
1 / 28

Transactional Information Systems:

Theory, Algorithms, and

the

Practice of

Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

“

Teamwork is essential. It allows you to blame someone else.

”

(Anonymous)

© 2002 Morgan Kaufmann

ISBN 1

-

55860

-

508

-

8

2 / 28

Part II: Concurrency Control

•

3 Concurrency Control: Notions of Correctness for the Page Model

•

4 Concurrency Control Algorithms

•

5 Multiversion Concurrency Control

•

6 Concurrency Control on Objects: Notions of Correctness

•

7 Concurrency Control Algorithms on Objects

•

8 Concurrency Control on Relational Databases

•

9 Concurrency Control on Search Structures

•

10 Implementation and Pragmatic Issues

3 / 28

Chapter 8: Concurrency Control

on Relational Databases

•

8.2 Predicate

-

Oriented Concurrency Control

•

8.3 Relational Update Transactions

•

8.4 Exploiting Transaction

-

Program Knowledge

•

8.5 Lessons Learned

“

Knowledge without wisdom is a load of books on the back of an ass.

”

(Japanese proverb)

4 / 28

Relational Databases

•

Database consists of tables

•

Operations on tables and databases are

–

Queries (select

-

from

-

where expressions)

–

Insertions

–

Deletions

–

Modifications

•

Queries and updates use (single or sets of)

predicates

or

conditions

(where clause)

•

Sets

C

of conditions span

hyperplanes

H(C)

of

tuples

•

Hyperplanes can be subject to locking

5 / 28

Phantom Problem

Emp

Jones Service Clerk 20000

Meier Service Clerk 22000

Paulus Service Manager 42000

Smyth Toys Cashier 25000

Brown Sales Clerk 28000

Albert Sales Manager 38000

Name Department Position Salary

Update transaction t:

(a)

Delete From Emp

Where Department =

‘

Service

’

And Position =

‘

Manager

’

(b)

Insert Into Emp Values

(

‘

Smith

’

,

‘

Service

’

,

‘

Manager

’

, 40000)

(c)

Update Emp Set Department =

‘

Sales

’

Where Department =

‘

Service

’

And Position <>

‘

Manager

’

(d)

Insert Into Emp Values

(

‘

Stone

’

,

‘

Service

’

,

‘

Clerk

’

, 13000)

Retrieval transaction q:

Select Name, Position, Salary

From Emp

Where Department =

‘

Service

’

Observations:

•

Interleaving q with t leads to inconsistent read known as

“

phantom problem

”

•

Locking existing records cannot prevent this problem

Retrieval transaction p:

Select Name, Position, Salary

From Emp

Where Department =

‘

Sales

’

Example 8.1

6 / 28

Predicate Locking

•

Associate with each operation on table R(A

1

, ..., A

n

)

a set C of conditions that covers a set H(C) of

–

existing or conceivable

–

tuples

with H(C) = {

µ

∈

dom(A

1

)

×

...

×

dom(A

n

) |

µ

satisfies C}

•

Each operation locks its H(C)

[Update operations need to lock pre

-

and postcondition H(C) and H(C‘)]

Example 8.2:

C

a

: Department =

‘

Service

’

∧

Position =

‘

Manager

’

C

b

: Name=

‘

Smith

’

∧

Department=

‘

Service

’

∧

Position=

‘

Manager

’

∧

Salary=40000

C

c

: Department =

‘

Service

’

∧

Position

≠

‘

Manager

’

C

c

‘: Department =

‘

Sales

’

∧

Position

≠

‘

Manager

’

C

d

: Name=

‘

Stone

’

∧

Department=

‘

Service

’

∧

Position=

‘

Clerk

’

∧

Salary=13000

C

q

: Department =

‘

Service

’

C

p

: Department =

‘

Sales

’

H(C

a

)

∩

H(C

q

)

≠∅

,

H(C

b

)

∩

H(C

q

)

≠∅

,

H(C

c

)

∩

H(C

q

)

≠∅

,

H(C

d

)

∩

H(C

q

)

≠∅

H(C

c

‘)

∩

H(C

q

)=

∅

H(C

a

)

∩

H(C

p

)=

H(C

b

)

∩

H(C

p

)=

H(C

c

)

∩

H(C

p

)=

H(C

d

)

∩

H(C

p

)=

∅

H(C

c

‘)

∩

H(C

p

)

≠∅

7 / 28

Precision Locking

•

Predicate locks on predicates C

t

and C

t

‘

on behalf of transactions t and t‘ in modes m

t

and m

t

‘

are compatible if

•

t = t‘ or

•

both m

t

and m

t

‘ are read (shared) mode or

•

H(C

t

)

