Transactional Information Systems:

Theory, Algorithms, and the Practice of
Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann
ISBN 1-55860-508-8

“Teamwork is essential. It allows you to blame someone else.” (Anonymous)

Part Il: Concurrency Control

* 3 Concurrency Control: Notions of Correctness for the Page Model
* 4 Concurrency Control Algorithms

* 5 Multiversion Concurrency Control

* 6 Concurrency Control on Objects: Notions of Correctness

* 7 Concurrency Control Algorithms on Objects

* 8 Concurrency Control on Relational Databases

* 9 Concurrency Control on Search Structures

* 10 Implementation and Pragmatic Issues

6 Concurrency Control on Objects:
Notions of Correctness

* 6.2 Histories and Schedules

* 6.3 CSR for Flat Object Transactions
* 6.4 Tree Reducibility

* 6.5 Sufficient Conditions for Tree Reducibility

* 6.6 Exploiting State-Based Commutativity

¢ 6.7 Lessons Learned

“No matter how complicated a problem is, it usually can be reduced
to a simple comprehensible form which is often the best solution” (An Wang)

“Every problem has a simple, easy-to-understand, wrong answer.” (Anonymous)

Object Model

Definition 2.3 (Object Model Transaction):
A transaction t is a (finite) tree of labeled nodes with
» the transaction identifier as the label of the root node,
* the names and parameters of invoked operations as labels of
inner nodes, and
* page-model read/write operations as labels of leaf nodes,
along with a partial order < on the leaf nodes such that
for all leaf-node operations p and q with p of the form w(x)
and q of the form r(x) or w(x) or vice versa, we have p<q Vv q<p

Special case: layered transactions
(all leaves have same distance from root)

Derived inner-node ordering: a < b if
all leaf-node descendants of a precede all leaf-node descendants of b

Example: DBS Internal Layers

S

Search (,,Austin*) Fetch(x) Fetch(y) Store(z)

r@m r(p) r(q) r® r@ wE r@® rd w

Example: Business Objects

Withdraw (x, 1000) Deposit (y, 1000)

Append (h, ..

N

Search (...) Fetch (;\() Modify ()?) Fetch (a) Fetch (d) Store (e) Modify (d) Modify (a) Search (...) Fetch (/}\/) Modify (9)

rmy r) r(p) r(p) w(p) r(s) r(t) r(Ow() r®w®) r(s)w(s) r) r) r(qQ r(q w(q

Object-Model Schedules

Definition 6.1 (Object Model History):

For transaction trees {t,, ..., t,} a history s is a partially ordered forest

(op(s), <,) with node set op(s) and partial order < of leaves such that

*op(s) € Uiy, 0p U Uiy, {¢, 3} and Uy, , op; € op(s)

* for all t;: ¢, e op(s) & a; ¢ op(s)

* 3, or ¢; is a leaf node with ¢, as parent

¢ Ui:l“n <i c <s

» for all t; and for all p eop;: p <, @, 0r p < ¢;

« for all leaves p, q that access the same data item with p or q being a write:
either p<,qorq<,p

Object-Model Schedules

Definition 6.1 (Object Model History):
For transaction trees {t,, ..., t,} a history s is a partially ordered forest
(op(s), <,) with node set op(s) and partial order < of leaves such that

*0p(s) © Uiy p 0P U Uiy, {C &} and Uy, , op; < op(s)
* for all t;: ¢, eop(s) & a, & op(s)
* 3, or ¢; is a leaf node with ¢, as parent

¢ Ui:l“n <i c <s
» for all t; and for all p € op;: p < a; or p < ¢;
« for all leaves p, q that access the same data item with p or q being a write:

either p<,qorq<,p

Definition 6.2 (Tree Consistent Node Ordering):
In history s = (op(s), <) the leaf ordering <, is extended to arbitrary nodes:
p <, q if for all leaf-level descendants p‘ of p and q° of q: p* <, q°.

Object-Model Schedules

Definition 6.1 (Object Model History):
For transaction trees {t,, ..., t,} a history s is a partially ordered forest
(op(s), <,) with node set op(s) and partial order < of leaves such that

*0p(s) © Uiy p 0P U Uiy, {C &} and Uy, , op; < op(s)
* for all t;: ¢, eop(s) & a, & op(s)
* 3, or ¢; is a leaf node with ¢, as parent

¢ Ui:l“n <i c <s
» for all t; and for all p € op;: p < a; or p < ¢;
« for all leaves p, q that access the same data item with p or q being a write:

either p<,qorq<,p

Definition 6.2 (Tree Consistent Node Ordering):
In history s = (op(s), <) the leaf ordering <, is extended to arbitrary nodes:
p <, q if for all leaf-level descendants p‘ of p and q° of q: p* <, q°.

