Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann ISBN 1-55860-508-8

"Teamwork is essential. It allows you to blame someone else."(Anonymous)

Part III: Recovery

- 11 Transaction Recovery
- 12 Crash Recovery: Notion of Correctness
- 13 Page-Model Crash Recovery Algorithms
- 14 Object-Model Crash Recovery Algorithms
- 15 Special Issues of Recovery
- 16 Media Recovery
- 17 Application Recovery

Recall: Funds Transfer Example

```
void main () {
    /* read user input */
    scanf ("%d %d %d", &sourceid, &targetid, &amount);
    /* subtract amount from source account */
    EXEC SQL Update Account
    Set Balance = Balance - :amount Where Account_Id = :sourceid;
    /* add amount to target account */
    EXEC SQL Update Account
        Set Balance = Balance + :amount Where Account_Id = :targetid;
    EXEC SQL Commit Work; }
```

Observation: failures may cause inconsistencies, require recovery for "atomicity" and "durability"

Also Recall: Dirty Read Problem

P1	Time	P2
r (x)	1	
$\mathrm{x}:=\mathrm{x}+100$	2	
w (x)	3	
	5	$\underline{x}:=\mathrm{x}-100$
failure \& rollback	6	$\mathbf{w}(\mathbf{x})$

Observation: transaction rollbacks could affect concurrent transactions

Chapter 11: Transaction Recovery

-11.2 Expanded Schedules

- 11.3 Page-Model Correctness Criteria
- 11.4 Sufficient Syntactic Conditions
- 11.5 Further Relationships Among Criteria
- 11.6 Extending Page-Model CC Algorithms
- 11.7 Object-Model Correctness Criteria
- 11.8 Extending Object-Model CC Algorithms
- 11.9 Lessons Learned
"And if you find a new way, you can do it today.
You can make it all true. And you can make it undo. "(Cat Stevens)

Expanded Schedules with Explicit Undo Steps

Dirty-read problem:
$\mathrm{s}=\mathrm{r}_{1}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathbf{a}_{\mathbf{1}} \mathrm{w}_{2}(\mathrm{x}) \mathrm{c}_{2}$

Approach:

- schedules with aborts are expanded by making the undo operations that implement the rollback explicit
- expanded schedules are analyzed by means of serializability arguments

Dirty-read in expanded schedule:
$\mathrm{s}^{\prime}=\mathrm{r}_{1}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{w}_{\mathbf{1}}{ }^{-1}(\mathbf{x}) \mathrm{c}_{1} \mathrm{w}_{2}(\mathrm{x}) \mathrm{c}_{2} \quad \rightarrow \notin \mathrm{CSR}$

Examples

$$
s=r_{1}(x) w_{1}(x) r_{2}(y) w_{1}(y) w_{2}(y) a_{1} r_{2}(z) w_{2}(z) c_{2}
$$

Expansion?

How to handle active trasactions, as in

$$
\mathrm{s}=\mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{y}) \mathrm{w}_{1}(\mathrm{x}) \quad ?
$$

Formal Definition of Expanded Schedules

Definition 11.1 (Expansion of a Schedule):

For a schedule s the expansion of $s, \exp (s)$, is defined as follows:

- steps of $\exp (s)$:
- $\mathrm{t}_{\mathrm{i}} \in \operatorname{commit}(\mathrm{s}) \Rightarrow \mathrm{op}\left(\mathrm{t}_{\mathrm{i}}\right) \subseteq \mathrm{op}(\exp (\mathrm{s}))$
- $\mathrm{t}_{\mathrm{i}} \in \operatorname{abort}(\mathrm{s}) \Rightarrow\left(\mathrm{op}\left(\mathrm{t}_{\mathrm{i}}\right)-\left\{\mathrm{a}_{\mathrm{i}}\right\}\right) \cup\left\{\mathrm{c}_{\mathrm{i}}\right\} \cup\left\{\mathrm{w}_{\mathrm{i}}^{-1}(\mathrm{x}) \mid \mathrm{w}_{\mathrm{i}}(\mathrm{x}) \in \mathrm{t}_{\mathrm{i}}\right\} \subseteq \mathrm{op}(\exp (\mathrm{s}))$
- $\mathrm{t}_{\mathrm{i}} \in \operatorname{active}(\mathrm{s}) \Rightarrow \mathrm{op}\left(\mathrm{t}_{\mathrm{i}}\right) \cup\left\{\mathrm{c}_{\mathrm{i}}\right\} \cup\left\{\mathrm{w}_{\mathrm{i}}^{-1}(\mathrm{x}) \mid \mathrm{w}_{\mathrm{i}}(\mathrm{x}) \in \mathrm{t}_{\mathrm{i}}\right\} \subseteq \mathrm{op}(\exp (\mathrm{s}))$
- step ordering in $\exp (\mathrm{s})$:
- all steps from $o p(s) \cap o p(\exp (s))$ occur in $\exp (s)$ in the same order as in s
- all inverse steps of an aborted transaction occur in $\exp (s)$
after the original steps in s and before the commit of this transaction
- all inverse steps of active transactions occur in $\exp (s)$ after the original steps of s and before the commits of these transactions
- the ordering of inverse steps is the reverse of the ordering of the corresponding original steps

