Data Processing on Modern Hardware

Jana Giceva

Lecture 3: Cache awareness
for query execution models
Cache awareness for query execution models
The processing model of a database defines *how the system executes the query plan.*

The four main approaches are:

- **Iterator** model (volcano, tuple-at-a-time)
- **Materialization** model (operator-at-a-time, column-at-a-time)
- **Vectorization** model (vector-at-a-time, batch, block-wise)
- **Pushing tuples up** model

There are different trade-offs depending on the workload type and the underlying hardware.

→ cf. Database Systems on Modern CPU Architectures (chapter 5)
Most classical systems implement the **Volcano iterator model**:

- Operators request tuples from their input using `next()`
 - On each invocation, the operator returns either a single tuple or `null` if there are no more tuples

- Data is processed **tuple-at-a-time** in a **pipelined** fashion
 - Also called the Volcano or pipeline model

- Each operator keeps its own **state**
SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

for t in child.Next():
 emit(projection(t))

for t1 in left.Next():
 buildHashTable(t1)
for t2 in right.Next():
 if probe(t2):
 emit(t1 & t2)

for t in child.Next():
 if evalPred(t):
 emit(t)
else:
 emit(null)

if R.hasNext():
 emit(R.next())
else:
 emit(null)

if S.hasNext():
 emit(S.next())
else:
 emit(null)
Iterator model – Example

```
SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100
```

Diagram:

```
\[ \pi \text{ R.id, S.value} \]
\[ \\Join \text{ R.id = S.id} \]
\[ \sigma \text{ value > 100} \]
```

1. for \(t \) in child.Next():
 - emit(projection(t))

2. for \(t_1 \) in left.Next():
 - buildHashTable(t_1)
 - for \(t_2 \) in right.Next():
 - if probe(t_2): emit(t_1 ⊙ t_2)

3. if R.hasNext():
 - emit(R.next())
 - else emit(null)

Single tuple

if S.hasNext():
 - (S.next())
 - else emit(null)
Iterator model – Example

```
SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100
```

1. For `t` in `child.Next()`:
 - `emit(projection(t))`

2. For `t_1` in `left.Next()`:
 - `buildHashTable(t_1)`
 - For `t_2` in `right.Next()`:
 - If `probe(t_2)`, `emit(t_1 \& t_2)`

3. If `R.hasNext()`:
 - `emit(R.next())`
 - If not, `emit(null)`

4. For `t` in `child.Next()`:
 - If `evalPred(t)`, `emit(t)`

5. If `S.hasNext()`:
 - `emit(S.next())`
 - If not, `emit(null)`
This is used in almost every RDBMS.
- Allows for tuple pipelining.
- Some operators must block until their children emit all their tuples:
 - Joins, subqueries, sort, group-by, etc.

Implications on cache usage efficiency:
- All operators in a plan run tightly interleaved
 - Their combined instruction footprint may be large
 - Many instruction cache misses
- Operators constantly call each other’s functionality
 - Results in a big function call overhead
- The combined state of the operators may be too large to fit into caches
 - e.g., hash tables, cursors, partial aggregates
 - Results in many data cache misses
Example: TPC-H on MySQL

Example: Query Q1 from the TPC-H benchmark on MySQL

```
SELECT l_returnflag, l_linestatus, SUM(l_quantity) AS sum_qty,
      SUM(l_extendedprice) AS sum_base_price,
      SUM(l_extendedprice*(1-l_discount)) AS sum_disc_price,
      SUM(l_extendedprice*(1-l_discount)*(1+l_tax)) AS sum_charge,
      AVG(l_quantity) AS avg_qty, AVG(l_extendedprice) AS avg_price,
      AVG(l_discount) AS avg_disc, COUNT(*) AS count_order
FROM lineitem
WHERE l_shipdate <= DATE '1998-09-02'
GROUP BY l_returnflag, l_linestatus
```

- Scan query with arithmetics on aggregated tuples without a join

Results taken from MonetDB/X100: Hyper-Pipelining Query Execution *CIDR 2005*
Show results from executing the query

