
1

Data Processing on Modern Hardware

Jana Giceva

Lecture 7: Multicore CPUs

Parallelization and Synchronization

 To make the most out of

multicore processors we can:

 Allow multiple different tasks

to be running concurrently →

concurrency

(multiprogramming)

 Parallelize the implementation

of a single task →

parallelism

(parallel programming)

The rise of the multi-core machines

Parallelism

 Work partitioning (expressing parallelism)

 Work must be split in parallel tasks

 Also known as domain decomposition

 Scheduling

 Tasks must be mapped into execution contexts

 Task granularity

 How much work a task performs?

 Too little → large overhead

 Too much → difficult for efficient load balancing

 Correctness

 Order of reads and writes is non-deterministic

 Synchronization is required to enforce the order

Basic concepts

partitioning

work

 An overloaded concept:

 e.g., how well a system reacts to increased load, e.g., clients in a server

 Speed-up – how well does the RT reduces for the same problem size by adding resources (e.g., cores).

 Speed up for problem size 𝑋 with 𝑁 resources: 𝑆𝑝𝑒𝑒𝑑𝑈𝑝(𝑁) = 𝑅𝑇(1, 𝑋)/𝑅𝑇(𝑁, 𝑋)

 Ideal: linear function

 Scale-up – how well the system deals with larger load (problem size) by adding resources

 Scale up for 𝑁 × larger problem by adding 𝑁 × resources: 𝑆𝑐𝑎𝑙𝑒𝑈𝑝(𝑁) = 𝑅𝑇(1, 𝑋)/𝑅𝑇(𝑁,𝑁𝑋)

 Ideal: constant function

 Scale-out – how well the system deals with larger load (problem size) by adding more servers / machines

 Scale out for 𝑁 × larger problem by executing on 𝑁 × machines: 𝑆𝑐𝑎𝑙𝑒𝑂𝑢𝑡(𝑁) = 𝑇𝑃(1, 𝑥)/𝑇𝑃(𝑁,𝑁𝑋)

 Ideal: constant function (should behave like Scale-up)

Scalability

5

 Sequential execution time: 𝑇1
 Execution time 𝑇𝑝 on 𝑝 CPUs

 (parallel) speed-up 𝑺𝒑 on 𝒑 CPUs: 𝑆𝑝 =
𝑇1

𝑇𝑝

 𝑆𝑝 = 𝑝 : linear speed-up

 𝑆𝑝 < 𝑝 : sub-linear speed-up / performance loss

 𝑆𝑝 > 𝑝 : super-linear speed-up / usually poor baseline

 Why 𝑺𝒑 < 𝒑 ?

 Programs may not contain enough parallelism

 Some parts may be inherently sequential

 Overheads due to parallelization

 Typically associated with synchronization

 Architectural limitations

 Memory contention (memory bound)

Our focus: speed-up

6

Suppose we parallelize an algorithm using 𝑛 cores and 𝑝 is the proportion of the task that can be

parallelized (1 – 𝑝 cannot be parallelized)

 The speed up of the algorithm is
1

1−𝑝 +
𝑝

𝑛

 For infinite parallelism, the speed-up is
1

(1−𝑝)

 For example, if 90% of the work is parallelized,

the maximum speed up is 10

 Ensure that every phase of one’s algorithm that

depends on the input data size is parallelized.

Amdahl’s Law

im
g

s
rc

:
W

ik
ip

e
d
ia

 Non-scalable algorithm

 Rethink the algorithm

 e.g., searching a tree: which one is easier to parallelize BFS or DFS?

 Load imbalance

 Break work into smaller tasks, dynamically schedule these between threads

 Task overhead

 Set a minimum per-thread task size (not too small, not too large)

Pitfalls in parallel code

8

In database systems:

 Inter-query parallelism (Concurrency, Multi-programming)

 Requires a sufficient number of co-running queries.

 May work well for OLTP workloads

 Characterized by many simple queries

 Data analytics / OLAP are resource-heavy

 Will not help an individual query

 Intra-query parallelism

 Intra-query parallelism is a must

 Should still allow a few co-running queries.

Parallelize database workloads

9

 Processes, kernel- and user-level threads and fibers

 Process: an instance of a program that is isolated from other processes on the machine.

 Has its own private section of the machine’s memory.

 A process abstraction is a virtual computer. Scheduled by the kernel.