Definition 6.3 (Object Model Schedule):

A prefix of history s = (op(s), <) is a forest s (op(s°), <) with op(s‘) < op(s)
and <,‘C < s.t. for each p € op(s°) all ancestors of p and all nodes q with q <, p
are in op(s‘) and <,‘ equals <, when restricted to op(s®).

An object model schedule is a prefix of an object model history.

Example: Object-Model Schedule

Notation:
withdraw ,(a) withdraw,,(b) deposit,,(c) ...
1111(P) To11 (@) Wipa(P) W 13(0) Wan(q) Woy3(0) Ty (1) Wiy (D) ...

Example: Object-Model Schedule

withdraw(a)

r(p)

Notation:
withdraw ,(a) withdraw,,(b) deposit,,(c) ...
1111(P) To11 (@) Wipa(P) W 13(0) Wan(q) Woy3(0) Ty (1) Wiy (D) ...

Example: Object-Model Schedule

withdraw(a) withdraw(b)

r(p) r(q)

Notation:
withdraw ,(a) withdraw,,(b) deposit,,(c) ...
1111(P) To11 (@) Wipa(P) W 13(0) Wan(q) Woy3(0) Ty (1) Wiy (D) ...

Example: Object-Model Schedule

withdraw(a) withdraw(b)

r(p) (@) w(p) w(b

Notation:
withdraw ,(a) withdraw,,(b) deposit,,(c) ...
1111(P) To11 (@) Wipa(P) W 13(0) Wan(q) Woy3(0) Ty (1) Wiy (D) ...

Example: Object-Model Schedule

withdraw(a) withdraw(b)

r(p) (@) w(p) w(w(q) w(

Notation:
withdraw ,(a) withdraw,,(b) deposit,,(c) ...
1111(P) To11 (@) Wipa(P) W 13(0) Wan(q) Woy3(0) Ty (1) Wiy (D) ...

Example: Object-Model Schedule

t, t
\
withdraw(a) withdraw(b) deposit(c)
\\
1(p) r(q) w(p) w(® wlq) wt) r(r) w()
Notation:

withdraw ,(a) withdraw,,(b) deposit,,(c) ...
1111(P) 1211 (@) Wi1n(P) W 113(8) W (q) Way3(1) 1 (1) Wy (D) ..

Example: Object-Model Schedule

t, t

\\

withdraw(a) withdraw(b) deposit(c) deposit(c)

\\

1(p) 1(q) wp) w®) w@ w® 1@ wr) @) w)
Notation:

withdraw ,(a) withdraw,,(b) deposit,,(c) ...
1111(P) T211(Q) Win(P) W 113(1) Wap(Q) Way3(0) gy (1) Wi (1) ..

Example: Object-Model Schedule

t, t

[T

withdraw(a) withdraw(b) deposit(c) deposit(c)

\\

1(p) rwwt) w(@ w® r(r) wr)) wir)
Notation:

withdraw ,(a) withdraw,,(b) deposit,,(c) ...
1111(P) T211 (@) Wipa(p) W 13(0) Wapp(q) Way3(0) Ty (1) Wops (1) ..

Example: Object-Model Schedule

t, t

[T

withdraw(a) withdraw(b) deposit(c) deposit(c)

\\

1(p) rm’v(t) w(@ w® r(r) wr)) wir)
Notation:

withdraw ,(a) withdraw,,(b) deposit,,(c) ...
1111(P) T211 (@) Wipa(p) W 13(0) Wapp(q) Way3(0) Ty (1) Wops (1) ..

Layered Schedules

Definition 6.4 (Serial Object Model Schedule):
An object model schedule is serial if its roots t,, ..., t, are totally ordered and for
each t; and each i > 0 the descendants with distance i from ¢; are totally ordered.

Layered Schedules

Definition 6.4 (Serial Object Model Schedule):
An object model schedule is serial if its roots t,, ..., t, are totally ordered and for
each t; and each i > 0 the descendants with distance i from ¢; are totally ordered.

