
Introduction to the C++ Ecosystem

Introduction to the C++ Ecosystem

0

Introduction to the C++ Ecosystem Hello World

Hello World in C++

myprogram.cpp
#include <iostream>
int main(int argc, char** argv) {

std::cout << "Hello " << argv[1] << '!' << std::endl;
return 0;

}

$ c++ -std=c++20 -Wall -Werror -o myprogram ./myprogram.cpp
$./myprogram World
Hello World!

1

Introduction to the C++ Ecosystem Compiler

Generating an Executable Program

• Programs that transform C++ files into executables are called compilers
• Popular compilers: gcc (GNU), clang (llvm)
• Minimal example to compile the hello world program with gcc:

$ g++ -o myprogram ./myprogram.cpp

• Internally, the compiler is divided into:
• Preprocessor
• Compiler
• Linker

2

Introduction to the C++ Ecosystem Compiler

Compiler Flags

General syntax to run a compiler: c++ [flags] -o output inputs...
Most common flags:

-std=c++20 Set C++ standard version
-O0 no optimization
-O1 optimize a bit, assembly mostly readable
-O2 optimize more, assembly not readable
-O3 optimize most, assembly not readable
-Os optimize for size, similar to -O3
-Wall Enable most warnings
-Wextra Enable warnings not covered by -Wall
-Werror Treat all warnings as errors
-march=native Enable optimizations supported by your CPU
-g Enable debug symbols

3

Introduction to the C++ Ecosystem make

make

• C++ projects usually consist of many .cpp (implementation files) and .hpp
(header files) files

• Each implementation file needs to be compiled into an object file first, then
all object files must be linked

• Very repetitive to do this by hand
• When one .cpp file changes, only the corresponding object file should be

recompiled, not all
• When one .hpp file changes, only implementation files that use it should be

recompiled
• make is a program that can automate this
• Requires a Makefile
• GNU make manual:
https://www.gnu.org/software/make/manual/make.html

4

https://www.gnu.org/software/make/manual/make.html

Introduction to the C++ Ecosystem make

Basic Makefile

• Makefiles consist of rules and contain variables
• Each rule has a target, prerequisites, and a recipe
• Recipes are only executed when the prerequisites are newer than the target or

when the target does not exist
• Note: The indentation in Makefiles must be exactly one tab character, no

spaces!

Makefile
CONTENT="test 123" # set the variable CONTENT
rule and recipe to generate the target file foo
foo:

echo $(CONTENT) > foo
$^ always contains all prerequisites ("foo baz" here)
$< contains only the first prerequisite ("foo" here)
$@ contains the target ("bar" here)
bar: foo baz

cat $^ > $@

5

Introduction to the C++ Ecosystem make

make and Timestamps

• make uses timestamps of files to decide when to execute recipes
• When any prerequisite file is newer than the target → execute recipe

$ make foo # the file foo does not exist yet
echo "test 123" > foo
$ make foo # now foo exists
make: 'foo' is up to date.
$ make bar # bar requires baz which doesn't exist
make: *** No rule to make target 'baz', needed by 'bar'. Stop.
$ touch baz # create the file baz
$ make bar
cat foo baz > bar
$ make bar # bar exists, nothing to do
make: 'bar' is up to date.
$ touch baz # update timestamp of file baz
$ make bar # now the recipe for bar is executed again
cat foo baz > bar

6

Introduction to the C++ Ecosystem make

Advanced Makefile

• Recipes are usually the same for most files
• Pattern rules can be used to reuse a recipe for multiple files

Makefile
CXX?=g++ # set CXX variable only if it's not set
CXXFLAGS+= -O3 -Wall -Wextra # append to CXXFLAGS
SOURCES=foo.cpp bar.cpp
%.o: %.cpp # pattern rule to make .o files out of .cpp files

$(CXX) $(CXXFLAGS) -c -o $@ $<
use a substitution reference to get .o file names
myprogram: myprogram.o $(SOURCES:.cpp=.o)

$(CXX) $(CXXFLAGS) -o $@ $^

$ make # executes the first (non-pattern) rule
g++ -O3 -Wall -Wextra -c -o myprogram.o myprogram.cpp
g++ -O3 -Wall -Wextra -c -o foo.o foo.cpp
g++ -O3 -Wall -Wextra -c -o bar.o bar.cpp
g++ -O3 -Wall -Wextra -o myprogram myprogram.o foo.o bar.o