∩

H(C

t

‘) =

∅

•

Testing whether H(C

t

)

∩

H(C

t

‘) =

∅

is NP

-

complete

•

For preventing the phantom problem it is sufficient that

•

queries lock predicates and

•

insert, update, and delete operations lock individual records, and

•

compatibility is checked by testing that an update

-

affected record

does not satisfy any of the query predicate locks

8 / 28

8 Concurrency Control

on Relational Databases

•

8.2 Predicate

-

Oriented Concurrency Control

•

8.3 Relational Update Transactions

•

8.4 Exploiting Transaction

-

Program Knowledge

•

8.5 Lessons Learned

9 / 28

Idea

•

Transactions are sequences of insert, delete, or

modify operations

(in the style of SQL updates)

•

Define notions of serializability along the lines of the

classical ones

•

The

semantic information

available on transaction

effects can be exploited to allow

more concurrency

•

Additional concurrency can be allowed by using

dependency information

, in particular FDs

10 / 28

Transaction Syntax and Semantics

Definition 8.

1

(IDM Transaction):

An

IDM transaction

over a database schema D is a finite sequence of update

operations (insertions, deletions, modifications) over D.

If t

= u

1

. . . u

m

is an IDM transaction over a given database, the

effect

of t,

eff(t), is defined as

eff(t) := eff[u

1

]

°

. . .

°

eff[u

m

]

Insertion:

expression of the

form

i

R

(C), where C specifies a tuple over R

Deletion:

expression of the form d

R

(C), where C is a set of conditions

Modification:

expression of the form m

R

(C

1

; C

2

) (tuples satisfying C

1

are modified so that they satisfy C

2

)

11 / 28

Transaction Equivalence

Definition 8.2 (Transaction Equivalence):

Two IDM transactions over the same database schema are equivalent, written

t

≈

t‘, if

eff(t) = eff(t‘), i.e., t and t‘ have the same effect.

Transaction equivalence can be decided in polynomial time:

•

using a graphical illustration of transaction effects (“transition specs“)

•

using a sound and complete axiomatization of “

≈

“

We look at the latter (but only at some of the relevant rules)

12 / 28

Commutativity Rules

Let C

1

, C

2

, C

3

, C

4

be sets of conditions describing pairwise disjoint

hyperplanes:

1.

i(C

1

) i(C

2

)

≈

i(C

2

) i(C

1

)

2.

d(C

1

) d(C

2

)

≈

d(C

2

) d(C

1

)

3.

d(C

1

) i(C

2

)

≈

i(C

2

) d(C

1

)

if C

1

<> C

2

4.

m(C

1

; C

2

) m(C

3

; C

4

)

≈

m(C

3

; C

4

) m(C

1

; C

2

) if C

3

<> C

1

, C

2

and C

1

<> C

4

5.

m(C

1

; C

2

) i(C

3

)

≈

i(C

3

) m(C

1

; C

2

) if C

1

<> C

3

6.

m(C

1

; C

2

) d(C

3

)

≈

d(C

3

) m(C

1

; C

2

) if C

3

<> C

1

, C

2

13 / 28

Simplification Rules

1.

i(C

1

) i(C

1

) => i(C

1

)

2.

d(C

1

) d(C

1

) => d(C

1

)

3.

i(C

1

) d(C

1

) => d(C

1

)

4.

d(C

1

) i(C

1

) => i(C

1

)

5.

m(C

1

; C

1

) =>

e

6.

m(C

1

; C

2

) i(C

2

) => d(C

1

) i(C

2

)

Let C

1

, C

2

, C

3

, be sets of conditions describing pairwise disjoint hyperplanes:

7.

i(C

1

) m(C

1

; C

2

) => m(C

1

; C

2

) i(C

2

)

8.

m(C

1

; C

2

) d(C

1

) => m(C

1

; C

2

)

9.

m(C

1

; C

2

) d(C

2

) => d(C

1

) d(C

2

)

10.

d(C

1

) m(C

1

; C

2

) => d(C

1

)

11.

m(C

1

; C

2

) m(C

1

; C

3

) => m(C

1

; C

2

)

if C

1

<> C

2

12.

m(C

1

; C

2

) m(C

2

; C

3

)

=> m(C

1

; C

3

) m(C

2

; C

3

)

These rules can be used for transaction optimization.

14 / 28

Final State Serializability

Definition 8.3 (Final State Serializability):

A history s for a set T = { t

1

, ... t

n

} of IDM transactions is

final state

serializable

if s

≈

s‘ for some serial history s‘ for T

.

Let FSR

IDM

denote the class of all final state serializable histories (for T).