 Thread: a locus of control inside a running program.

 A thread abstraction is a virtual processor. Scheduled by the kernel.

 Threads share all the memory in the process.

 User-level threads: act like threads, but implemented in user-space.

 Can be scheduled preemptively or cooperatively. Invisible to the kernel.

 Fibers: light-weight thread of execution that uses co-operative multi-tasking.

 Fibers yield themselves to run another fiber while executing.

System constructs for concurrency and parallelism

10

 OS Process per DBMS worker

 Used by early DBMS implementations

 DBMS workers are mapped directly onto OS processes

 OS Thread per DBMS worker

 Single multi-threaded processes hosts all DBMS worker activity

 A dispatcher thread listens for new connections. Each connection is allocated a new thread.

 DBMS Threads

 Lightweight user-space threading constructs (replacing the need for OS threads)

 Fast task switching at the expense of replicating a good deal of the OS logic in the DBMS

 Task-switching, thread state management, scheduling, etc.

 Are co-routines (fibers) next?

Process model in databases

11

In database systems:

 Inter-query parallelism (Concurrency, Multi-programming)

 Requires a sufficient number of co-running queries.

 May work well for OLTP workloads

 Characterized by many simple queries

 Data analytics / OLAP are resource-heavy

 Will not help an individual query

 Intra-query parallelism

 Intra-query parallelism is a must

 Should still allow a few co-running queries.

Parallelize database workloads

12

Parallelization strategies for intra-query parallelism:

 Pipeline parallelism?

 Data partitioning / parallel operator implementation?

Parallelization strategies

13

Goal: Parallelize the query engine in a clean, uniform way.

Volcano's Solution: encapsulate the parallelism in a query operator of its own, not in the QP infrastructure.

Overview: kinds of intra-query parallelism available:

 pipeline

 partition, with two subcases:

 intra-operator parallelism (e.g. parallel hash join, or parallel sort)

 inter-operator parallelism -- bushy trees

We want to enable all -- including setup, teardown, and runtime logic -- in a clean encapsulated way.

The exchange operator:

 an operator you pop into any single-site dataflow graph as desired -- anonymous to the other operators.

Volcano-style parallelism

14
src: Graefe. Volcano – An Extensible and Parallel Query Evaluation System. IEEE Transactions on Knowledge and Data Engineering 1994

 Plan-driven approach:

 Optimizer determines at compile time the degree of parallelism

 Instantiates one query operator plan for each thread

 Connects these with exchange operators, which encapsulate

parallelism and manage threads

 Elegant model which is used by many systems

Volcano-style parallelism

15
src: Graefe. Volcano – An Extensible and Parallel Query Evaluation System. IEEE Transactions on Knowledge and Data Engineering 1994

 Positive aspects:

 Operators are largely oblivious to parallelism

 Drawbacks:

 Static work partitioning can cause load imbalance

 Degree of parallelism cannot be easily change mid-query

 Potential overhead:

 Thread over-subscription causes context switching

 Exchange operators create additional copies of the tuples

Volcano-style parallelism

16
src: Graefe. Volcano – An Extensible and Parallel Query Evaluation System. IEEE Transactions on Knowledge and Data Engineering 1994

Parallelism in Modern DBMSs today

17

 Query coordinator manages the parallel execution

 Obtains the number of parallel servers

 Determines granularity of partitioning and load-distribution

 Parallelism within and between operators

 Pipeline with depth 2 (producer – consumer pair)

 e.g., parallel scan and group-by

uses 8 servers in total.

 DOP (degree of parallelism) – the

number of parallel execution servers

associated with a single operator

 Can be chosen manually or automatic

 Adaptive means it can reduce the DOP

as the load in the system increases

Inter-operator parallelism and dynamic scheduling

src: https://docs.oracle.com/cd/E11882_01/server.112/e25523/parallel002.htm

 Use the task queuing model that decomposes

the execution into parallel tasks, each executing

a fraction of the total work

 The runtime system can then dynamically schedule

the tasks on different hardware threads 𝑇.

 General guidelines:

 Create more tasks than there are threads

 If a task’s input size exceeds a threshold (e.g., due to skew):

 Further split it up or if not possible put it aside and handle it afterwards

 Ensure to have good load-balancing among the hardware threads.