Definition 6.5 (Isolated Subtree):

A node p and the corresponding subtree in a schedule are called isolated if

» for all nodes q other than ancestors or descendants of p the property holds that
for all leaves w of q either w <porp<w

» for each i > 0 the descendants of p with distance i from p are totally ordered

Layered Schedules

Definition 6.4 (Serial Object Model Schedule):
An object model schedule is serial if its roots t,, ..., t, are totally ordered and for
each t; and each i > 0 the descendants with distance i from ¢; are totally ordered.

Definition 6.5 (Isolated Subtree):

A node p and the corresponding subtree in a schedule are called isolated if

» for all nodes q other than ancestors or descendants of p the property holds that
for all leaves w of q eitherw <porp<w

» for each i > 0 the descendants of p with distance i from p are totally ordered

Definition 6.6 (Layered History and Schedule):

An object model history is layered if all leaves other than c or a have identical
distance from their roots; for leaf-to-root distance n this is called an n-level history.
Operations with distance i from the leaves are called level-i (L;) operations.

A layered schedule is a prefix of a layered history.

Examples of Non-layered Schedules

Examples of Non-layered Schedules

%

withdraw(a)

r(p)

Examples of Non-layered Schedules

%)

withdraw(a) withdraw(b)

1(p) r(q)

Examples of Non-layered Schedules

withdraw(a) withdraw(b)

r(p) r(q) w(p)

Examples of Non-layered Schedules

withdraw(a) withdraw(b)

r(p) r(q) w(p) w(t)

Examples of Non-layered Schedules

withdraw(a) withdraw(b)

r(p) (@) wp)w(t) w(q)

Examples of Non-layered Schedules

withdraw(a) withdraw(b)

r(p) (@) w)w®) w(q@ w(

Examples of Non-layered Schedules

.

withdraw(a) withdraw(b) deposit(c)

%

1(p) (@) wp)w® wlq wt) rr) wr)

Examples of Non-layered Schedules

withdraw(a) withdraw(b) deposit(c) deposit(c)

r(p) r(qQ wp)w®) w(q wt) 1) w(r) r(r) w(r)

Examples of Non-layered Schedules

4 9]

\

withdraw(a) withdraw(b) deposit(c) deposit(c)

r(p) r(qQ wp)w®) w(q wt) 1) w(r) r(r) w(r)

withdraw(a)

r(p)

Examples of Non-layered Schedules

4

withdraw(a)

1(p)

withdraw(a)

r(p)

9]

\

withdraw(b) deposit(c) deposit(c)

(@ w)w®) w(@ wO 1) wr) @) w)

withdraw(b)

r(q)

Examples of Non-layered Schedules

4

withdraw(a)

1(p)

withdraw(a)

1(p)

9]

\

withdraw(b) deposit(c) deposit(c)

(@ w)w®) w(@ wO 1) wr) @) w)

withdraw(b)

(@) w(p) w()

Examples of Non-layered Schedules

t) t

\

withdraw(a) withdraw(b)

2

deposit(c)

deposit(c)

1(p) (@ wpE)w® w@ w® @) wr)) w)
4 %)
withdraw(a) withdraw(b)

1(p)

(@) w(p) w(t) w(q@ w0

Examples of Non-layered Schedules

4 9]

\

withdraw(a) withdraw(b) deposit(c) deposit(c)

1(p) (@ wp)w® wl@ w®) 1) wr) @) wr)

withdraw(a) withdraw(b)

\

1(p) (@ wp) w® w@ w(t) 1) wr)

Examples of Non-layered Schedules

4 [5)

\

withdraw(a) withdraw(b) deposit(c) deposit(c)
1(p) (@ wpE)w® w@ w® @) wr)) w)

withdraw(a)

1(p)

withdraw(b)

\

(@ wp) wt) wi@ w® 1) wr) @) w)

6 Concurrency Control on Objects:
Notions of Correctness

¢ 6.2 Histories and Schedules

* 6.3 CSR for Flat Object Transactions

* 6.4 Tree Reducibility
* 6.5 Sufficient Conditions for Tree Reducibility
* 6.6 Exploiting State-Based Commutativity

¢ 6.7 Lessons Learned

Flat Object Schedules

Definition 6.7 (Flat Object Schedule):
A 2-level schedule s is called flat if for each p, q of L, operations:
« for all p‘echild(p) and all q‘e child(q): p* <, q"‘ or
for all p‘e child(p) and all q‘echild(q): q° < p*, and
« for all p*, p*“ echild(p): p° <, p*“orp*“ < p°

Definition 6.8 ((State-independent) Commutative Operations):
Operations p and q are commutative if for all possible sequences of
operations ot and ® the return parameters in the sequence o p q ®
are identical to those in &t q p ®.