Example 11.2:

$$
\begin{aligned}
& s=w_{1}(x) w_{2}(x) w_{2}(y) w_{1}(y) \\
& \Rightarrow \exp (s)=w_{1}(x) w_{2}(x) w_{2}(y) w_{1}(y) w_{1}^{-1}(y) w_{2}^{-1}(y) w_{2}^{-1}(x) w_{1}^{-1}(x) c_{2} c_{1}
\end{aligned}
$$

Chapter 11: Transaction Recovery

- 11.2 Expanded Schedules
- 11.3 Page-Model Correctness Criteria
- 11.4 Sufficient Syntactic Conditions
- 11.5 Further Relationships Among Criteria
- 11.6 Extending Page-Model CC Algorithms
- 11.7 Object-Model Correctness Criteria
- 11.8 Extending Object-Model CC Algorithms
- 11.9 Lessons Learned

Expanded Conflict Serializability (XCSR)

Definition 11.2 (Expanded Conflict Serializability):

A schedule s is expanded conflict serializable if its expansion, $\exp (s)$, is conflict serializable.
XCSR denotes the class of expanded conflict serializable schedules.

Example 11.4:

- $\mathrm{s}=\mathrm{r}_{1}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{a}_{1} \mathrm{c}_{2}$
$\Rightarrow \exp (s)=r_{1}(x) w_{1}(x) r_{2}(x) w_{1}^{-1}(x) c_{1} c_{2} \quad \notin X C S R$
$s^{\prime}=r_{1}(x) W_{1}(x) a_{1} r_{2}(x) c_{2}$
$\Rightarrow \exp \left(s^{\prime}\right)=r_{1}(x) W_{1}(x) w_{1}^{-1}(x) c_{1} r_{2}(x) c_{2} \quad \in X C S R$
Lemma 11.1:
- $\mathrm{XCSR} \subset \mathrm{CSR}$

Example 11.5:

- $s=w_{1}(x) w_{2}(x) a_{2} a_{1}$
$\Rightarrow \exp (s)=w_{1}(x) w_{2}(x) w_{2}^{-1}(x) c_{2} W_{1}^{-1}(x) c_{1} \quad \notin X C S R$

Reducibility (RED)

Definition 11.3 (Reducibility):

A schedule s is reducible if its expansion, $\exp (s)$, can be transformed into a serial history by finitely many applications of the following rules:

- commutativity rule (CR):
if $\mathrm{p}, \mathrm{q} \in \operatorname{op}(\exp (\mathrm{s}))$ s.t. $\mathrm{p}<\mathrm{q}$ and $(\mathrm{p}, \mathrm{q}) \notin \operatorname{conf}(\exp (\mathrm{s}))$ and
if there is no step $\mathrm{o} \in \mathrm{op}(\exp (\mathrm{s}))$ with $\mathrm{p}<\mathrm{o}<\mathrm{q}$,
then the order of p and q can be reversed.
- undo rule (UR):
if $p, q \in \operatorname{op}(\exp (s))$ are inverses of each other (i.e., of the form $p=w_{i}(x)$ and $\mathrm{q}=\mathrm{w}_{\mathrm{i}}^{-1}(\mathrm{x})$) and if there is no other step o in between p and q , then the pair of steps p and q can be removed from $\exp (\mathrm{s})$.
- null rule (NR):
if $\mathrm{p} \in \operatorname{op}(\exp (\mathrm{s}))$ has the form $\mathrm{p}=\mathrm{r}_{\mathrm{i}}(\mathrm{x})$ s.t. $\mathrm{t}_{\mathrm{i}} \in \operatorname{active}(\mathrm{s}) \cup$ abort(s$)$, then p can be removed from $\exp (\mathrm{s})$.
- ordering rule (OR):
two commutative, unordered operations can be arbitrarily ordered.