<table>
<thead>
<tr>
<th>time [sec]</th>
<th>calls</th>
<th>instr./call</th>
<th>IPC</th>
<th>function name</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.9</td>
<td>846M</td>
<td>6</td>
<td>0.64</td>
<td>ut_fold_ulongint_pair</td>
</tr>
<tr>
<td>8.5</td>
<td>0.15M</td>
<td>27K</td>
<td>0.71</td>
<td>ut_fold_binary</td>
</tr>
<tr>
<td>5.8</td>
<td>77M</td>
<td>37</td>
<td>0.85</td>
<td>memcpy</td>
</tr>
<tr>
<td>3.1</td>
<td>23M</td>
<td>64</td>
<td>0.88</td>
<td>Item_sum_sum::update_field</td>
</tr>
<tr>
<td>3.0</td>
<td>6M</td>
<td>247</td>
<td>0.83</td>
<td>row_search_for_mysql</td>
</tr>
<tr>
<td>2.9</td>
<td>17M</td>
<td>79</td>
<td>0.70</td>
<td>Item_sum_avg::update_field</td>
</tr>
<tr>
<td>2.6</td>
<td>108M</td>
<td>11</td>
<td>0.60</td>
<td>rec_get_bit_field_1</td>
</tr>
<tr>
<td>2.5</td>
<td>6M</td>
<td>213</td>
<td>0.61</td>
<td>row_sel_store_mysql_rec</td>
</tr>
<tr>
<td>2.4</td>
<td>48M</td>
<td>25</td>
<td>0.52</td>
<td>rec_get_nth_field</td>
</tr>
<tr>
<td>2.4</td>
<td>60</td>
<td>19M</td>
<td>0.69</td>
<td>ha_print_info</td>
</tr>
<tr>
<td>2.4</td>
<td>5.9M</td>
<td>195</td>
<td>1.08</td>
<td>end_update</td>
</tr>
<tr>
<td>2.1</td>
<td>11M</td>
<td>89</td>
<td>0.98</td>
<td>field_conv</td>
</tr>
<tr>
<td>2.0</td>
<td>5.9M</td>
<td>16</td>
<td>0.77</td>
<td>Field_float::val_real</td>
</tr>
<tr>
<td>1.8</td>
<td>5.9M</td>
<td>14</td>
<td>1.07</td>
<td>Item_field::val</td>
</tr>
<tr>
<td>1.5</td>
<td>42M</td>
<td>17</td>
<td>0.51</td>
<td>row_sel_field_store_in_mysql</td>
</tr>
<tr>
<td>1.4</td>
<td>36M</td>
<td>18</td>
<td>0.76</td>
<td>buf_frame_align</td>
</tr>
<tr>
<td>1.3</td>
<td>17M</td>
<td>38</td>
<td>0.80</td>
<td>Item_func_mul::val</td>
</tr>
<tr>
<td>1.4</td>
<td>25M</td>
<td>25</td>
<td>0.62</td>
<td>pthread_mutex_unlock</td>
</tr>
<tr>
<td>1.2</td>
<td>206M</td>
<td>2</td>
<td>0.75</td>
<td>hash_get_nth_cell</td>
</tr>
<tr>
<td>1.2</td>
<td>25M</td>
<td>21</td>
<td>0.65</td>
<td>mutex_test_and_set</td>
</tr>
<tr>
<td>1.0</td>
<td>102M</td>
<td>4</td>
<td>0.62</td>
<td>rec_get_1byte_offs_flag</td>
</tr>
<tr>
<td>1.0</td>
<td>53M</td>
<td>9</td>
<td>0.58</td>
<td>rec_1_get_field_start_offs</td>
</tr>
<tr>
<td>0.9</td>
<td>42M</td>
<td>11</td>
<td>0.65</td>
<td>rec_get_nth_fieldExtern_bit</td>
</tr>
<tr>
<td>1.0</td>
<td>11M</td>
<td>38</td>
<td>0.80</td>
<td>Item_func_minus::val</td>
</tr>
<tr>
<td>0.5</td>
<td>5.9M</td>
<td>38</td>
<td>0.80</td>
<td>Item_func_plus::val</td>
</tr>
</tbody>
</table>

Each call only processes a **single tuple** → **millions of calls**

Only **10% of the time** spent on actual query task.

Very low **instructions-per-cycle** (IPC) ratio.
Further observations

Much time spent on field access (e.g., `rec_get_nth_field()`).
- Row-store \rightarrow polymorphic operators.

