Reducible Layered Schedule** with Conflicting, Concurrent Operations



# 6 Concurrency Control on Objects: Notions of Correctness

- 6.2 Histories and Schedules
- 6.3 CSR for Flat Object Transactions
- 6.4 Tree Reducibility
- 6.5 Sufficient Conditions for Tree Reducibility
- 6.6 Exploiting State-Based Commutativity
- 6.7 Lessons Learned

## State-dependent Commutativity

**Definition 6.14 (State-Dependent Commutativity):** Operations p and q on the same object are **commutative in object state**  $\sigma$  if for all operation sequences  $\omega$ the return parameters in the sequence pq $\omega$  applied to  $\sigma$ are identical to those in qp $\omega$  applied to  $\sigma$ .

#### **Example:**

- $\sigma$ : x.balance = 40
- s: withdraw<sub>1</sub>(x, 30) deposit<sub>2</sub>(x,50) deposit<sub>2</sub>(y,50) withdraw<sub>1</sub>(y,30)  $\rightarrow$  would allow commuting the first step with both steps of t<sub>2</sub>
- • $\sigma$ : x.balance = 20
  - s: withdraw<sub>1</sub>(x, 30) deposit<sub>2</sub>(x,50) deposit<sub>2</sub>(y,50) withdraw<sub>1</sub>(y,30)

 $\rightarrow$  would not allow commuting the first two steps

# **Return-value Commutativity**

#### Definition 6.18 (Return Value Commutativity):

An operation execution  $p(\downarrow x_1, ..., \downarrow x_m, \uparrow y_1, ..., \uparrow y_n)$  is **return-value commutative** with an immediately following operation execution  $q(\downarrow x_1, ..., \downarrow x_m, \uparrow y_1, ..., \uparrow y_n)$  if for every possible sequences  $\alpha$  and  $\omega$  s.t. p and q have indeed yielded the given return values in  $\alpha pq\omega$ , all operations in the sequence  $\alpha qp\omega$  yield identical return values.

### Example:

- $\sigma$ : x.balance = 40
- s: withdraw<sub>1</sub>(x, 30) $\uparrow$ ok deposit<sub>2</sub>(x,50) $\uparrow$ ok ...
  - $\rightarrow$  withdraw  $\uparrow$  ok is return-value
    - commutative with deposit
- $\sigma$ : x.balance = 20
- s: withdraw<sub>1</sub>(x, 30)  $\uparrow$  no deposit<sub>2</sub>(x, 50)  $\uparrow$  ok ...
  - $\rightarrow$  withdraw  $\uparrow$  no is not return-value commutative with deposit

## **Examples: Return-value Commutativity Tables**

| bank<br>accounts<br>(counters): | $p \qquad q$                       |   | withdraw $(x,\Delta_2)$ no |   |
|---------------------------------|------------------------------------|---|----------------------------|---|
|                                 | withdraw $(x,\Delta_1)$ tok        | + | —                          | + |
|                                 | withdraw $(x,\Delta_1)\uparrow$ no | + | +                          | - |
|                                 | deposit $(x,\Delta_1)$ tok         | - | +                          | + |

queues:

| q         | enq↑ok | c enq↑one  | deq↑ok     | deq↑empty  |
|-----------|--------|------------|------------|------------|
| <i>p</i>  |        |            |            |            |
| enq↑ok    | _      | impossible | +          | impossible |
| enq↑one   | _      | impossible | _          | impossible |
| deq↑ok    | +      | -          | —          | -          |
| deq↑empty | _      | _          | impossible | +          |

## **Example: Schedule on Counter Objects**



with constraints  $0 \le x \le 50$ ,  $0 \le y \le 50$ 

# 6 Concurrency Control on Objects: Notions of Correctness

- 6.2 Histories and Schedules
- 6.3 CSR for Flat Object Transactions
- 6.4 Tree Reducibility
- 6.5 Sufficient Conditions for Tree Reducibility
- 6.6 Exploiting State-Based Commutativity
- 6.7 Lessons Learned

## Lessons Learned

- Commutativity and abstraction arguments lead to the fundamental criterion of tree reducibility
- For layered schedules, CSR can be iterated from level to level
- Compared to page-model CSR, concurrency can be improved, potentially by orders of magnitude
- State-based commutativity can further enhance concurrency, but is more complex to manage