Example 8.3/4

: Let

t

1

= d(3) m(1; 2) m(3; 4),

t

2

= d(3) m(2; 3)

and consider

s = d

2

(3) d

1

(3) m

1

(1; 2) m

2

(2; 3) m

1

(3; 4)

s is neither equivalent to t

1

t

2

nor to t

2

t

1

; thus, s is not in FSR

IDM

However, optimizing t

1

to d(3) m(1; 2) yields

s‘ = d

2

(3) d

1

(3) m

1

(1; 2) m

2

(2; 3)

≈

t

1

t

2

15 / 28

Testing Membership in FSR

IDM

Theorem 8.1:

The problem of testing whether a given history is in FSR

IDM

is NP complete.

Thus, “exact“ testing is no easier than for page

model transactions when semantic information is

present.

16 / 28

Conflict Serializability

Definition 8.4 (Conflict Serializability):

A history s for a set T of n transactions is

conflict serializable

if the equivalence

of s

to a serial history can be proven using the commutativity rules alone

.

Let CSR

IDM

denote the class of all

conflict

serializable histories (for T).

Definition 8.5 (Conflict Graph):

Let T be a set of IDM transactions and s a history for T. The

conflict graph

G(s) = (T, E) of s is defined by: (t

i

, t

j

) is in E if for transactions t

i

and t

j

in V,

i <> j, there is an update u in t

i

and an update u‘ in t

j

s.t. u <

s

u‘ and

uu‘ is not equivalent to u‘u (i.e., uu‘

≈

u‘u does not hold)

.

Theorem 8.2:

Let s be a history for a set T of transactions. Then s is in CSR

IDM

iff G(s) is

acyclic.

17 / 28

Example 8.6

C

onsider

s = m

2

(1; 2) m

1

(2; 3) m

2

(3;

2

)

G(

s

) is cyclic, so s is

not

in

CSR

IDM

On the other hand, s

≈

m

1

(2; 3) m

2

(1; 2) m

2

(3;

2

)

≈

t

1

t

2

so s is in

F

SR

IDM

Consequence:

CSR

IDM

is a strict subset of F

SR

IDM

t

1

t

2

18 / 28

Extended Conflict Serializability

Definition 8.6 (Extended Conflict Graph / Serializability):

Let s be a history for a set T = { t

1

, ... t

n

} of transactions.

(i)

The

extended conflict graph

EG(s) = (T, E) of s is defined by:

(t

i

, t

j

) is in E if there is an update u in t

j

s.t. s = s‘ u s‘‘ and u does not commute

with the projection of s‘ onto t

i

.

(ii)

s is

extended conflict serializable

if EG(s) is acyclic.

Let ECSR

IDM

denote the class of all extended conflict serializable histories.

Sometimes, the

context

in which a conflict occurs can make a difference:

Example

: Let

s = d

1

(0) m

1

(0; 1) m

2

(1; 2) m

1

(2; 3)

G(s) is cyclic, but s

≈

m

2

(1; 2) d

1

(0) m

1

(0; 1) m

1

(2; 3)

≈

t

2

t

1

Intutively, the conflict involving

m

1

(0; 1) does not exist (due to d

1

(0)) !

19 / 28

Relationship between the Classes

Theorem

8.3

:

CSR

IDM

⊂

E

CSR

IDM

⊂

F

SR

IDM

.

CSR

IDM

E

CSR

IDM

F

SR

IDM

20 / 28

Serializability w/ Functional Dependencies

Consider a relation with attributes A and B s.t. A

-

> B holds, and the following

history:

s = m

1

(A=0, B=0; A=0, B=2) m

2

(A=0, B=0; A=0, B=3)

m

2

(A=0, B=1; A=0, B=3) m

1

(A=0, B=1; A=0, B=2)

s is in neither of CSR

IDM

,

ECSR

IDM

,

FSR

IDM

.

However, the first conflict affects (0,0), while the second affects (0,1),

and

these two tuples cannot occur simultaneously in a relation satisfying

the given FD

! So depending on the state, s

≈

t

1

t

2

or s

≈

t

2

t

1 .