Single-tuple functions are hard to optimize (by compiler):
- Low IPC ratio – empty pipelines make the CPU stall
- Optimization across functions not possible (or very difficult)
- Function call overhead is high
- Vector instructions (SIMD) are hardly applicable

Example:
- Let’s consider the `Item_func_plus::val` function from the previous table
- $\frac{38 \text{ instr.}}{0.8 \text{ instr./cycle}} = 48$ cycles vs. 3 instructions for load/add/store assembly
- One explanation for this high cost is the absence of *loop pipelining*, dependent instructions \rightarrow 20 cycles
- High cost of a function (routine) call (\sim 20 cycles) that cannot be amortized
Materialization model

Each operator processes its input all at once and then stores its output all at once (in one buffer)

- Operators consume and produce **full columns** (or tables).
- Each (sub-)result is **fully materialized** (in memory)
- **No** pipelining (rather a sequence of statements)
- Each operator runs exactly once.

The output can be either a whole tuple (row-store) or subsets of columns (column-store).
Materialization model – Example

\[
\begin{array}{c}
\text{SELECT R.id, S.cdate} \\
\text{FROM R JOIN S} \\
\text{ON R.id = S.id} \\
\text{WHERE S.value > 100}
\end{array}
\]

\[
\begin{array}{c}
\pi R.id, S.value \\
\shuffle R.id = S.id \\
\sigma \text{ value > 100}
\end{array}
\]

1. \[
\text{out} = [] \\
\text{for } t \text{ in } \text{child}.\text{Output}(): \\
\quad \text{out}.\text{append}(\text{projection}(t)) \\
\text{return out}
\]

2. \[
\text{out} = [] \\
\text{for } t_1 \text{ in } \text{left}.\text{Output}(): \\
\quad \text{buildHashTable}(t_1) \\
\text{for } t_2 \text{ in } \text{right}.\text{Output}(): \\
\quad \text{if probe}(t_2): \text{out}.\text{append}(t_1 \land t_2) \\
\text{return out}
\]

3. \[
\text{out} = [] \\
\text{for } t \text{ in } R \\
\quad \text{out}.\text{append}(t) \\
\text{return out}
\]

\[
\begin{array}{c}
\text{out} = [] \\
\text{for } t \text{ in S} \\
\quad \text{out}.\text{append}(t) \\
\text{return out}
\end{array}
\]

All tuples
SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

\[\pi \]
\[\bowtie \]
\[\sigma \]

\(R \)
\(S \)

1. \[out = [] \]
 \[for t in child.Output(): \]
 \[out.append(projection(t)) \]
 \[return out \]

2. \[out = [] \]
 \[for t_1 in left.Output(): \]
 \[buildHashTable(t_1) \]
 \[for t_2 in right.Output(): \]
 \[if probe(t_2): out.append(t_1 \bowtie t_2) \]
 \[return out \]

3. \[out = [] \]
 \[for t in R \]
 \[out.append(t) \]
 \[return out \]

4. \[out = [] \]
 \[for t in child.Output(): \]
 \[if evalPred(t): out.append(t) \]
 \[return out \]

5. \[out = [] \]
 \[for t in S \]
 \[out.append(t) \]
 \[return out \]
Materialization model – Example

SELECT R.id, S.cdate
FROM R JOIN S
ON R.id = S.id
WHERE S.value > 100

\[
\pi \begin{pmatrix} R.id, S.value \end{pmatrix} \Join \sigma \text{value} > 100
\]

- **1**:
  ```python
  out = []
  for t in child.Output():
      out.append(projection(t))
  return out
  ```

- **2**:
  ```python
  out = []
  for t1 in left.Output():
      buildHashTable(t1)
  for t2 in right.Output():
      if probe(t2): out.append(t1 \Join t2)
  return out
  ```

- **3**:
  ```python
  out = []
  for t in R
      out.append(t)
  return out
  ```

- **4**:
  ```python
  out = []
  for t in child.Output():
      if evalPred(t): out.append(t)
  return out
  ```

- **5**:
  ```python
  out = []
  for t in S
      out.append(t)
  return out
  ```
Materialization model – analysis

Much fewer number of function calls

Due to such operator-at-a-time processing, its tight loops

- Conveniently *fit into instruction caches*
- Can be optimized effectively by modern compilers
 - *Loop unrolling*
 - *Vectorization* (use of SIMD instructions)
- Can leverage modern CPU features (*hardware prefetching*)
- Far less expensive function calls are now *out of the critical code path*
The materialization (operator-at-a-time) model is a two-edged sword:
- Cache-efficient with respect to code and operator state
- Tight loops, optimizable code

But, each operator reads in and out everything, so
- Data won’t fully fit into the cache:
 - Repeated scans will fetch data from memory over and over
 - Strategy falls apart when intermediate (materialized) results no longer fit in memory/caches

Can we aim for the middle-ground between the two extremes?