Examples in RED and outside RED

Example 11.6:

```
\(\mathrm{s}=\mathrm{r}_{1}(\mathrm{x}) \mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{a}_{2} \mathrm{a}_{1}\)
\(\Rightarrow \exp (s)=r_{1}(x) w_{1}(x) r_{2}(x) w_{2}(x) w_{2}^{-1}(x) c_{2} W_{1}^{-1}(x) c_{1} \quad \in R E D\)
```

 \(\sim r_{1}(x) W_{1}(x) r_{2}(x) c_{2} W_{1}^{-1}(x) c_{1}\)
 \(\sim \mathrm{W}_{1}(\mathrm{x}) \mathrm{c}_{2} \mathrm{~W}_{1}^{-1}(\mathrm{x}) \mathrm{c}_{1}\)
 \(\sim \mathrm{W}_{1}(\mathrm{x}) \mathrm{w}_{1}^{-1}(\mathrm{x}) \mathrm{c}_{2} \mathrm{c}_{1}\)
 $$
\sim c_{2} c_{1}
$$

by UR
by NR
by CR
by UR

Example 11.7:

$\mathrm{s}=\mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{c}_{1} \mathrm{c}_{2}$
s is in RED, since reduction yields $s^{\prime}=W_{1}(x) c_{1} r_{2}(x) c_{2}$
Example 11.8:
$\mathrm{s}=\mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{c}_{2} \mathrm{c}_{1}$ with prefix $\mathrm{s}^{\prime}=\mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{c}_{2}$
s is in RED, but s^{\prime} is not

Prefix-Reducibility (PRED)

Definition 11.9 (Prefix Reducibility):

A schedule s is prefix reducible if each of its prefixes is reducible. PRED denotes the class of all prefix-reducible schedules.

Theorem 11.1:

- PRED \subset RED (Lemma 11.2)
- $\mathrm{XCSR} \subset$ RED
- XCSR and PRED are incomparable

Activity: Why Histories are [not] in PRED?

1) $w_{1}(x) r_{2}(x) a_{1} a_{2}$	$\in \mathrm{PRED}$
2) $w_{1}(x) r_{2}(x) a_{1} c_{2}$	$\notin \mathrm{PRED}$
3) $w_{1}(x) r_{2}(x) c_{2} c_{1}$	$\notin \mathrm{PRED}$
4) $w_{1}(x) r_{2}(x) c_{2} a_{1}$	$\notin \mathrm{PRED}$
5) $w_{1}(x) r_{2}(x) a_{2} a_{1}$	$\in \mathrm{PRED}$
6) $w_{1}(x) r_{2}(x) a_{2} c_{1}$	$\in \mathrm{PRED}$
7) $w_{1}(x) r_{2}(x) c_{1} c_{2}$	$\in \mathrm{PRED}$
8) $w_{1}(x) r_{2}(x) c_{1} a_{2}$	$\in \mathrm{PRED}$
9) $w_{1}(x) w_{2}(x) a_{1} a_{2}$	$\notin \mathrm{PRED}$
10) $w_{1}(x) w_{2}(x) a_{1} c_{2}$	\notin PRED
11) $\mathrm{w}_{1}(x) \mathrm{w}_{2}(\mathrm{x}) \mathrm{c}_{2} \mathrm{c}_{1}$	\notin PRED
12) $w_{1}(x) w_{2}(x) c_{2} a_{1}$	$\notin \mathrm{PRED}$
13) $w_{1}(x) w_{2}(x) a_{2} a_{1}$	$\in \mathrm{PRED}$
14) $\mathrm{w}_{1}(x) \mathrm{w}_{2}(\mathrm{x}) \mathrm{a}_{2} \mathrm{c}_{1}$	$\in \mathrm{PRED}$
15) $w_{1}(x) w_{2}(x) c_{1} c_{2}$	$\in \mathrm{PRED}$
16) $\mathrm{w}_{1}(x) \mathrm{w}_{2}(\mathrm{x}) \mathrm{c}_{1} \mathrm{a}_{2}$	$\in \mathrm{PRED}$

Chapter 11: Transaction Recovery

- 11.2 Expanded Schedules
- 11.3 Page-Model Correctness Criteria
- 11.4 Sufficient Syntactic Conditions
- 11.5 Further Relationships Among Criteria
- 11.6 Extending Page-Model CC Algorithms
- 11.7 Object-Model Correctness Criteria
- 11.8 Extending Object-Model CC Algorithms
- 11.9 Lessons Learned

Example

Consider

$\mathrm{s}=\mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{c}_{2} \mathrm{a}_{1}$
s is not acceptable (why?),
yet an SR scheduler would consider it valid (why?).

