Transactional Information Systems:

Theory, Algorithms, and the Practice of
Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann
ISBN 1-55860-508-8

“Teamwork is essential. It allows you to blame someone else.” (Anonymous)

Part Il: Concurrency Control

* 3 Concurrency Control: Notions of Correctness for the Page Model
* 4 Concurrency Control Algorithms

* 5 Multiversion Concurrency Control

* 6 Concurrency Control on Objects: Notions of Correctness

* 7 Concurrency Control Algorithms on Objects

* 8 Concurrency Control on Relational Databases

* 9 Concurrency Control on Search Structures

* 10 Implementation and Pragmatic Issues

7 Concurrency Control
Algorithms on Objects

* 7.2 Locking for Flat Object Transactions

* 7.3 Layered Locking

* 7.4 Locking on General Transaction Forests
* 7.5 Hybrid Algorithms

* 7.6 Locking for Return-value Commutativity

¢ 7.7 Lessons Learned

“A journey of thousand miles must begin with a single step.” (Lao-tse)

2PL for Flat Object Schedules

* introduce a special lock mode for each operation type
¢ derive lock compatibility from state-independent commutativity

¢ Lock acquisition rule:

L, operation f(x) needs to lock x in f mode
¢ Lock release rule:

Once an L, lock of f(x) is released,

no other L, lock can be acquired.

Example:
deposit(a) deposit(b)
] I f f

withdraw (c) withdraw(a)

no p— e —

7 Concurrency Control
Algorithms on Objects

* 7.2 Locking for Flat Object Transactions

* 7.3 Layered Locking

* 7.4 Locking on General Transaction Forests
* 7.5 Hybrid Algorithms
* 7.6 Locking for Return-value Commutativity

¢ 7.7 Lessons Learned

Layered 2PL

* Lock acquisition rule:
L; operation f(x) with parent p, which is now a subtransaction,
needs to lock x in f mode
* Lock release rule:
Once an L; lock of f(x) with parent p is released,
no other child of p can acquire any locks.
* Subtransaction rule:
At the termination of an L; operation f(x),
all L, locks acquired for children of f(x) are released.

Theorem 7.1:
Layered 2PL generates only tree reducible schedules.

Proof: All level-to-level schedules are OCSR, hence the claim (by Theorem 6.2).

Special cases:

* single-page subtransactions merely need latching

« for all-commutative L; operations, transactions are decomposed
into sequences of independently isolated, chained subtransactions

2-Level 2PL Example

store(z) modify(y) modify(w) .
— l l 1
. dify(y)
t 1 ff‘:tch(x) mo‘
! 1‘2 | o ——— — _I
L,
L,
| r(Or(p)r(q) wig) w(p) w() HO(p) w(p) r(t) () wip)
| — f N
t t t
' Hp) ’ : L)

Iy

I

Insert Into Persons
Values (Name-=...,
City="Austin",

3-Level Example

53

Select Name
From Persons
Where City="Seattle"

Select Name
From Persons

Where Age=30
Age=29, ...) And Age=29
store(x) insert search insert search fetch(y) search fetch(z)
(CityIndex, (CityIndex, (Agelndex, (Agelndex, (Agelndex,
"Austin", "Seattle") 29, @x) 29) 30)
IS ¥ M
1(p) w(p) r(r) r(n)

1) r() r(n) w(l) r(@) r(r) e x@) ey xAwA)r(p) wip) r(rrn*xd*) r(p) wip)

3-Level 2PL Example
Insert Into Persons

Select Name From Persons
: V:nlueﬂ Name=_.. Citv="Austin" Age=20__) Where Age=30 :
4 Select Name From Persons
; I wngmg itv="Seattle" And Age=29] L
2 | | 2
insert insert
(Citylndex, (Agelndex; search
store(x) " Austin”, @x) 29, @x) , (Agelndex. 30) fetch(z) |
3 search \ ! Lo f f 1
Iy (CityIndex, search
iSeattie’) (Agelndex) 29) fetehy) L,
Ly I e % 1
o(p) w(p) @) rhwd) S WY 3 x (1Y) w(p) wip)
et H—+—++ ———
Ly 0% L
(o) etn))

LY,
")) wp)
—] [o
by

b

112

L,
by

Selective Layered 2PL

For n-level schedule with layers L, ..., L,
apply locking on selected layers Liy, ..., Li,
with 1 <k <n,i;=n,i =0,i,>i
skipping all other layers

V+1°

¢ Lock acquisition rule:
Li, operation f(x) with Li,_, ancestor p, which is now a subtransaction,
needs to lock x in f mode
* Lock release rule:
Once an Li, lock of f(x) with Li,_; ancestor p is released,
no other Li, descendant of p can acquire any locks.
¢ Subtransaction rule:
At the termination of an Li, operation f(x),
all Li,,, locks acquired for descendants of f(x) are released.

Selective Layered 2PL Example

Insert Into Persons Select Name From Persons
g Values (Name=.... City="Austin", Age=29. ...) Where, Age=30 [
| | ' ' | |
Select Name From Persons
[Where City="Seattle" And Age=29 [L2
| \ L}
insert insert
(CityIndex; g/;geil)ndexﬂ search
store(x) A NEX (Agelndex;-30) fetch(z)
search
(Citylndex; Soarch
“Seattle") (Agelndex;:29) fetch(y) L1
r(p) w(p) r(r) r(m) r()yw(ly el x(n p (W) (e (1) r(p) w(p)
I | | | i) i) | 1] i) | I | | | | | | I
I T T ¥ T T T T T T T I T T T T T I
R)) RN WP w(p)