7

Introduction to the C++ Ecosystem CMake

CMake

• make prevents writing many repetitive compiler commands
• Still, extra flags must be specified manually (e.g. -l to link an external

library)
• On different systems the same library may require different flags
• CMake is a tool specialized for C and C++ projects that uses a
CMakeLists.txt to generate Makefiles or files for other build systems
(e.g. ninja, Visual Studio)

• Also, the C++ IDE CLion uses CMake internally
• CMakeLists.txt consists of a series of commands
• CMake Reference Documentation:
https://cmake.org/cmake/help/latest/

8

https://cmake.org/cmake/help/latest/

Introduction to the C++ Ecosystem CMake

Basic CMakeLists.txt

CMakeLists.txt
cmake_minimum_required(VERSION 3.10)
project(myprogram)
set(MYPROGRAM_FILES sayhello.cpp saybye.cpp)
add_executable(myprogram myprogram.cpp ${MYPROGRAM_FILES})

$ mkdir build; cd build # create a separate build directory
$ cmake .. # generate Makefile from CMakeLists.txt
-- The C compiler identification is GNU 8.2.1
-- The CXX compiler identification is GNU 8.2.1
[...]
-- Configuring done
-- Generating done
-- Build files have been written to: /home/X/myproject/build
$ make
Scanning dependencies of target myprogram
[25%] Building CXX object CMakeFiles/myprogram.dir/myprogram.cpp.o
[50%] Building CXX object CMakeFiles/myprogram.dir/sayhello.cpp.o
[75%] Building CXX object CMakeFiles/myprogram.dir/saybye.cpp.o
[100%] Linking CXX executable myprogram

9

Introduction to the C++ Ecosystem CMake

CMake Commands

cmake_minimum_required(VERSION 3.10)
Require a specific cmake version.
project(myproject)
Define a C/C++ project with the name “myproject”, required for every project.
set(FOO a b c)
Set the variable ${FOO} to be equal to a;b;c (list).
add_executable(myprogram a.cpp b.cpp)
Define an executable to be built that consists of the source files a.cpp and
b.cpp.
add_library(mylib a.cpp b.cpp)
Similar to add_executable() but build a library.
add_compile_options(-Wall -Wextra)
Add -Wall -Wextra to all invocations of the compiler.
target_link_library(myprogram mylib)
Link the executable or library myprogram with the library mylib.

10

Introduction to the C++ Ecosystem CMake

CMake Variables

CMake has many variables that influence how the executables and libraries are
built. They can be set in the CMakeLists.txt with set(), on the command
line with cmake -D FOO=bar, or with the program ccmake.
CMAKE_CXX_STANDARD=20
Set the C++ to standard to C++20, effectively adds -std=c++20 to the compiler
flags.
CMAKE_CXX_COMPILER=clang++
Set the C++ compiler to clang++.
CMAKE_BUILD_TYPE=Debug
Set the “build type” to Debug. Other possible values: Release,
RelWithDebInfo. This mainly affects the optimization compiler flags.
CMAKE_CXX_FLAGS(_DEBUG/_RELEASE)=-march=native
Add -march=native to all compiler invocations (or only for the Debug or
Release build types).

11

Introduction to the C++ Ecosystem CMake

Subdirectories with CMake

• Larger C++ projects are usually divided into subdirectories
• CMake allows the CMakeLists.txt to also be divided into the

subdirectories
• A subdirectory can have its own CMakeLists.txt (without the project()

command)
• The “main” CMakeListst.txt can then include the subdirectory with
add_subdirectory(subdir)

12

Introduction to the C++ Ecosystem CMake

Complete CMake Example

cmake_example_project
├── CMakeLists.txt
├── lib
│ ├── CMakeLists.txt
│ ├── saybye.cpp
│ ├── saybye.hpp
│ ├── sayhello.cpp
│ └── sayhello.hpp
└── src

├── CMakeLists.txt
└── print_greetings.cpp

• This project contains the library
greetings and the executable
print_greetings

• The library consists of the files
sayhello.cpp and saybye.cpp

• You can find this project in our
Gitlab

13

Introduction to the C++ Ecosystem Git

Version Control Systems (VCS)