Sufficient Condition: Recoverability

Definition 11.5 (Recoverability):

A schedule s is recoverable if the following holds for all $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}} \in \operatorname{trans}(\mathrm{s})$: if t_{i} reads from t_{j} in s and $c_{i} \in o p(s)$, then $c_{j}<c_{i}$.
RC denotes the class of all recoverable schedules.
Example 11.10:

$$
\begin{array}{ll}
s_{1}=w_{1}(x) w_{1}(y) r_{2}(u) w_{2}(x) r_{2}(y) w_{2}(y) w_{3}(u) c_{3} c_{2} w_{1}(z) c_{1} & \notin R C \\
s_{2}=w_{1}(x) w_{1}(y) r_{2}(u) w_{2}(x) r_{2}(y) w_{2}(y) w_{3}(u) c_{3} w_{1}(z) c_{1} c_{2} & \in R C
\end{array}
$$

Sufficient Condition: Avoidance of Cascading Aborts

Definition 11.20 (Avoiding Cascading Aborts):
A schedule s avoids cascading aborts if the following holds for all $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}} \in \operatorname{trans}(\mathrm{s})$: if t_{i} reads x from t_{j} in s, then $c_{j}<r_{i}(x)$.
ACA denotes the class of all schedules that avoid cascading aborts.

Examples 11.10 and 11.11:

$s_{2}=w_{1}(x) w_{1}(y) r_{2}(u) w_{2}(x) r_{2}(y) w_{2}(y) w_{3}(u) c_{3} w_{1}(z) c_{1} c_{2}$	$\notin A C A$
$s_{3}=w_{1}(x) w_{1}(y) r_{2}(u) w_{2}(x) w_{1}(z) c_{1} r_{2}(y) w_{2}(y) w_{3}(u) c_{3} c_{2}$	$\in A C A$
$s=w_{0}(x, 1) c_{0} w_{1}(x, 2) w_{2}(x, 3) c_{2} a_{1}$	$\in A C A$

Sufficient Condition: Strictness

Definition 11.7 (Strictness):

A schedule s is strict if the following holds for all $t_{i}, t_{j} \in \operatorname{trans}(s)$:
for all $\mathrm{p}_{\mathrm{i}}(\mathrm{x}) \in \mathrm{op}\left(\mathrm{t}_{\mathrm{i}}\right), \mathrm{p}=\mathrm{r}$ or $\mathrm{p}=\mathrm{w}$, if $\mathrm{w}_{\mathrm{j}}(\mathrm{x})<\mathrm{p}_{\mathrm{i}}(\mathrm{x})$ then $\mathrm{a}_{\mathrm{j}}<\mathrm{p}_{\mathrm{i}}(\mathrm{x})$ or $\mathrm{c}_{\mathrm{j}}<\mathrm{p}_{\mathrm{i}}(\mathrm{x})$. ST denotes the class of all strict schedules.

Example 11.11 and 11.13:

$$
\begin{array}{ll}
s_{3}=w_{1}(x) w_{1}(y) r_{2}(u) w_{2}(x) w_{1}(z) c_{1} r_{2}(y) w_{2}(y) w_{3}(u) c_{3} c_{2} & \notin S T \\
s_{4}=w_{1}(x) w_{1}(y) r_{2}(u) w_{1}(z) c_{1} w_{2}(x) r_{2}(y) w_{2}(y) w_{3}(u) c_{3} c_{2} & \in S T
\end{array}
$$

Sufficient Condition: Rigorousness

Definition 11.8 (Rigorousness):

A schedule s is rigorous if it is strict and the following holds for all $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}} \in \operatorname{trans}(\mathrm{s})$: if $r_{j}(x)<w_{i}(x)$ then $a_{j}<w_{i}(x)$ or $c_{j}<w_{i}(x)$.
RG denotes the class of all rigorous schedules.

