
1 / 25

Transactional Information Systems:

Theory, Algorithms, and

the

Practice of

Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

“

Teamwork is essential. It allows you to blame someone else.

”

(Anonymous)

© 2002 Morgan Kaufmann

ISBN 1

-

55860

-

508

-

8

2 / 25

Part II: Concurrency Control

•

3 Concurrency Control: Notions of Correctness for the Page Model

•

4 Concurrency Control Algorithms

•

5 Multiversion Concurrency Control

•

6 Concurrency Control on Objects: Notions of Correctness

•

7 Concurrency Control Algorithms on Objects

•

8 Concurrency Control on Relational Databases

•

9 Concurrency Control on Search Structures

•

10 Implementation and Pragmatic Issues

3 / 25

7 Concurrency Control

Algorithms on Objects

•

7.2 Locking for Flat Object Transactions

•

7.3 Layered Locking

•

7.4 Locking on General Transaction Forests

•

7.5 Hybrid Algorithms

•

7.6 Locking for Return

-

value Commutativity

•

7.7 Lessons Learned

“

A journey of thousand miles must begin with a single step.

”

(Lao

-

tse)

4 / 25

2PL for Flat Object Schedules

deposit(a)

deposit(b)

withdraw (c)

withdraw(a)

t

1

t

2

•

Lock acquisition rule:

L

1

operation f(x) needs to lock x in f mode

•

Lock release rule:

Once an L

1

lock of f(x) is released,

no other L

1

lock can be acquired.

•

introduce a special lock mode for each operation type

•

derive lock compatibility from state

-

independent commutativity

Example:

5 / 25

7 Concurrency Control

Algorithms on Objects

•

7.2 Locking for Flat Object Transactions

•

7.3 Layered Locking

•

7.4 Locking on General Transaction Forests

•

7.5 Hybrid Algorithms

•

7.6 Locking for Return

-

value Commutativity

•

7.7 Lessons Learned

6 / 25

Layered 2PL

•

Lock acquisition rule:

L

i

operation f(x) with parent p, which is now a

subtransaction

,

needs to lock x in f mode

•

Lock release rule:

Once an L

i

lock of f(x) with parent p is released,

no other child of p can acquire any locks.

•

Subtransaction rule:

At the termination of an L

i

operation f(x),

all L

(i

-

1)

locks acquired for children of f(x) are released.

Theorem 7.1:

Layered 2PL generates only tree reducible schedules.

Proof:

All level

-

to

-

level schedules are OCSR, hence the claim (by Theorem 6.2).

Special cases:

•

single

-

page subtransactions merely need

latching

•

for all

-

commutative L

i

operations, transactions are decomposed

into sequences of independently isolated,

chained subtransactions

7 / 25

2

-

Level 2PL Example

fetch(x)

modify(y)

r(t)

r(p)

t

1

t

2

t

11

t

21

L

1

L

0

store(z)

modify(y)

modify(w)

r(q)

w(q)

w(p)

w(t)

r(t)

r(p)

t

12

r(t)

r(p)

w(p)

t

13

r(t)

r(p)

w(p)

t

22

r(t)

r(p)

w(p)

8 / 25

3

-

Level Example

t

1

t

2

Insert Into Persons

Values (Name=...,

City="Austin",

Age=29, ...)

Select Name

From Persons

Where City="Seattle"

And Age=29

Select Name

From Persons

Where Age=30

store(x)

insert

(CityIndex,

"Austin",

@x)

search

(CityIndex,

"Seattle")

insert

(AgeIndex,

29, @x)

search

(AgeIndex,

29)

search

(AgeIndex,

30)

fetch(z)

r(p)

w(p)

r(r)

r(n)

r(r)

r(l)

r(n)

w(l)

r(l)

r(r‟)

r(n‟)

w(l‟)

r(l‟)

r(r‟)

r(n‟)

r(l‟)

r(r‟)

r(n‟)

r(l‟)

r(p)

w(p)

fetch(y)

r(p)

w(p)

9 / 25

3

-

Level 2PL Example

Insert Into Persons

Values (Name=..., City="Austin", Age=29, ...)