• Code projects evolve gradually
• Incremental changes, also called versions, should be tracked to allow:

• Documentation of the project history
• Selective inspection/modification of specific versions
• Efficient collaboration when working in a team

• Version Control Systems (VCS) manage versions, usually represent them in a
directed acyclic graph

v1 v2 v3

v4 v5

v6

Created project Added file A Added file B

Added file C Changed file C

Combined v3 and v5

14

Introduction to the C++ Ecosystem Git

Git

• Many VCS exist, Git is a very popular one: Used by Linux, GCC, LLVM, etc.
• Git in particular has the following advantages compared to other version

control systems (VCS):
• Open source (LGPLv2.1)
• Decentralized, i.e., no server required
• Efficient management of branches and tags

• All Git commands are document with man-pages (e.g. type man
git-commit to see documentation for the command git commit)

• Pro Git book: https://git-scm.com/book
• Git Reference Manual: https://git-scm.com/docs

15

https://git-scm.com/book
https://git-scm.com/docs

Introduction to the C++ Ecosystem Git

Git Concepts

Repository: A collection of Git objects (commits and trees) and references
(branches and tags).

Branch: A named reference to a commit. Every repository usually has at
least the master branch and contains several more branches, like
fix-xyz or feature-abc.

Tag: A named reference to a commit. In contrast to a branch a tag is
usually set once and not changed. A branch regularly gets new
commits.

Commit: A snapshot of a tree. Identified by a SHA1 hash. Each commit can
have multiple parent commits. The commits form a directed
acyclic graph.

Tree: A collection of files (not directories!) with their path and other
metadata. This means that Git does not track empty directories.

16

Introduction to the C++ Ecosystem Git

Creating a Git Repository

git init
Initialize a Git repository
git config --global user.name <name>
Sets the name that will be used in commits
git config --global user.email <email>
Sets the e-mail address that will be used in commits
git status
Shows information about the repository

$ mkdir myrepo && cd myrepo
$ git init
Initialized empty Git repository in /home/X/myrepo/.git/
$ git status
On branch master

No commits yet

nothing to commit (create/copy files and use "git add" to track)

17

Introduction to the C++ Ecosystem Git

Git Working Directory and Staging Area

When working with a Git repository, changes can live in any of the following
places:
• In the working directory (when you edit a file)
• In the staging area (when you use git add)
• In a commit (after a git commit)

Once a change is in a commit and it is referenced by at least one branch or tag,
you can always restore it even if you remove the file.

working directory commitstaging area
git add

git commit

git checkout

git reset

18

Introduction to the C++ Ecosystem Git

Committing Changes

git add [-p] <path>...
Add changes to the staging area. Changes can be selected interactively when the
-p option is used.
git reset [-p] <path>...
Remove changes from the staging area without directly modifying the files. Can
also be done interactively with -p.
git commit
Take all changes from the staging area and turn them into a commit. Includes a
commit message and author and date information. The parent of the new
commit is set to the newest commit of the current branch. Then, the current
branch is updated to point to the new commit.
git checkout -- <path>...
Remove changes from the working directory by overwriting the given files or
directories with their committed versions.

19

Introduction to the C++ Ecosystem Git

Inspecting the Commit History (1)

git log [<branch>]
View the commit history of the current (or another) branch.
git show [<commit>]
Show the changes introduced by the last (or the given) commit.
• “Browsing” the commit history with Git alone usually requires you to know

the commands that list commits, show changes, etc., and execute several of
them.

• There is a program called tig that provides a text-based interface where you
can scroll through branches, commits, and changes.

• Running tig without arguments shows an overview of the current branch.
• tig also understands the subcommands tig status, tig log, and
tig show, which take the same arguments as the git variants

20

Introduction to the C++ Ecosystem Git

Inspecting the Commit History (2)

git diff
View the changes in the working directory (without the staging area).
git diff --staged
View the changes in the staging area (without the working directory).
git diff HEAD
View the changes in the working directory and the staging area.
git diff branch1..branch2
View the changes between two branches (or tags, commits).

Example output of git diff
diff --git a/foo b/foo
index e965047..980a0d5 100644
--- a/foo
+++ b/foo
@@ -1 +1 @@
-Hello
+Hello World!