21 / 28

8 Concurrency Control

on Relational Databases

•

8.2 Predicate

-

Oriented Concurrency Control

•

8.3 Relational Update Transactions

•

8.4 Exploiting Transaction

-

Program Knowledge

•

8.5 Lessons Learned

22 / 28

Motivation: Short Transactions Are Good

decompose

?

t

11

: r(A

1

)w(A

1

)

t

12

:

r(B

1

)w(B

1

)

t

21

: r(A

3

)w(A

3

)

t

22

:

r(B

1

)w(B

1

)

t

31

: r(A

4

)w(A

4

)

t

32

:

r(B

2

)w(B

2

)

t

61

: r(A

1

)r(A

2

)r(A

3

)r(B

1

)

t

62

:

r(A

4

)r(A

5

)r(B

2

)

Debit/credit:

t

1

: r(A

1

)w(A

1

)

r(B

1

)w(B

1

)

t

2

: r(A

3

)w(A

3

)

r(B

1

)w(B

1

)

t

3

: r(A

4

)w(A

4

)

r(B

2

)w(B

2

)

Balance:

t

4

: r(A

2

)

t

5

: r(A

4

)

Audit:

t

6

: r(A

1

)r(A

2

)r(A

3

)r(B

1

)

r(A

4

)r(A

5

)r(B

2

)

Example 8.12:

23 / 28

Transaction Chopping

Assumption:

all potentially concurrent app programs are known in advance and

their structure and resulting access patterns can be precisely analyzed

Definition 8.8 (Transaction Chopping):

A

chopping

of transaction t

i

is a decomposition of t

i

into pieces t

i1

, ..., t

ik

s.t.

every step of t

i

is contained in exactly one piece and the step order is preserved.

Definition 8.10 (Correct Chopping):

A chopping of T={t

1

, ..., t

n

} is

correct

if every execution of the transaction

pieces is conflict

-

equivalent to a serial history of T under a protocol with

•

transaction pieces obey the execution precedences of the original programs.

•

each piece is executed as a unit under a CSR scheduler.

24 / 28

Chopping Graph

Definition 8.9 (Chopping Graph):

For a chopping of transaction set T the

chopping graph

C(T)

is

an undirected graph s.t.

•

the nodes of C(T) are the transaction pieces

•

for two pieces p, q from different transactions C(T) contains a

c edge

between p and p‘ if p and q contain conflicting operations

•

for two pieces p, q from the same transaction C(T) contains an

s edge

Theorem 8.5:

A chopping is correct if the associated chopping graph does not contain

an sc cycle (i.e., a cycle that involves at least one s edge and at least one c edge.

Example 8.13:

t

1

= r(x)w(x)

r(y)w(y)

t

2

= r(x)w(x)

t

3

= r(y)w(y)

t

11

= r(x)w(x)

t

12

=

r(y)w(y)

t

11

t

12

t

2

t

3

s

c

c

C(T):

25 / 28

Chopping Example 8.14

t

1

: r(A

1

)w(A

1

)

r(B

1

)w(B

1

)

t

2

: r(A

3

)w(A

3

)r(B

1

)w(B

1

)

t

3

: r(A

4

)w(A

4

)r(B

2

)w(B

2

)

t

4

: r(A

2

)

t

5

: r(A

4

)

t

6

: r(A

1

)r(A

2

)r(A

3

)r(B

1

)

r(A

4

)r(A

5

)r(B

2

)

t

61

: r(A

1

)r(A

2

)r(A

3

)r(B

1

)

t

62

:

r(A

4

)r(A

5

)r(B

2

)

t

1

t

2

t

3

t

4

t

5

t

61

t

62

c

c

c

c

c

s

t

11

: r(A

1

)w(A

1

)

t

12

:

r(B

1

)w(B

1

)

t

12

t

2

t

3

t

4

t

5

t

61

t

62

c

c

c

c

c

s

t

11

c

s

26 / 28

Applicability of Chopping

Directly applicable to straight

-

line, parameter

-

less

SQL programs with predicate locking

Needs to conservatively derive covering program for

parameterized SQL, if

-

then

-

else and loops,

and needs to be conservative about c edges

Example:

Select AccountNo From Accounts

Where AccountType=‚savings‘ And City = :x;

if not found then

Select AccountNo From Accounts

Where AccountType=‚checking‘ And City = :x

fi;

→

Select AccountNo From Accounts

Where AccountType=‚savings‘;

Select AccountNo From Accounts

Where AccountType=‚checking‘;

27 / 28

8 Concurrency Control

on Relational Databases

•

8.2 Predicate

-

Oriented Concurrency Control

•

8.3 Relational Update Transactions

•

8.4 Exploiting Transaction

-

Program Knowledge

•

8.5 Lessons Learned

28 / 28

Lessons Learned

•

Predicate locking is an elegant method for concurrency control

on relational databases, but has non

-

negligible overhead

→

record locking (plus index key locking) for 2

-

level schedules

remains the practical method of choice

•

Concurrency control may exploit additional knowledge about

limited operation types, integrity constraints, and program

structure

•

Transaction chopping is an interesting tuning technique

that aims to exploit such knowledge

	Chapter 8