Example 11.13 and 11.14:

$s_{4}=w_{1}(x) w_{1}(y) r_{2}(u) w_{1}(z) c_{1} w_{2}(x) r_{2}(y) w_{2}(y) w_{3}(u) c_{3} c_{2}$	$\notin R G$
$s_{5}=w_{1}(x) w_{1}(y) r_{2}(u) w_{1}(z) c_{1} w_{2}(x) r_{2}(y) w_{2}(y) c_{2} w_{3}(u) c_{3}$	$\in R G$

Situation

Relationships Among Schedule Classes

Theorems 11.2, 11.3, 11.4:
- $\mathrm{RG} \subset \mathrm{ST} \subset \mathrm{ACA} \subset \mathrm{RC}$
- $\mathrm{RG} \subset \mathrm{COCSR}$
- $\mathrm{CSR} \cap \mathrm{ST} \subset \mathrm{PRED} \subset \mathrm{CSR} \cap \mathrm{RC}$

Proofs?

Situation

Log-Recoverability

Definition 11.9 (Log Recoverability):

A schedule s is \log recoverable if the following properties hold:

- s is recoverable
- for all $\mathrm{t}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}} \in \operatorname{trans}(\mathrm{s})$: if there is a ww conflict of the form $\mathrm{w}_{\mathrm{i}}(\mathrm{x})<\mathrm{w}_{\mathrm{j}}(\mathrm{x})$ in s , then
- $\mathrm{a}_{\mathrm{i}}<\mathrm{w}_{\mathrm{j}}(\mathrm{x})$ or $\mathrm{c}_{\mathrm{i}}<\mathrm{c}_{\mathrm{j}}$ if t_{j} commits,
- or $\mathrm{a}_{\mathrm{j}}<\mathrm{a}_{\mathrm{i}}$ if t_{i} aborts.

LRC denotes the class of all log recoverable schedules.

Relationship to PRED for wr and ww conflicts:

1)	$w_{1}(x) r_{2}(x) a_{1} a_{2}$	\in PRED	1)	$\mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{a}_{1} \mathrm{a}_{2}$	$\notin \mathrm{PRED}$
2)	$w_{1}(x) r_{2}(x) a_{1} c_{2}$	\notin PRED	2)	$\mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{a}_{1} \mathrm{c}_{2}$	$\notin \mathrm{PRED}$
3)	$\mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{c}_{2} \mathrm{c}_{1}$	\notin PRED	3)	$\mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{c}_{2} \mathrm{c}_{1}$	$\notin \mathrm{PRED}$
4)	$\mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{c}_{2} \mathrm{a}_{1}$	\notin PRED	4)	$\mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{c}_{2} \mathrm{a}_{1}$	$\notin \mathrm{PRED}$
5)	$\mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{a}_{2} \mathrm{a}_{1}$	$\in \mathrm{PRED}$	5)	$\mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{a}_{2} \mathrm{a}_{1}$	$\in \mathrm{PRED}$
6)	$w_{1}(x) r_{2}(x) a_{2} c_{1}$	$\in \mathrm{PRED}$	6)	$\mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{a}_{2} \mathrm{c}_{1}$	$\in \mathrm{PRED}$
7)	$\mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{c}_{1} \mathrm{c}_{2}$	$\in \mathrm{PRED}$	7)	$\mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{c}_{1} \mathrm{c}_{2}$	$\in \mathrm{PRED}$
8)	$\mathrm{w}_{1}(\mathrm{x}) \mathrm{r}_{2}(\mathrm{x}) \mathrm{c}_{1} \mathrm{a}_{2}$	$\in \mathrm{PRED}$	8)	$\mathrm{w}_{1}(\mathrm{x}) \mathrm{w}_{2}(\mathrm{x}) \mathrm{c}_{1} \mathrm{a}_{2}$	$\in \mathrm{PRED}$

Relationship Between LRC and PRED

Theorem 11.5:

- $\operatorname{PRED}=\mathrm{CSR} \cap \mathrm{LRC}$

Proof sketch:

- Lemma 11.3: If $\mathrm{s} \in \mathrm{CSR} \cap \mathrm{LRC}$, then all operations of uncommitted transactions can be eliminated using rules CR, UR, NR, and OR.
- PRED $\supseteq \mathrm{CSR} \cap \mathrm{LRC}$:

Assume $\mathrm{s} \in \mathrm{CSR} \cap \mathrm{LRC}$.
After eliminating operations of uncommitted transactions by Lemma 11.31
(and preserving all conflict orders among committed transactions), s is still CSR and so is every prefix of s. Thus s is in PRED.