Example: Flat Object Schedule

t, t,
\\
deposit(c)

withdraw(a) withdraw(b) deposit(c)

1(p) wp) w(t) r(@ w(@ w®) 1) w) rr) w)

(State-independent)
Commutativity table:
‘ withdraw (x,A,) deposit (x,A,) getbalance (x)

withdraw (x,A))
deposit (x,A)) + -
getbalance (x) — +

Commutativity-based Reducibility

Definition 6.9 (Commutativity Based Reducibility):
A flat object schedule s is commutativity based reducible if it can be
transformed into a serial schedule by apply the following rules:
o Commutativity rule:
the order of ordered operations p, q, say p <, g, can be reversed if
* both are isolated, adjacent, and commutative and
* the operations belong to different transactions.
*Ordering rule:
Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

Commutativity-based Reducibility

Definition 6.9 (Commutativity Based Reducibility):
A flat object schedule s is commutativity based reducible if it can be
transformed into a serial schedule by apply the following rules:
e Commutativity rule:
the order of ordered operations p, q, say p <, g, can be reversed if
* both are isolated, adjacent, and commutative and
* the operations belong to different transactions.
*Ordering rule:
Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

Definition 6.10 (Conflict Equivalence and Conflict Serializability):
Two flat object schedules s and s* are conflict equivalent if they
consist of the same operations and have the same ordering for all
non-commutative pairs of L, operations.

s is conflict serializable if it is conflict equivalent to a serial schedule.

Commutativity-based Reducibility

Definition 6.9 (Commutativity Based Reducibility):
A flat object schedule s is commutativity based reducible if it can be
transformed into a serial schedule by apply the following rules:
e Commutativity rule:
the order of ordered operations p, q, say p <, g, can be reversed if
* both are isolated, adjacent, and commutative and
* the operations belong to different transactions.
*Ordering rule:
Unordered leaf operations p, q can be arbitrarily ordered if they are commutative.

Definition 6.10 (Conflict Equivalence and Conflict Serializability):
Two flat object schedules s and s* are conflict equivalent if they
consist of the same operations and have the same ordering for all
non-commutative pairs of L, operations.

s is conflict serializable if it is conflict equivalent to a serial schedule.

Theorem 6.1:

For a flat object schedule s the following three conditions are equivalent:
s is conflict serializable, s has an acyclic conflict graph,

s is commutativity-based reducible.

6 Concurrency Control on Objects:
Notions of Correctness

* 6.2 Histories and Schedules
* 6.3 CSR for Flat Object Transactions

* 6.4 Tree Reducibility

* 6.5 Sufficient Conditions for Tree Reducibility
* 6.6 Exploiting State-Based Commutativity

¢ 6.7 Lessons Learned

Example: Layered Object Schedule
with Non-isolated Subtrees

Example: Layered Object Schedule
with Non-isolated Subtrees

store(z)

r(t) r(p) r(q)

Example: Layered Object Schedule
with Non-isolated Subtrees

{ b

store(z) fetch(x)

r(t) 1(p) r(q) r(t) r(p)

Example: Layered Object Schedule
with Non-isolated Subtrees

{ b

store(z) fetch(x)

r(®) r(p) (@) r(® r(p) w(q) w(p) w(t)

Example: Layered Object Schedule
with Non-isolated Subtrees

\

store(z) fetch(x) modify(y)

r(®) r(p) (@) r(® r(p) w(q) w(p) w(t) r(t) r(p) w(p)

Example: Layered Object Schedule
with Non-isolated Subtrees

t, t
\\
store(z) fetch(x) modify(y) modify(y)

AN

() 1(p) r(q) r(®) r(p) w(q) w(p) w(®) (D) r(p) w(p) 1()

Example: Layered Object Schedule
with Non-isolated Subtrees

4 b
store(z) fetch(x) modify(y) modify(y) modify(w)

r(t) r(p) r(q) r(t) r(p) w(q) w(p) w(t) r(t) r(p) w(p) 1(t) r(t) r(p) w(p)

Example: Layered Object Schedule
with Non-isolated Subtrees

4 b
store(z) fetch(x) modify(y) modify(y) modify(w)