Select Name From Persons

Where City="Seattle" And Age=29

Select Name From Persons

Where Age=30

store(x)

insert

(CityIndex,

"Austin", @x)

search

(CityIndex,

"Seattle")

insert

(AgeIndex,

29, @x)

search

(AgeIndex, 30)

fetch(z)

r(p)

w(p)

t

1

t

2

search

(AgeIndex, 29)

fetch(y)

t

11

t

12

t

21

t

111

r(p)

w(p)

t

122

r(r)

r(n)

t

112

r(l)

w(l)

r(r)

r(n)

t

211

r(l)

r(r‟)

r(n‟)

t

121

r(l‟)

r(r‟)

r(n‟)

r(l‟)

w(l‟)

t

113

r(p)

w(p)

t

213

r(r‟)

r(n‟)

t

212

r(l‟)

L

2

L

0

L

1

10 / 25

Selective Layered 2PL

•

Lock acquisition rule:

Li

ν

operation f(x) with Li

ν

-

1

ancestor

p, which is now a subtransaction,

needs to lock x in f mode

•

Lock release rule:

Once an Li

ν

lock of f(x) with Li

ν

-

1

ancestor

p is released,

no other Li

ν

descendant

of p can acquire any locks.

•

Subtransaction rule:

At the termination of an Li

ν

operation f(x),

all Li

ν

+1

locks acquired for descendants of f(x) are released.

For n

-

level schedule with layers L

n

, ..., L

0

apply locking on selected layers Li

0

, ... , Li

k

with 1

≤

k

≤

n, i

0

= n, i

k

= 0, i

ν

> i

ν

+1

,

skipping all other layers

11 / 25

Selective Layered 2PL Example

Insert Into Persons

Values (Name=..., City="Austin", Age=29, ...)

Select Name From Persons

Where City="Seattle" And Age=29

Select Name From Persons

Where Age=30

store(x)

insert

(CityIndex,

"Austin", @x)

search

(CityIndex,

"Seattle")

insert

(AgeIndex,

29, @x)

search

(AgeIndex, 30)

fetch(z)

r(p)

w(p)

search

(AgeIndex, 29)

fetch(y)

r(p)

w(p)

r(r)

r(n)

r(l)

w(l)

r(r)

r(n)

r(l)

r(r‟)

r(n‟)

r(l‟)

r(r‟)

r(n‟)

r(l‟)

w(l‟)

r(p)

w(p)

r(r‟)

r(n‟)

r(l‟)

L2

L0

L1

12 / 25

7 Concurrency Control

Algorithms on Objects

•

7.2 Locking for Flat Object Transactions

•

7.3 Layered Locking

•

7.4 Locking on General Transaction Forests

•

7.5 Hybrid Algorithms

•

7.6 Locking for Return

-

value Commutativity

•

7.7 Lessons Learned

13 / 25

Problem Scenario

t

1

deposit(x)

incr(a)

append(l)

r(p)

w(p)

r(q)

w(q)

deposit(y)

incr(b)

append(l)

r(p)

w(p)

r(q)

w(q)

t

2

decr(a)

append(l)

r(p)

w(p)

r(q)

w(q)

r(p)

w(p)

r(q)

w(q)

Problem: layers can be

“

bypassed

”

Solution: keep locks in

“

retained

”

mode

14 / 25

General Object

-

Model 2PL

•

Lock acquisition rule:

Operation f(x) with parent p needs to lock x in f mode

•

Lock conflict rule:

A lock requested by r(x) is granted if

•

either no conflicting lock on x is held

•

or when for every transaction that holds a conflicting lock, say h(x),

h(x) is a retained lock and r and h have ancestors r' and h' such that

h' is terminated and commutes with r'

•

Lock release rule:

Once a lock of f(x) with parent p is released,

no other child of p can acquire any locks.

•

Subtransaction rule:

At the termination of f(x),

all locks acquired for children of f(x) are converted into retained locks.

•

Transaction rule:

At the termination of a transaction, all locks are released.

Theorem 7.2:

The object

-

model 2PL generates only tree

-

reducible schedules.

15 / 25

Proof Sketch for Theorem 7.2

t

1

t

2

h

1

f

1

h

2

f

2

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

•

If all locks of t

1

were kept until commit,

then tree reducibility were trivially guaranteed.