- PRED \subseteq LRC:

Assume $\mathrm{s} \in$ PRED but \notin LRC. Consider a conflict $\mathrm{w}_{\mathrm{i}}(\mathrm{x})<\mathrm{w}_{\mathrm{j}}(\mathrm{x})$. Since $\mathrm{s} \notin$ LRC, either a) t_{j} commits but t_{i} does not commit or commits after t_{j} or b) t_{i} aborts but t_{j} does not abort or aborts after t_{i}.
All cases lead to contradictions to the assumption that s is in PRED.
Similarly, assuming that s does not satisfy the RC property for situations
like $\mathrm{w}_{\mathrm{i}}(\mathrm{x})<\mathrm{r}_{\mathrm{j}}(\mathrm{x}) \mathrm{c}_{\mathrm{j}}$, leads to a contradiction.

- $\mathrm{PRED} \subseteq \mathrm{CSR}$

Situation

Chapter 11: Transaction Recovery

- 11.2 Expanded Schedules
- 11.3 Page-Model Correctness Criteria
- 11.4 Sufficient Syntactic Conditions
- 11.5 Further Relationships Among Criteria
- 11.6 Extending Page-Model CC Algorithms
- 11.7 Object-Model Correctness Criteria
- 11.8 Extending Object-Model CC Algorithms
-11.9 Lessons Learned

Extending 2PL for ST and RG

Theorem 11.6:

Gen(SS2PL) = RG

Theorem 11.7:

$\mathrm{Gen}(\mathrm{S} 2 \mathrm{PL}) \subseteq \mathrm{CSR} \cap \mathrm{ST}$

Extending SGT for LRC

Approach:

- defer commit upon commit request of t_{j}
if there is a ww or wr conflict from t_{i} to t_{j} and t_{i} is not yet committed
- enforce cascading abort for t_{j} upon abort request of t_{i} if there is a ww or wr conflict from t_{i} to t_{j}

ESGT algorithm:

- process w and r steps as usual and maintain serialization graph with explicit labeling of edges that correspond to ww or wr conflicts
- upon c_{i} test if t_{i} has a predecessor w.r.t. ww or wr edges in the graph; if no predecessor exists then perform c_{i} and resume waiting successors
- upon a_{i} test if t_{i} has successor w.r.t. ww or wr edges in the graph;
if no successor exists then perform a_{i}, otherwise enforce aborts for all successors of t_{i}

> Theorem 11.8:
> Gen $(\mathrm{ESGT}) \subseteq \mathrm{CSR} \cap \mathrm{LRC}$

Remark: similar approaches are feasible for other CC protocols (including non-strict 2PL)

Chapter 11: Transaction Recovery

- 11.2 Expanded Schedules
- 11.3 Page-Model Correctness Criteria
- 11.4 Sufficient Syntactic Conditions
- 11.5 Further Relationships Among Criteria
- 11.6 Extending Page-Model CC Algorithms
- 11.7 Object-Model Correctness Criteria
- 11.8 Extending Object-Model CC Algorithms
-11.9 Lessons Learned

Aborts in Flat Object Schedules

Definition 11.10 (Inverse operations):

An operation $\mathrm{f}^{\prime}\left(\mathrm{x}_{1}{ }^{\prime}, \ldots, \mathrm{x}_{\mathrm{m}^{\prime}}\right.$, $\uparrow_{\mathrm{y}_{1}}{ }^{\prime}, \ldots, \uparrow_{\mathrm{y}_{\mathrm{k}^{\prime}}}$) with input parameters $\mathrm{x}_{1}{ }^{\prime}$ through $\mathrm{x}_{\mathrm{m}}{ }^{\prime}$ and output parameters y_{1} ' through $\mathrm{y}_{\mathrm{k}^{\prime}}$ ' is the inverse operation of operation $f\left(x_{1}, \ldots, x_{m}, \uparrow_{y_{1}}, \ldots, \uparrow_{y_{k}}\right)$ if
for all possible sequences α and ω of operations on a given interface, the return parameters in the sequence $\alpha \mathrm{f}(\ldots) \mathrm{f}^{\prime}(\ldots) \omega$ are the same as in $\alpha \omega$. $f^{\prime}(\ldots)$ is also denoted as $f^{-1}(\ldots)$.

With the notion of inverse operations, the concepts of expanded schedules and PRED generalize to flat object schedules.