21

Introduction to the C++ Ecosystem Git

Working with Branches and Tags

git branch
Show all branches and which one is active.
git branch <name>
Create a new branch that points to the current commit (HEAD).
git checkout <name>
Switch to another branch, i.e. change all files in the working directory so that
they are equal to the tree of the other branch.
git checkout -b <name>
Create a branch and switch to it.
git tag
Show all tags.
git tag [-s] <name>
Create a new tag that points to the current commit. Is signed with PGP when
-s is given.

22

Introduction to the C++ Ecosystem Git

Modifying the Commit History (overview)

C1 C2 C3

C4 C5

master

feature-abc

C1 C2 C3

C4 C5

Cm

master feature-abc

C1 C2 C3 C4′ C5′

master feature-abc

git merge git rebase

23

Introduction to the C++ Ecosystem Git

Modifying the Commit History

git merge <branch>...
• Combines the current branch and one or more other branches with a special

merge commit
• The merge commit has the latest commit of all merged branches as parent
• No commit is modified

git rebase <branch>
• Start from the given branch and reapply all diverging commits from the

current branch one by one
• All diverging commits are changed (they get a new parent) so their SHA1

hash changes as well

24

Introduction to the C++ Ecosystem Git

Dealing with Merge Conflicts

• Using merge or rebase may cause merge conflicts
• This happens when two commits are merged that contain changes to the

same file
• When a merge conflict happens, Git usually tells you:

$ git merge branch2
Auto-merging foo
CONFLICT (content): Merge conflict in foo
Automatic merge failed; fix conflicts and then commit the result.

• git status also shows additional information on how to proceed
• To fix the conflict you have to manually fix all conflicting files. Git inserts

markers in the files to show where the conflicts arose:
foo

<<<<<<< HEAD
Hello World!
=======
Hello You!
>>>>>>> branch2

25

Introduction to the C++ Ecosystem Git

Undoing Committed Changes

: This operation may potentially irrevocably remove data

git revert <commit>
Create a new commit that is the “inverse” of the specified commit.
git reset <commit>
Reset the current branch to point to the given commit. No files are changed.
git reset --hard <commit>
Reset the current branch to point to the given commit. All files in the working
directory are overwritten.
git rebase -i <commit>
Show all commits from the given one up to the current one and potentially
remove individual commits.
git reflog
Shows a history of SHA1 commit hashes that were added or removed. Allows to
restore removed commits if they were not garbage collected yet.

26

Introduction to the C++ Ecosystem Git

Working with Remote Git Repositories

git clone <url>
Download the repository with all its commits, tags, and branches from the url.
git push
Upload the current branch to a remote repository.
git push --force-with-lease
Override the current branch on the remote repository. This is necessary when the
local and remote branches have diverging histories, e.g., after using git rebase
or git reset --hard.
git fetch
Download new commits, tags, and branches from a remote repository into an
existing repository.
git pull
Run git fetch and then update (i.e. git merge) the current branch to match
the branch on the remote repository.

27

Introduction to the C++ Ecosystem Git

Finding out Who Wrote the Code

• Sometimes, especially when reading a new code base, you want to know
which commit changed a certain line

• Also, sometimes you want to know who wrote a certain line
git blame <filename>
• Shows the given file with commit annotations
• Each line starts with the commit hash, the name of the author, and the

commit date
tig blame <filename>
• Like git blame but with a nicer interface
• Allows to “re-blame” at a given line, i.e. showing the selected line in the

version just before it was last modified
• tig can also be used with other git commands: tig log, tig diff, etc.

28

Introduction to the C++ Ecosystem Git

Special Files in Git

.gitignore
• git status, git diff, etc. usually look at all files in all subdirectories of

the repository
• If files or directories should always be excluded (e.g. build or cache

directories), they can be added to the .gitignore file
• This file contains one entry per line, lines starting with # are skipped:

foo.txt Ignores all files named foo.txt
/foo.txt Ignores only the file foo.txt in the top-level directory
foo/ Ignores all directories named foo and their contents
f Ignores all files and directories that contain the letter f

.git
• This directory contains all commits, branches, etc.
• E.g., .git/refs/heads contains one file per branch
• If you remove this directory, all data is lost!

29

	Introduction to the C++ Ecosystem
	Hello World
	Compiler
	make
	CMake
	Git