 More details for the specific stages of the join in

Sort vs Hash Revisited: Fast Join Implementations on Modern Multicore CPUs by Kim et al. (VLDB 2009)

Parallelizing the radix join

18

Impact of task granularity on parallel operators

19

 Different stages in radix join:

 1 – 2: compute local histogram for R and S

 3 – 4: partitioning passes 1 and 2

 5: join phase (partition-wise build and probe)

 Evaluate the effect of task granularity and queuing on

the performance of the radix join (zipf 1.5)

 Left – simple task queuing

 Right – task decomposition for large part/join tasks

idle time

busy time

 All threads do useful work in the beginning of each

execution stage (busy time with different gray shades)

 Simple task queuing leads to poor load-balancing and

threads need to wait on barriers → 25% perf. reduction

 With fine-grained task decomposition, we can identify

the large tasks and break them down for good load

balancing among all the working threads.

s
rc

:
B

a
lk

e
s
e

n
e

t
a

l.
 M

a
in

 M
e

m
o

ry
 H

a
s
h

 J
o

in
s
 o

n
 M

u
lt
i-

c
o

re

C
P

U
s
:
T

u
n

in
g

 t
o

 t
h

e
 U

n
d

e
ry

in
g

H
a
rd

w
a

re
.

IC
D

E
 2

0
1

3

Lessons learned:

 Use fine-grained partitioning

 Increased scheduling overhead seems bearable

 Assign partitions / tasks dynamically to processors

 Make load balancing easier

 How to incorporate that at an engine level?

 Morsel-driven parallelism (as implemented in HyPer)

Data partitioning

20

 Example of user-level task-based parallelism

as framework in database systems.

 Break input data into

constant-sized work units (“morsels”)

 Dispatcher assigns morsels and a pipeline

(of operators) to worker threads (scheduling)

 Number of worker threads = number of

hardware threads

 Operators are designed for parallel execution

Morsel-driven query execution

21
src: Leis et al. Morsel-driven Parallelism: A NUMA-aware query evaluation framework for the many-core age. SIGMOD 2014

 Each pipeline is parallelized individually using all threads

Query pipeline parallelization

22
src: Leis et al. Morsel-driven Parallelism: A NUMA-aware query evaluation framework for the many-core age. SIGMOD 2014

 Each pipeline is parallelized individually using all threads

Query pipeline parallelization

23
src: Leis et al. Morsel-driven Parallelism: A NUMA-aware query evaluation framework for the many-core age. SIGMOD 2014

Concurrency and Synchronization

24

Databases are often faced with highly concurrent workloads.

Good news:

 Exploit parallelism offered by the hardware (increasing number of cores)

Bad news:

 Increases relevance of synchronization mechanisms.

Concurrency in database workloads

Two levels of synchronization in databases:

 Synchronize on user data to guarantee transactional semantics:

 database terminology: locks

 Synchronize on database-internal data structures

 database terminology: latches

We will focus on the latter (latches), even when we refer to them as locks.

Synchronization in databases

26

 Cores have private caches

 CPU manages the shared memory and private caches using a cache coherency protocol

Cache coherency protocol ensures the consistency of data in caches

 Implements the two fundamental operations: load and store using:

 Snooping-based coherence

 All processors communicate to agree on the state

 Directory-based coherence

 A centralized directory holds information about state/whereabouts of data items

Cache coherence

27

 Most contemporary processors use the MESI cache coherency protocol (or a variant)

 MESI protocol has the following states:

 Modified: cache line is only in current cache and has been modified

 Exclusive: cache line is only in current cache and has not been modified

 Shared: cache line is in multiple caches

 Invalid: cache line is unused

 Intel uses the MESIF protocol, with an additional Forward state

 Special shared state indicating a designated “responder”

Cache coherency protocol

28

 x86 provides a lock prefix that tells the hardware:

 Do not let anyone read / write the value until I am done with it

 Not the default case (because it is slow!)

 Compare-and-swap (CAS):

 lock cmpxchg

 Exchange:

 xchg (automatically locks the bus)

 Read-modify-write:

 lock add

 If the compiler (or you) also emit code using non-temporal stores, it must also emit sufficient fencing

to make the usage of non-temporal stores un-observable to callers/callees.