Examples 11.17 and 11.18:
$\mathrm{s}_{1}=$ withdraw $_{1}(\mathrm{a})$ withdraw $_{2}(\mathrm{~b}) \operatorname{deposit}_{2}(\mathrm{c}) \operatorname{deposit}_{1}(\mathrm{c}) \mathrm{c}_{1} \mathrm{a}_{2} \in \operatorname{PRED}$
$\Rightarrow \exp \left(\mathrm{s}_{1}\right)=$
withdraw $_{1}\left(\right.$ a) withdraw $_{2}(\mathrm{~b})$ deposit $_{2}(\mathrm{c})$ deposit $_{1}(\mathrm{c}) \mathrm{c}_{1}$ reclaim $_{2}(\mathrm{c})$ deposit $_{2}(\mathrm{~b}) \mathrm{c}_{2}$
$\mathrm{s}_{2}=\operatorname{insert}_{1}(\mathrm{x}) \operatorname{delete}_{2}(\mathrm{x}) \operatorname{insert}_{3}(\mathrm{y}) \mathrm{a}_{1} \mathrm{a}_{2} \mathrm{a}_{3} \notin \operatorname{PRED}$
$\Rightarrow \exp \left(\mathrm{s}_{2}\right)=\operatorname{insert}_{1}(\mathrm{x}) \operatorname{delete}_{2}(\mathrm{x}) \operatorname{insert}_{3}(\mathrm{y}) \operatorname{delete}_{1}(\mathrm{x}) \mathrm{c}_{1} \operatorname{insert}_{2}(\mathrm{x}) \mathrm{c}_{2} \operatorname{delete}_{3}(\mathrm{y}) \mathrm{c}_{3}$

Example of Correctly Expanded Flat Object Schedule

$\sqrt{\square}$ Expansion

Example of Incorrectly Expanded Flat Object Schedule

not treereducible

Important observation:
Page-level undo is, in general, incorrect for object-model transactions.

Perfect Commutativity

Definition 11.11 (Perfect Commutativity):

Given a set of operations for an object type, such that for each operation $\mathrm{f}\left(\mathrm{x}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{m}}\right)$ an appropriate inverse operation $\mathrm{f}^{-1}\left(\mathrm{x}, \mathrm{p}_{1}{ }^{\prime}, \ldots, \mathrm{p}_{\mathrm{m}^{\prime}}{ }^{\prime}\right)$ is included. A commutativity table for these operations is called perfect if the following holds: if $f\left(x, p_{1}, \ldots, p_{m}\right)$ and $g\left(x, q_{1}, \ldots, q_{n}\right)$ commute then $f\left(x, p_{1}, \ldots, p_{m}\right)$ and $g^{-1}\left(x, q_{1}{ }^{\prime} \ldots, q_{n^{\prime}}\right)$ commute, $\mathrm{f}^{-1}\left(\mathrm{x}, \mathrm{p}_{1}{ }^{\prime}, \ldots, \mathrm{p}_{\mathrm{m}^{\prime}}\right)$ and $\mathrm{g}\left(\mathrm{x}, \mathrm{q}_{1}, \ldots, \mathrm{q}_{\mathrm{n}}\right)$ commute, and $\mathrm{f}^{-1}\left(\mathrm{x}, \mathrm{p}_{1}{ }^{\prime}, \ldots, \mathrm{p}_{\mathrm{m}^{\prime}}\right)$ and $\mathrm{g}^{-1}\left(\mathrm{x}, \mathrm{q}_{1}{ }^{\prime} \ldots, \mathrm{q}_{\mathrm{n}^{\prime}}{ }^{\prime}\right)$ commute.

Definition 11.12 (Perfect Closure):

The perfect closure of a commutativity table for the operations of a given object type is the largest, perfect subset of the original commutativity table's commutative operation pairs.

Important observation:

For object types with perfect or perfectly closed commutativity tables, S2PL does not need to acquire any additional locks for undo, and therefore is deadlock-free during rollback.

Examples of Commutativity Tables with Inverse Operations

for object type "page"

	$\mathrm{r}_{\mathrm{i}}(\mathrm{x}) \mathrm{w}_{\mathrm{i}}(\mathrm{x}) \mathrm{w}_{\mathrm{i}}{ }^{-1}(\mathrm{x})$			
$\mathrm{r}_{\mathrm{i}}(\mathrm{x})$	+	-	-	
$\mathrm{w}_{\mathrm{i}}(\mathrm{x})$	-	-	-	
$\mathrm{wi}^{-1}(\mathrm{x})$	-	-	-	

for object type "set"

insert delete	insert delete test insert ${ }^{-1}$ delete $^{-1}$				
	-	-	-	-	-
	-	-	-	-	-
test	-	-	+	-	-
insert ${ }^{-1}$	-	-	-	$+$	-
delete ${ }^{-1}$	-	-	-	-	+
not perfect					