() 1(p) r(q) r(®) r(p) w(q) w(p) w(®) (D) r(p) w(p) 1() r(t) r(p) w(p) r(p) w(p)

Tree Reducibility

Definition 6.11 (Tree Reducibility):
Object-model history s = (op(s), <) is tree reducible if it can be
transformed into a total order of its roots by apply the following rules:
o Commutativity rule:
the order of ordered leaf operations p, g, say p <; g, can be reversed if
* both are isolated, adjacent, and commutative, and
* the operations belong to different transactions, and
* p and q do not have ancestors, p* and q°, that are non-commutative
and totally ordered in the order p* <, q°.
¢ Ordering rule:
Unordered leaf operations p, q can be arbitrarily ordered if they are commutative
¢ Tree pruning rule:
An isolated subtree can be replaced by its root.

An object-model schedule is tree reducible if its committed projection
is tree reducible.

Example: Reducible Layered Object
Schedule with Non-isolated Subtrees

4 b
store(z) fetch(x) modify(y) modify(y) modify(w)

1) r(p) r(@) r®) r(p) wl(q) w(p) w(t) r(®) r(p) w(p) (V) 1(t) r(p) w(p) r(p) w(p)

Example: Reducible Layered Object
Schedule with Non-isolated Subtrees

4 o)

\X

store(z) fetch(x) modify(y) modify(y) modify(w)

() 1(p) r(q) r(®) r(p) w(q) w(p) w(®) (D) r(p) w(p) 1() r(t) r(p) w(p) r(p) w(p)

, . s

N

fetch(x) store(z) modify(y) modify(w) modify(y)

Example: Reducible Layered Object
Schedule with Non-isolated Subtrees

4 o)

\X

store(z) fetch(x) modify(y) modify(y) modify(w)

() 1(p) r(q) r(®) r(p) w(q) w(p) w(®) (D) r(p) w(p) 1() r(t) r(p) w(p) r(p) w(p)

, . s

N

fetch(x) store(z) modify(y) modify(w) modify(y)

Example: Non-reducible
Layered Object Schedule

store(z) fetch(x)

1) r(p) 1@ wl(q) w(p) r(®) r(p) w(t)

Example: Reducible Non-layered
Object Schedule

Conlflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, 1>, <w, w>

Example: Reducible Non-layered
Object Schedule

ChecklItem

r(p) w(p)

Conlflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, 1>, <w, w>

Example: Reducible Non-layered
Object Schedule

CheckItem ChecklItem

1(p) w(p) r(p)w(p)

Conlflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, 1>, <w, w>

Example: Reducible Non-layered
Object Schedule

CheckItem ChecklItem

Append

r(p) w(p) r(p)w(p) r(q) w(q)

Conlflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, 1>, <w, w>

Example: Reducible Non-layered
Object Schedule

CheckItem ChecklItem

Append Append

t(p) w(p) r(p)w(p) r(q) w(q) r(q)

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, 1>, <w, w>

Example: Reducible Non-layered
Object Schedule

Checkltem Checkltem Shipment

Append Append

t(p) w(p) r(p)w(p) r(q) w(q) r(q) () w(r)

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, 1>, <w, w>

Example: Reducible Non-layered

Object Schedule
tI t2
Checkltem Checkltem Shipment Payment
Append Append CheckCard
|
1(p) w(p) r(p)w(p) r(q)w(q) r(q) () w(r) r(s) w(s)

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, 1>, <w, w>

Example: Reducible Non-layered

Object Schedule
tI t2
Checkltem Checkltem Shipment Payment P‘ayment
CheckCash
Append Append CheckCard
N |
1(p) w(p) r(p)w(p) r(q)w(q) r(q) i(r) wr) r(s) w(s) 1(s)

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, 1>, <w, w>

Example: Reducible Non-layered
Object Schedule

Checkltem Checkltem Shipment Payment Payment

CheckCash

Append Append CheckCard

r(p) w(p) r(p)w(p) r(q) w(q) r(q) () w(r) r(s) w(s) 1(s) r(t) w(b)

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, 1>, <w, w>

Example: Reducible Non-layered

Object Schedule
t 5]
Checkltem Checkltem Shipment Payment Payment

CheckCash
Append Append CheckCard

r(p) w(p) r(p)w(p) r(q) w(q) r(q) () w(r) r(s) w(s) 1(s) r(t) w(t) w(s) r(t) w(t)

