
1 / 27

Transactional Information Systems:

Theory, Algorithms, and

the

Practice of

Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

“

Teamwork is essential. It allows you to blame someone else.

”

(Anonymous)

© 2002 Morgan Kaufmann

ISBN 1

-

55860

-

508

-

8

2 / 27

Part II: Concurrency Control

•

3 Concurrency Control: Notions of Correctness for the Page Model

•

4 Concurrency Control Algorithms

•

5 Multiversion Concurrency Control

•

6 Concurrency Control on Objects: Notions of Correctness

•

7 Concurrency Control Algorithms on Objects

•

8 Concurrency Control on Relational Databases

•

9 Concurrency Control on Search Structures

•

10 Implementation and Pragmatic Issues

3 / 27

Chapter 9: Concurrency Control

on Search Structures

•

9.2 Implementation by B

+

-

trees

•

9.3 Key

-

Range Locking at the Access Layer

•

9.4 Techniques for the Page Layer

•

9.5 Further Optimizations

•

9.6 Lessons Learned

“

As long as one keeps searching, the answers come.

”

(Joan Baez)

4 / 27

Example

→

fetches records p, q

t

1

:

Update Persons

Set City = „Phoenix„

Where Age

≥

50

And City = „Dallas„

t

2

:

Select * From Persons

Where City = „Phoenix„

Select * From Persons

Where City = „Dallas„

→

modifies record x

→

fetches records d, e

Observations:

•

page locking would prevent this phantom

-

problem execution

•

locking the accessed records alone is insufficient

•

need appropriate locks on (key, RID) pairs in City index

5 / 27

Chapter 9: Concurrency Control

on Search Structures

•

9.2 Implementation by B

+

-

trees

•

9.3 Key

-

Range Locking at the Access Layer

•

9.4 Techniques for the Page Layer

•

9.5 Further Optimizations

•

9.6 Lessons Learned

6 / 27

Implementation of Index by B

+

-

tree

Adam

Bill

Dick

Eve

Hank

Jane

Bob

Jill

Tom

Bob

Eve

Root Node

Leaf Nodes

RIDs

B+

-

tree

Search tree interface:

•

lookup <index> where <indexed field> = <search key>

•

lookup <index> where <indexed field>

between <lower bound> and <higher bound>

7 / 27

Simple Insertion into B

+

-

tree Index

Adam

Bill

Dick

Eve

Hank

Jane

Carl

Jill

Tom

Carl

Eve

Adam

Bill

Dick

Ellen

Hank

Jane

Bob

Jill

Tom

Carl

Eve

Carl

Eve

+ Ellen, + Bob

8 / 27

Insertion into B

+

-

tree with Leaf Node Split

Adam

Bill

Dick

Ellen

Hank

Jane

Sue

Tom

Bob

Jill

Carl

Eve

Jill

Carl

Eve

Leaf Node Split

Adam

Bill

Dick

Ellen

Hank

Jane

Bob

Jill

Tom

Carl

Eve

Carl

Eve

+ Sue

Sue

9 / 27

Insertion into B

+

-

tree with Root Node Split

Root Node Split

+ Betty

Adam

Betty

Dick

Ellen

Hank

Jane

Sue

Tom

Bill

Jill

Carl

Eve

Jill

Eve

Bob

Carl

Bill

Adam

Betty

Dick

Ellen

Hank

Jane

Sue

Tom

Bill

Jill

Bill

Carl

Eve

Bob

Carl

Jill

Eve

root

node

inner

nodes

leaf

nodes

10 / 27

Chapter 9: Concurrency Control

on Search Structures

•

9.2 Implementation by B

+

-

trees

•

9.3 Key

-

Range Locking at the Access Layer

•

9.4 Techniques for the Page Layer

•

9.5 Further Optimizations

•

9.6 Lessons Learned

11 / 27

Simple Key

-

Range Locking

ADT interface for search structure:

insert (key, RID)

delete (key, RID)

search (key)

range_search (lowkey, highkey)

Protocol:

•

insert, delete, and search lock single key

(insert and delete in compatible modes)

•

range_search locks interval [lowkey, highkey]

•

table scan effectively locks interval [

-

∞

, +

∞

]

+ page locks acquired during subtransactions

→

lock manager needs

“

key in interval

”

test

→

range_search

“

preclaims

”

lock on entire interval

12 / 27

Incremental Key

-

Range Locking

refined ADT interface with

range_search(lowkey, highkey) replaced by:

search (lowkey)

↑

key

↑

page

next (currentkey, currentpage, highkey)

↑

key

↑

page

next ...