Iterator vs. Materialization model

- tuple-at-a-time (iterator model)
- vector-at-a-time (vectorization model)
- operator-at-a-time (materialization model)
Vectorization model

Idea: use volcano-style iteration

But for each `next()` call return a *batch of tuples* instead of a single tuple

- Vector in MonetDB/X100 terminology
- The operator’s internal loop processes multiple tuples at a time
- The size of the batch can vary based on the hardware and query properties
Vectorization model – Example

\[
\begin{align*}
\pi & \quad R.id, S.value \\
\bowtie & \quad R.id = S.id \\
\sigma & \quad \text{value} > 100
\end{align*}
\]

\[
\begin{align*}
\text{SELECT} & \quad R.id, S.cdate \\
\text{FROM} & \quad R \ JOIN S \\
\text{ON} & \quad R.id = S.id \\
\text{WHERE} & \quad S.value > 100
\end{align*}
\]

1. \[\text{out} = []\]
 \[\text{for } t \text{ in } \text{child.Output}():\]
 \[\phantom{\text{out}} = \text{out.append(projection(t))}\]
 \[\text{if } |\text{out}| > \text{n}: \text{emit(out)}\]

2. \[\text{out} = []\]
 \[\text{for } t_1 \text{ in } \text{left.Output}():\]
 \[\phantom{\text{out}} = \text{buildHashTable(t_1)}\]
 \[\text{for } t_2 \text{ in } \text{right.Output}():\]
 \[\phantom{\text{out}} = \text{if probe(t_2): out.append(t_1 \bowtie t_2)}\]
 \[\text{if } |\text{out}| > \text{n}: \text{emit(out)}\]

3. \[\text{out} = []\]
 \[\text{while } \text{R.hasNext()} \&\& |\text{out}| < \text{n}\]
 \[\phantom{\text{out}} = \text{out.append(R.next())}\]
 \[\text{emit(out)}\]

\[\text{out} = []\]
\[\text{for } t \text{ in } \text{child.Output}():\]
\[\phantom{\text{out}} = \text{if evalPred(t): out.append(t)}\]
\[\text{if } |\text{out}| > \text{n}: \text{emit(out)}\]

\[\text{out} = []\]
\[\text{while } \text{S.hasNext()} \&\& |\text{out}| < \text{n}\]
\[\phantom{\text{out}} = \text{out.append(S.next())}\]
\[\text{emit(out)}\]
Vectorization model – Example

\[
\begin{align*}
\text{SELECT} & \quad \text{R.id, S.cdate} \\
\text{FROM} & \quad \text{R JOIN S} \\
\text{ON} & \quad \text{R.id = S.id} \\
\text{WHERE} & \quad \text{S.value > 100}
\end{align*}
\]

\[
\begin{align*}
\pi \quad & \text{R.id, S.value} \\
\bowtie \quad & \text{R.id = S.id} \\
\sigma \quad & \text{value > 100}
\end{align*}
\]

1. `out = []`
 `for t in child.Output():`
 `out.append(projection(t))`
 `if |out| > n: emit(out)`

2. `out = []`
 `for t1 in left.Output():`
 `buildHashTable(t1)`
 `for t2 in right.Output():`
 `if probe(t2): out.append(t1ψt2)`
 `if |out| > n: emit(out)`

3. `out = []`
 `while R.hasNext() & |out| < n`
 `out.append(R.next())`
 `emit(out)`

4. `out = []`
 `for t in child.Output():`
 `if evalPred(t): out.append(t)`
 `if |out| > n: emit(out)`

5. `out = []`
 `while S.hasNext() & |out| < n`
 `out.append(S.next())`
 `emit(out)`
Vectorization model – analysis