Conflicting operation pairs:
<Payment, Payment>, <Append, Append>, <r, w>, <w, 1>, <w, w>

6 Concurrency Control on Objects:
Notions of Correctness

* 6.2 Histories and Schedules
* 6.3 CSR for Flat Object Transactions
* 6.4 Tree Reducibility

* 6.5 Sufficient Conditions for Tree Reducibility

* 6.6 Exploiting State-Based Commutativity

¢ 6.7 Lessons Learned

Sufficient Conditions for Tree Reducibility

Definition 6.13 (Level-to-Level Schedule):

For an n-level schedule s = (op(s), <) with layers L0, ..., Ln, the
level-to-level schedule from L; to L), or L;-to-L;; ;) schedule, is a
conventional 2-level schedule s = (op(s°), <) with

* op(s°) consisting of the L; ;, operations of s,

* <;* being the restriction of the extended order < to the L; ;, operations,
* L; operations of s as roots, and

* the same parent-child relationship as in s.

Theorem 6.2:
Let s be an n-level schedule. If for each i, 0 <i<n, the L;-to-L;; ;, schedule
derived from s is in OCSR, then s is tree-reducible.

Proof Sketch for Theorem 6.2

\

Consider adjacent levels L;, L
* CSR of the L;-to-L; ;, schedules
allows isolating the L. ops
* Conflicting L; ops f, g are not reordered:
* Because of the L, conflict and
the L(i +1)—to—Li schedule being CSR,
f and g must be ordered
* Because of the L;-to-L; ;, schedule being OCSR
this order is not reversed
by the L;-to-L; ;, serialization

induction

>oni

Sufficient Conditions for Tree Reducibility

Definition 6.13 (Conflict Faithfulness):

A layered schedule s = (op(s), <) is conflict-faithful if for each pair p, q € op(s)
s.t. p, q are non-commutative and for each i>0 there is at least one operation pair
p‘, q‘s.t. p* and q° are descendants of p and q with distance i and are in conflict.

Sufficient Conditions for Tree Reducibility

Definition 6.13 (Conflict Faithfulness):

A layered schedule s = (op(s), <) is conflict-faithful if for each pair p, q € op(s)
s.t. p, q are non-commutative and for each i>0 there is at least one operation pair
p‘, q‘s.t. p* and q° are descendants of p and q with distance i and are in conflict.

Theorem 6.3:
Let s be an n-level schedule. If s is conflict-faithful and for each i, 0 <i<n,
the L;-to-L;_;, schedule derived from s is in CSR, then s is tree-reducible.

Proof Sketch for Theorem 6.3

Consider adjacent levels L;, L A
* CSR of the L;-to-L; ;, schedules
allows isolating the L. ops
* Conflicting L; ops f, g are not reordered: induction
* Because of the L, conflict and oni
the L(i +1)—to—Li schedule being CSR,
f and g must be ordered, say f< g
* Because of conflict-faithfulness f must and g
must have conflicting children f*, g* with f* < g°
* CSR cannot reverse the order of f* and g°,
so the L;-to-L,; ; serialization must be
compatible with the L, order f < g Y,

Example: Level-to-level Schedules

t t

ithdraw(a) ithdraw(b) Wit(c) Tiosit(c) c

r(p) r(q) w(p) w) w(@ w®) 1) w() r(r) w(r)
has L,-to-L; and L,-to-L, schedules:

o

Example: Level-to-level Schedules

TM
ithdraw(a) ithdraw(b) Wit(c) fRosit(c) c ¢
1(p) (@ wpp) wM wi@ w) 1) wr) @) w)

has L,-to-L; and L,-to-L, schedules:

t t L2

Example: Level-to-level Schedules

t t

ithdraw(a) ithdraw(b) Wit(c) fRosit(c) c ¢
1(p) (@) wp) wO) wi@ w® 1) wr)) wr)

has L,-to-L; and L,-to-L, schedules:

t t L2

t’\‘r\x t’n\ 1’12\

1114(p) 1511(Q) W112(P) Wi 13(0) Wapp(Q) Way3(0) 15p1(1) Wopp(1) T154(1) Wyas(r) L,