L0

T T T T T I

7 Concurrency Control
Algorithms on Objects

* 7.2 Locking for Flat Object Transactions
* 7.3 Layered Locking

* 7.4 Locking on General Transaction Forests

* 7.5 Hybrid Algorithms
* 7.6 Locking for Return-value Commutativity

¢ 7.7 Lessons Learned

Problem Scenario

t, t

\

deposit(x) deposit(y)

incr(a) append(l) decr(a) append(l) incr(b) append(l)

p)w(p) "@Dw(@ r(p)wp) (@ w(@ r(p) wp) r(q) w(q) 1(p)w(p) r(q) w(q)

Problem: layers can be “bypassed”
Solution: keep locks in “retained” mode

General Object-Model 2PL

 Lock acquisition rule:
Operation f(x) with parent p needs to lock x in f mode
* Lock conflict rule:
A lock requested by r(x) is granted if
* either no conflicting lock on x is held
* or when for every transaction that holds a conflicting lock, say h(x),
h(x) is a retained lock and r and h have ancestors r' and h' such that
h'is terminated and commutes with r'
* Lock release rule:
Once a lock of f(x) with parent p is released,
no other child of p can acquire any locks.
 Subtransaction rule:
At the termination of f(x),
all locks acquired for children of f(x) are converted into retained locks.
¢ Transaction rule:
At the termination of a transaction, all locks are released.

Theorem 7.2:
The object-model 2PL generates only tree-reducible schedules.

Proof Sketch for Theorem 7.2

« If all locks of t; were kept until commit,
b then tree reducibility were trivially guaranteed.
* Now show that retained f; lock by h, is sufficient
to prevent non-commutative subtree:

Let f, be the first conflict
h, with any lock under h,;
f, is allowed to proceed only
if h, is terminated and
h, commutes with h,;
— isolate h, from h,
— prune h, and h,
— commute h, with h,
if necessary

fl eoe eoe

7 Concurrency Control
Algorithms on Objects

* 7.2 Locking for Flat Object Transactions
* 7.3 Layered Locking

* 7.4 Locking on General Transaction Forests

* 7.5 Hybrid Algorithms

* 7.6 Locking for Return-value Commutativity

¢ 7.7 Lessons Learned

Hybrid Algorithms

Theorem 7.3:
For 2-level schedules the combination of 2PL at L, and FOCC at L,
generates only tree-reducible schedules.

Theorem 7.4:
For 2-level schedules the combination of 2PL at L, and ROMYV at L,
generates only tree-reducible schedules.

These combinations are particularly attractive
because subtransactions are short and
there is a large fraction of read-only subtransactions.

7 Concurrency Control
Algorithms on Objects

* 7.2 Locking for Flat Object Transactions

* 7.3 Layered Locking

* 7.4 Locking on General Transaction Forests
* 7.5 Hybrid Algorithms

* 7.6 Locking for Return-value Commutativity

¢ 7.7 Lessons Learned

Locking for Return-value
Commutativity

* introduce a special lock mode for each pair
<operation type, return value>,
Example: lock modes
withdraw-ok, withdraw-no, deposit-ok, getbalance-ok
* defer lock conflict test until end of subtransaction
* rollback subtransaction if lock cannot be granted
and retry

Escrow Locking

... on bounded counter object x with
lower bound low(x) and upper bound high(x)

Approach:
* maintain infimum inf{x) and supremum sup(x) for the value of x
taking into account all possible outcomes of active transactions
* adjust inf(x) and sup(x) upon
* operations incr(x), decr(x), and
* commit or abort of transactions

Escrow Locking Pseudocode

incr(x, A):
if x.sup + A < x.high then
X.sup := X.sup + A; return ok
else if x.inf + A > x.high then
return no
else wait fi fi;

decr(x, A):
if x.low < x.inf - A then
x.1nf := x.inf - A; return ok
else if x.low > x.sup - A then
return no
else wait fi fi;

commit(t):
for each op incr(x, A) by t do
x.inf := x.inf + A od;
for each op decr(x, A) by t do
X.sup := x.sup - A od;

abort(t):
for each op incr(x, A) by t do
X.sup := Xx.sup - A od;
for each op decr(x, A) by t do
x.inf := x.inf + A od;

constraint:
0<x

Escrow Locking Example

x® =50

decr(x,80)
| |
41 ' |
decr(x,10)
| } abort
(P9 |
incr(x,50)
| | |
o1 ' |
. decr(x,20)
t, | Fromeoee
x©® =100
[20, [10, [10, [10, [20, [0, [50,
@O] 100] 150170] 701 70] 70]

-/

[x.inf, X.sup]

Escrow Deadlock Example

incr(x,10) update(y)
t | 1 frmmmmmmne oo
incr(x,10) update(z)
t, | 1 fommmmmeeeee oo
incr(x,10)
ty | 1

Igetval(y) getval(z) decr(x,20)
t, 1 f fommmmrmmm oo

x® =0

7 Concurrency Control
Algorithms on Objects

* 7.2 Locking for Flat Object Transactions

* 7.3 Layered Locking

* 7.4 Locking on General Transaction Forests
* 7.5 Hybrid Algorithms

* 7.6 Locking for Return-value Commutativity

¢ 7.7 Lessons Learned

Lessons Learned

* Layered 2PL is the fundamental protocol for
industrial-strength data servers with record granularity locking
(it explains the trick of “long locking” and “short latching”).

* This works for all kinds of ADT operations within layers;
decomposed transactions with chained subtransactions
(aka. “Sagas™) are simply a special case.

* Non-layered schedules require additional, careful locking rules.

* Locking on some layers can be combined with other protocols
(e.g., ROMV or FOCC) on other layers.

* Escrow locking on counter objects is an example for additional

performance enhancements by exploiting rv commutativity.

	Chapter 7