Incremental Key

-

Range (Previous

-

Key) Locking Protocol:

•

search(x) requests read lock on x if x is present,

or largest key < x if x is not found

•

next(currentkey, ...) requests read lock on currentkey

•

insert (y, RID) requests write locks on y and largest key < y

•

delete (y, RID) requests write locks on y and largest key < y

Approach:

operations lock intervals [found

-

key, next

-

existing

-

key)

identified by

“

found

-

key

”

(i.e., only keys that do exist in the index)

+ page locks during subtransactions

13 / 27

Example: Incremental Key

-

Range Locking

18

31

38

r

...

n

17

18

22

25

31

p

33

36

38

q

...

range_search (23, 34):

search (23)

↑

25

↑

p

lock page r, page n, page p

lock key 22

unlock pages r, n, p

next (25, p, 34)

↑

31

↑

p

lock key 25

next (31, p, 34)

↑

33

↑

q

lock key 31

next (33, q, 34)

↑

nil

↑

nil

lock key 33

insert (27, ...):

lock page r, page n, page p

lock key 25

lock key 27

unlock pages r, n, p

14 / 27

Correctness of Incremental Key

-

Range Locking

Theorem 9.1:

Previous

-

key locking generates only conflict

-

serializable schedules as far as

index operations are concerned.

Proof sketch:

•

search(x) is in conflict with insert(y, RID) or delete (y, RID) only for x=y

•

for successful search the conflict is detected by locks on x

•

for unsuccessful search the conflict is detected by locks on largest key < x

•

range_search (low, high) is in conflict with insert (y, RID) or delete (y, RID)

if y falls into [low, high]

•

this conflict is detected because range_search incrementally acquires locks on

all keys from low or the largest key < low up to and including

the largest key

≤

high, which must include the largest key < y

•

insert (x, RID) and insert (y, RID) conflict

only for x=y (and only for unique index)

...

15 / 27

Chapter 9: Concurrency Control

on Search Structures

•

9.2 Implementation by B

+

-

trees

•

9.3 Key

-

Range Locking at the Access Layer

•

9.4 Techniques for the Page Layer

•

9.5 Further Optimizations

•

9.6 Lessons Learned

16 / 27

Problem Scenario

18

31

38

r

...

n

17

18

22

25

27

p

33

36

38

q

...

31

18

31

38

r

...

n

17

18

22

25

27

p

33

36

38

q

...

30

31

p'

18

27

31

38

r

...

n

17

18

22

25

27

p

33

36

38

q

...

30

31

p'

stage 0

stage 1

stage 2

Problem:

search(31) or insert(31) in between stage 1 and stage 2

17 / 27

Solution 1: Lock Coupling (

“

Crabbing

”

)

Definition:

A tree node is

split

-

safe

if it has enough free space

to accommodate at least one additional routing key and child pointer

Protocol:

•

Search operations need a read lock before accessing a node.

Insert operations need a write lock before accessing a node.

•

A lock can be granted only if there is no conflict and

the requestor holds a lock (in the same mode) on the node's parent.

•

Search operations can release a lock on a node once they have

acquired a lock on a child of that node.

•

Insert operations can release a lock on a node if

•

the node is split

-

safe and

•

they have acquired a lock on a child of that node

Theorem 9.2:

Lock coupling for search and insert operations generates only OCSR schedules.

18 / 27

Example: Lock Coupling

insert (30):

search (31):

write lock r

write lock n

unlock r

read lock r

request read lock on n

write lock p

allocate new page p'

write lock p'

split contents of p onto p and p'

adjust contents of n

release locks on n, p, p'

acquire read lock on n

release lock on r

read lock p'

release lock on n

return RID for key 31

release lock on p'

19 / 27

Lock Coupling with Range Searches,

Next, and Delete Operations

•

the initial

search (lowkey)

of a

range_search (lowkey, highkey)

operation applies the locking rules for exact

-

key search operations

•

a

next (currentkey, currentpage, highkey)

operation needs to

acquire a read lock on

currentpage

, and

it can acquire a lock on another leaf node

only if it holds a lock on the preceding leaf.