Example: Non-reducible Layered Schedule
with CSR Level-to-level Schedules

t 5} 4 L,
\\

f},(x) 2,1(x) h3 () Tia(y) 220(y) L,

110(P) Wia(p) 21(P) Wapa(p) Wois(t) Wapi(q) 1121(q) ooy (P) Tooa(t) W3p(1) Ly

with f and g in conflict,
and h commuting with f, g, and h

Example: Reducible Layered Schedule
with Non-OCSR Level-to-level Schedules

\
f},(x) 21(X) h3(z) hpo(y) hoy(y) L,

1111(P) Winn(p) 121(p) Wapa(p) Wais(t) Wipi(Q@) 1120(Q) 101(P) Tooa(t) W3yt L,

with f and g in conflict,
and h commuting with f, g, and h

Example: Reducible Layered Schedule
with Conflicting, Concurrent Operations

4 t, L,
\
modify,(x) fetchy(x) fetchy,(y) modify,,(y) L,

s

(0 011(0) 1112(P) 112(P) Wiis(P) Tooi (D) 100(P) 101 () Ty2(p) Wio3(P) Ly

6 Concurrency Control on Objects:
Notions of Correctness

* 6.2 Histories and Schedules

* 6.3 CSR for Flat Object Transactions

* 6.4 Tree Reducibility

* 6.5 Sufficient Conditions for Tree Reducibility

* 6.6 Exploiting State-Based Commutativity

¢ 6.7 Lessons Learned

State-dependent Commutativity

Definition 6.14 (State-Dependent Commutativity):

Operations p and q on the same object are commutative in object state ¢ if
for all operation sequences ®

the return parameters in the sequence pqw applied to ¢

are identical to those in gp® applied to G.

Example:
* 0: x.balance = 40
s: withdraw, (x, 30) deposit,(x,50) deposit,(y,50) withdraw,(y,30)
— would allow commuting the first step with both steps of t,
*G: x.balance = 20
s: withdraw, (x, 30) deposit,(x,50) deposit,(y,50) withdraw,(y,30)
— would not allow commuting the first two steps

Return-value Commutativity

Definition 6.18 (Return Value Commutativity):

An operation execution p (x,, ..., 4 x,, Ty, ..., T'y,) is return-value
commutative with an immediately following operation execution

q (\Lxl‘, dx X Tyl s T y,-*) if for every possible sequences ¢, and ® s.t.
p and g have indeed yielded the given return values in 0ipq®, all operations
in the sequence oqp yield identical return values.

Example:
¢ 0: x.balance = 40
s: withdraw (x, 30) Tok deposit,(x,50)Tok ...
—> withdraw Tok is return-value
commutative with deposit
¢ 5: X.balance = 20
s: withdraw, (X, 30)Tno deposit,(x,50) Tok ...
— withdraw Tno is not return-value
commutative with deposit

Examples: Return-value Commutativity Tables

bank q | withdraw withdraw deposit
p (X,Az)Tok (X,Az)Tno (X,Az)Tok
accounts .
withdraw _
(counters): (x,A,)Tok * *
withdraw + + 3
(x,AI)Tno
deposit _ . +
(x,A)Tok
queues: q eanok eanone deqTok deqTempty
P
eanok — impossible + impossible
eanone — impossible - impossible
deqTok + - - -
deqTempty - - impossible +

Example: Schedule on Counter Objects

Lt b equivalent to

\ serial order

<t

| decr(x,20) Tno! incr(x,30)Tok | decr(y,20)Tok | incr(y,30)Tno |

o)) W) |) wp))

x=15 XL15 X3:45 x=15 x=15
y=45 y=45 y=45 y=25 y=25

with constraints 0 < x < 50,0 <y <50

6 Concurrency Control on Objects:
Notions of Correctness

* 6.2 Histories and Schedules

* 6.3 CSR for Flat Object Transactions

* 6.4 Tree Reducibility

* 6.5 Sufficient Conditions for Tree Reducibility
* 6.6 Exploiting State-Based Commutativity

¢ 6.7 Lessons Learned

Lessons Learned

* Commutativity and abstraction arguments lead to the
fundamental criterion of tree reducibility

* For layered schedules, CSR can be iterated from level to level

* Compared to page-model CSR, concurrency can be improved,
potentially by orders of magnitude

* State-based commutativity can further enhance concurrency,

but is more complex to manage

	Chapter 6
	Histories and Schedules
	CSR for Flat Object Transactions
	Tree Reducibility
	Sufficient Condition for Tree Reducibility
	Exploiting State-Based Commutativity
	Lessons Learned