Uses the best of both worlds (iterator and materialization models):
- Reduces the number of invocations per operator
- Allows for operators to use vectorized (SIMD) instructions to process batches of tuples

Imperative to choose a vector size that is:
- Large enough to amortize the iteration overhead (e.g., function calls, instruction cache misses, etc),
- Small enough to not thrash data caches

Will there be such a vector size?
- Or will caches be thrashed long before iteration overhead is compensated?
Observations:

- Vectorized execution quickly compensates for iteration overhead
- 1000 tuples should conveniently fit into caches
Vectorized execution in MonetDB/X100

Source: M. Zukowski, Balancing Vectorized Query Execution with Bandwidth Optimized Storage, PhD thesis, CWI Amsterdam, 2009
Microsoft SQL Server supports vectorized ("batched" in MS jargon) execution since version 11.

- Storage via new **column-wise index** (with compression and prefetching improvements)

- New operators with **batch-at-a-time processing**

- Typical pattern:
 - Scan, pre-filter, project, aggregate data early in the plan using **batch operators**
 - **row operators** may be needed to finish the operation

- Good for scan-intensive workloads (OLAP), **not** for point queries (OLTP workloads)

- Internally, the optimizer treats batch processing as new **physical property** (like being sorted) to combine operators in a proper way.
SQL Server: Performance

Performance impact (TPC-DS, scale factor 100, ~ 100GB)

Per-Ake Larson et al. SQL Server Column Store Indexes. SIGMOD 2011
Vectorized execution in PostgreSQL

- Organize query plan into **execution groups**
- Add **buffer operator** between execution groups
- The buffer operator provides tuple-at-a-time interface to the outside, but **batches up** tuples internally.
- Similar to the example we covered previously

```c
function: next()
// Read a batch of input tuples if buffer is empty
if empty and !end-of-tuples then
  while !full do
    append child.next() to buffer
    if end-of-tuples then
      break;
  return next tuple in buffer;
```
Buffer operators in PostgreSQL

Comparison of processing models

Overview of the discussed execution models

<table>
<thead>
<tr>
<th>Execution model</th>
<th>iterator (tuple)</th>
<th>materialization (operator)</th>
<th>vectorization (vector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>query plans</td>
<td>simple</td>
<td>complex</td>
<td>simple</td>
</tr>
<tr>
<td>instruction cache utilization</td>
<td>poor</td>
<td>extremely good</td>
<td>very good</td>
</tr>
<tr>
<td>function calls</td>
<td>many</td>
<td>extremely few</td>
<td>very few</td>
</tr>
<tr>
<td>attribute access</td>
<td>complex</td>
<td>direct</td>
<td>direct</td>
</tr>
<tr>
<td>most time spent on</td>
<td>interpretation</td>
<td>processing</td>
<td>processing</td>
</tr>
<tr>
<td>CPU utilization</td>
<td>poor</td>
<td>good</td>
<td>very good</td>
</tr>
<tr>
<td>compiler optimizations</td>
<td>limited</td>
<td>applicable</td>
<td>applicable</td>
</tr>
<tr>
<td>materialization overhead</td>
<td>very cheap</td>
<td>expensive</td>
<td>cheap</td>
</tr>
<tr>
<td>scalability</td>
<td>good</td>
<td>limited</td>
<td>good</td>
</tr>
</tbody>
</table>

src: M. Zukowski, Balancing Vectorized Query Execution with Bandwidth Optimized Storage, PhD thesis, CWI Amsterdam, 2009
References

- Various papers cross-referenced in the slides:
 - Boncz et al. *MonetDB/X100: Hyper-Pipelining Query Execution* CIDR 2005
 - Larson et al. *SQL Server Column Store Indexes*. SIGMOD 2011
 - Kersten et al. *Everything You Always Wanted to Know About Compiled and Vectorized Queries But Were Afraid to Ask*. VLDB 2018

- Lecture: *Database Systems on Modern CPU Architectures* by Prof. Thomas Neumann (TUM)
- Lecture: *Data Processing on Modern Hardware* by Prof. Jens Teubner (TU Dortmund, past ETH)
- Lecture: *Advanced Databases* by Prof. Andy Pavlo (CMU)

- Check out the code from Timo Kersten and play around with the TPC-H queries from Typer and Tectorwise (TW):
 - https://github.com/TimoKersten/db-engine-paradigms