•

delete operations do

not

trigger node merging

•

an empty node can be deallocated only when all transactions

that were active at the time when the node became empty

have terminated

(

“

drain technique

”

)

20 / 27

Correctness of Extended Lock Coupling

Theorem 9.3:

Lock coupling with next operations generates only OCSR schedules.

Proof sketch:

•

By Theorems 9.1 and 9.3, schedules with search, insert, delete, and next

operations are tree reducible.

•

So the remaining problem scenario is of the form:

... search

i

(lowkey) ... insert

k

(x, RID

1

) ... next

i

(currentkey

1

, ..., highkey) ...

... insert

l

(y, RID

2

) ... next

i

(currentkey

2

, ..., highkey) ...

with active transactions t

i

, t

k

, t

l

•

x cannot fall into [lowkey, currentkey

1

] and

y cannot fall into [lowkey, currentkey

2

] because of previous

-

key lock conflicts

•

So both insert

k

(x, ...) and insert

l

(y, ...) can be commuted to the left of t

i

Theorem 9.4:

(Extended) Lock coupling at the page layer together with incremental key

-

range

locking at the access layer ensure tree reducibility of all 2

-

level schedules.

21 / 27

Example: Extended Lock Coupling

range_search (24, 35):

insert (30):

search (24)

read lock r, read lock n, unlock r

read lock p, unlock n

read lock key 22, unlock p

write lock r, write lock n, unlock r

next (25, p, 35)

read lock p

read lock key 25, unlock p

write lock p

next (27, p, 35)

request read lock on p

write lock key 30, write lock key 27

release locks on p, p', n

acquire lock on p

request read lock on key 27

commit transaction

acquire lock on key 27

read lock p', unlock p, unlock p'

next (30, p', 35)

read lock p', read lock key 30, unlock p'

...

22 / 27

Solution 2: Link Technique

Link protocol:

•

Search operations need only lock the currently accessed node

(no need for holding two page locks simultaneously)

•

Upon

“

not found

”

, search and next operations proceed to the

right sibling node until they have seen a larger key

Solution 3: Giveup Technique

Giveup protocol:

•

All operations need only lock the currently accessed node

(no need for holding two page locks simultaneously)

•

Each node contains a

“

range field

”

for its subtree,

maintained by splits on a per node basis

•

Upon seeing a node with a range field that does not contain

the search key, the operation

“

gives up

”

and is retried, starting again from the root

23 / 27

Example: Link Technique

insert (30):

search (31):

read lock r

release lock on r

read lock n

release lock on n

write lock r

write lock n

unlock r

write lock p

request read lock on p

allocate new page p'

write lock p'

split contents of p onto p and p'

adjust contents of n

release locks on n, p, p'

acquire lock on p

release lock on p

read lock p'

return RID for key 31

release lock on p'

24 / 27

Chapter 9: Concurrency Control

on Search Structures

•

9.2 Implementation by B

+

-

trees

•

9.3 Key

-

Range Locking at the Access Layer

•

9.4 Techniques for the Page Layer

•

9.5 Further Optimizations

•

9.6 Lessons Learned

25 / 27

Further Optimizations

•

Index traversal can use deadlock

-

free page latching

rather than full

-

fledged locks

•

Insert operations for the same key interval are commutative

→

insert lock mode compatible with itself,

but incompatible with read

•

Insert operations merely need instant

-

duration lock on previous key

•

Delete operations that leave a “ghost key” for deferred

garbage collection need to lock only the deleted key

•

Fewer locks (but possibly less concurrency)

by locking (key, RID) pairs or only RIDs

26 / 27

Chapter 9: Concurrency Control

on Search Structures

•

9.2 Implementation by B

+

-

trees

•

9.3 Key

-

Range Locking at the Access Layer

•

9.4 Techniques for the Page Layer

•

9.5 Further Optimizations

•

9.6 Lessons Learned

27 / 27

Lessons Learned

•

Index concurrency control is a perfect example

for

layered schedules

•

At the

access layer

, a primitive form of predicate locking is used,

namely, key

-

range locking, and

optimized for incremental, low

-

overhead lock acquisition

•

At the

page layer

, short

-

term locks or latches are used

to isolate index operations,

with protocols ranging from S2PL for subtransactions to

lock coupling, link techniques, or give

-

up protocols

•

Locking rules at the two levels are

integrated

with each other

	Chapter 9