insert delete test insert ${ }^{-1}$ delete $^{-1}$

-	-	-	-	-
-	-	-	-	-
-	-	+	-	-
-	-	-	-	-
-	-	-	-	-
perfectly closed				

Chapter 11: Transaction Recovery

- 11.2 Expanded Schedules
- 11.3 Page-Model Correctness Criteria
- 11.4 Sufficient Syntactic Conditions
- 11.5 Further Relationships Among Criteria
- 11.6 Extending Page-Model CC Algorithms
- 11.7 Object-Model Correctness Criteria
- 11.8 Extending Object-Model CC Algorithms
- 11.9 Lessons Learned

Complete and Partial Rollbacks in General Object-Model Schedules

Definition 11.15 (Terminated Subtransactions):

An object-model history has terminated subtransactions if each non-leaf node p_{ω} has either a child $\mathrm{c}_{\omega v}$ or $\mathrm{a}_{\omega v}$ that follows all other ($\mathrm{v}-1$) children of p_{ω}. An object-model schedule with terminated subtransactions is a prefix of an object-model history with terminated subtransactions.

Definition 11.16 (Expanded Object Model Schedule):

For an object model schedule s with terminated subtransactions the expansion of $\mathrm{s}, \exp (\mathrm{s})$, is an object-model history derived as follows:

- All operations whose parent has a commit child are included in $\exp (\mathrm{s})$.
- For each operation whose parent p_{ω} has an abort child $\mathrm{a}_{\omega v}$ an inverse operation is added for all of p's children that do themselves have a commit child, and a commit child is added to p.
The inverse operations have the reverse order of the corresponding forward operations and placed in between the forward operations and the new commit child. All new children of p precede an operation q in $\exp (s)$ if the abort child of p preceded q in s .
- For each transaction in active(s) and each non-terminated subtransaction, inverse operations and a final commit child are added as children of the transaction roots, with ordering analagous to above.

Tree Prefix Reducibility for General Object-Model Schedules with Complete and Partial Rollbacks

```
Definition 11.17 (Extended Tree Reducibility):
An object model schedule s is extended tree reducible if its expansion, exp(s),
can be transformed into a serial order of s's committed transaction roots by
applying the following rules finitely many times:
    1. the commutativity rule applied to adjacent leaves,
    2. the tree-pruning rule for isolated subtrees,
    3. the undo rule applied to adjacent leaves,
    4. the null rule for read-only operations, and
    5. the ordering rule applied to unordered leaves.
```


Example with Complete and Partial Rollbacks

Extending Layered Concurrency Control for Complete and Partial Rollbacks

Definition 11.14 (Strictness):

A flat object schedule s is strict if for each pair of L1 operations, p_{j} and q_{i}, from different transactions t_{i} and t_{j} such that p_{j} is an update operation, the order $\mathrm{p}_{\mathrm{j}}<\mathrm{q}_{\mathrm{i}}$ implies that $\mathrm{a}_{\mathrm{j}}<\mathrm{q}_{\mathrm{i}}$ or $\mathrm{c}_{\mathrm{j}}<\mathrm{q}_{\mathrm{i}}$.

Theorem 11.10:

A layered object-model schedule for which all level-to-level schedules are order-preserving conflict serializable and strict is extended tree reducible.

Theorem 11.12:

The layered S2PL protocol with perfect commutativity tables generates only schedules that are extended tree reducible.

Chapter 11: Transaction Recovery

- 11.2 Expanded Schedules
- 11.3 Page-Model Correctness Criteria
- 11.4 Sufficient Syntactic Conditions
- 11.5 Further Relationships Among Criteria
- 11.6 Extending Page-Model CC Algorithms
- 11.7 Object-Model Correctness Criteria
- 11.8 Extending Object-Model CC Algorithms
-11.9 Lessons Learned

Lessons Learned

- PRED captures correct schedules in the presence of aborts by means of intuitive transformation rules.
- Among the sufficient syntactic criteria, LRC, ACA, ST, and RG (all in conjunction with CSR), ST is the most practical one.
- Consequently, S2PL is the method of choice (and can be shown to guarantee PRED).
- PRED carries over to the object model, in combination with the transformation rules of tree-reducibility, leading to TPRED, and captures both complete and partial rollbacks of transactions.
- The most practical sufficient syntactic condition for layered schedules with perfect commutativity requires OCSR and ST for each level-to-level schedule, and can be implemented by layered S2PL.