•

Now show that retained f

1

lock by h

1

is sufficient

to prevent non

-

commutative subtree:

Let f

2

be the first conflict

with any lock under h

1

;

f

2

is allowed to proceed only

if h

1

is terminated and

h

2

commutes with h

1

→

isolate h

2

from h

1

→

prune h

2

and h

1

→

commute h

2

with h

1

if necessary

16 / 25

7 Concurrency Control

Algorithms on Objects

•

7.2 Locking for Flat Object Transactions

•

7.3 Layered Locking

•

7.4 Locking on General Transaction Forests

•

7.5 Hybrid Algorithms

•

7.6 Locking for Return

-

value Commutativity

•

7.7 Lessons Learned

17 / 25

Hybrid Algorithms

Theorem 7.3:

For 2

-

level schedules the combination of 2PL at L

1

and FOCC at L

0

generates only tree

-

reducible schedules.

Theorem 7.4:

For 2

-

level schedules the combination of 2PL at L

1

and ROMV at L

0

generates only tree

-

reducible schedules.

These combinations are particularly attractive

because subtransactions are short and

there is a large fraction of read

-

only subtransactions.

18 / 25

7 Concurrency Control

Algorithms on Objects

•

7.2 Locking for Flat Object Transactions

•

7.3 Layered Locking

•

7.4 Locking on General Transaction Forests

•

7.5 Hybrid Algorithms

•

7.6 Locking for Return

-

value Commutativity

•

7.7 Lessons Learned

19 / 25

Locking for Return

-

value

Commutativity

•

introduce a special lock mode for each pair

<operation type, return value>,

Example: lock modes

withdraw

-

ok, withdraw

-

no, deposit

-

ok, getbalance

-

ok

•

defer lock conflict test until end of subtransaction

•

rollback subtransaction if lock cannot be granted

and retry

20 / 25

Escrow Locking

... on bounded counter object

x

with

lower bound

low(x)

and upper bound

high(x)

Approach:

•

maintain infimum

inf(x)

and supremum

sup(x)

for the value of x

taking into account all possible outcomes of active transactions

•

adjust inf(x) and sup(x) upon

•

operations incr(x), decr(x), and

•

commit or abort of transactions

21 / 25

Escrow Locking Pseudocode

incr(x,

Δ

):

if x.sup +

Δ

≤

x.high then

x.sup := x.sup +

Δ

; return ok

else if x.inf +

Δ

> x.high then

return no

else wait fi fi;

decr(x,

Δ

):

if x.low

≤

x.inf

-

Δ

then

x.inf := x.inf

-

Δ

; return ok

else if x.low > x.sup

-

Δ

then

return no

else wait fi fi;

commit(t)

:

for each op incr(x,

Δ

) by t do

x.inf := x.inf +

Δ

od;

for each op decr(x,

Δ

) by t do

x.sup := x.sup

-

Δ

od;

abort(t)

:

for each op incr(x,

Δ

) by t do

x.sup := x.sup

-

Δ

od;

for each op decr(x,

Δ

) by t do

x.inf := x.inf +

Δ

od;

22 / 25

Escrow Locking Example

t

1

decr(x,80)

t

2

decr(x,10)

t

3

incr(x,50)

t

4

decr(x,20)

x

(0)

= 100

x

(4)

=50

abort

[10,

100]

[10,

150]

[10,

70]

[20,

100]

[20,

70]

[0,

70]

[50,

70]

[x.inf, x.sup]

constraint:

0

≤

x

23 / 25

Escrow Deadlock Example

t

1

incr(x,10)

t

2

incr(x,10)

t

3

incr(x,10)

t

4

decr(x,20)

x

(0)

= 0

getval(y)

getval(z)

update(y)

update(z)

24 / 25

7 Concurrency Control

Algorithms on Objects

•

7.2 Locking for Flat Object Transactions

•

7.3 Layered Locking

•

7.4 Locking on General Transaction Forests

•

7.5 Hybrid Algorithms

•

7.6 Locking for Return

-

value Commutativity

•

7.7 Lessons Learned

25 / 25

Lessons Learned

•

Layered 2PL is the fundamental protocol for

industrial

-

strength data servers with record granularity locking

(it explains the trick of

“

long locking

”

and

“

short latching

”

).

•

This works for all kinds of ADT operations within layers;

decomposed transactions with chained subtransactions

(aka.

“

Sagas

”

) are simply a special case.

•

Non

-

layered schedules require additional, careful locking rules.

•

Locking on some layers can be combined with other protocols

(e.g., ROMV or FOCC) on other layers.

•

Escrow locking on counter objects is an example for additional

performance enhancements by exploiting rv commutativity.

	Chapter 7