 _mm_mfence(), _mm_lfence(), _mm_sfence()

Atomics

29

There are different synchronization modes :

 Pessimistic locking

 Always take an (exclusive) lock to access/modify data in the critical section

 Optimistic locking

 Validate whether the data read in the critical section is still valid upon completion

 Lock-free

 Threads never block for any reason when reading or writing

 Leverage HW-support for synchronization (atomics)

 Speculative locking (hardware transactional memory (HTM))

Locking techniques

30

 There are many different types of locks (we only look at a subset)

 Pessimistic:

 Exclusive lock

 Only one thread may hold the lock at a time

 Shared (Reader-Writer RW) lock

 Permit any number of readers to hold the lock concurrently

 Only allow a single writer to hold the lock

 Optimistic:

 Validate that the data read in the critical section has not changed

Types of Locks

31

 Validate that the data read in the critical section has not

changed in the meantime

 Good for frequently read data

 avoids the expensive atomic writes

required by pessimistic lock

 cache invalidation only needed on writes

 Challenges:

 Use it when it is safe to fail and restart

 All operations must be restart-able w/o side-effects

 With too much write contention, could lead to starvation

Optimistic locking

32

void readOptimistically(Lambda& readCallback){

// Attempt to read optimistically
for(i in [1 : MAX_ATTEMPTS]){
preVersion = getVersion();
if(isLocked(preVersion())
continue;

readCallback();
postVersion = getVersion();
if(preVersion == postVersion)
return;

}

// Fallback to pessimistic locking
lockPessimistic();
readCallback();
unlock();

}

There are two strategies to implement (pessimistic) locking:

 Spinning (in user space) – e.g., spinlock

 Waiting thread repeatedly polls lock until it becomes free

 But, the thread burns CPU cycles while sleeping

 Cost two cache miss penalties (if implemented well) 150nsec

 Blocking (OS service) – e.g., mutex or user-space futex

 De-schedule the waiting thread until the lock becomes free

 Cost: two context switches (one to sleep, one to wake-up) 12-20usec

Lock (latch) implementation

33

 Most database workloads mostly read data (even OLTP workloads)

 Reading should be fast and scalable

 For tree-based data structures (e.g., indexes), we always need to traverse the top levels of the tree

 High contention on such hotspots – should be lockable with minimal overhead

 Latency is critical

 Avoid context switching as much as possible cannot solely rely on OS-based locks

 Some fine-grain data like index nodes or hash buckets requires space efficient locks

 Standard mutex (std::mutex) can be as much as 40-80 bytes – double the size for an ART node

 Efficient contention handling

 Handle contention gracefully, without sacrificing the uncontended path

Requirements for latches in databases

34

Qualitative overview of locking modes

35

 Which locking mode is best for a certain type of workload?

 Workloads: read-only, read-mostly (big/small read-set), write-heavy, write-only

 Locking modes: pessimistic (exclusive, shared), optimistic

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

 There are many different types of locks (we only look at a subset)

 Pessimistic:

 Exclusive lock

 Only one thread may hold the lock at a time

 Shared (Reader-Writer RW) lock

 Permit any number of readers to hold the lock concurrently

 Only allow a single writer to hold the lock

 Optimistic:

 Validate that the data read in the critical section has not changed

 Hybrid:

 Extend a shared lock with support for optimistic locking

Types of Locks

36

Hybrid locking

37

Class HybridLock {
RWMutex rwLock;
std::atomic<uint64_t> version;

public:
// simply call rwLock
void lockShared(); {rwLock.lockShared();}
void unlockShared(); {rwLock.unlockShared();}
void lockExclusive(); {rwLock.lockExclusive();}

// always increment the version before
// unlocking to avoid races!
void unlockExclusive() {
++version; rwLock.unlockExclusive():}

bool tryReadOptimistically(Lambda& readCallback) {
if(rwLock.isLockedExclusive())
return false;

auto preVersion = version.load();
// execute read callback
readCallback();
// was locked meanwhile?
if(rwLock.isLockedExclusive())
return false;

// version still the same
return preVersion == version.load();

}

void readOptimisticIfPossible(Lambda& readCallback) {
if(!tryReadOptimistically(readCallback)) {
// fallback to pessimistic locking
lockShared();
readCallback();
unlockShared();

}
}

};

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

Evaluating different locks on TPC-C

38

 Implemented a set of different locks

in the HyPer database

 Evaluate their performance using

the TPC-C benchmark

src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

 The number of tuples protected by the

lock can have a big impact on the

system’s performance.

 For point accesses like updates and

key look-ups, the granularity sets the

number of concurrent accesses.

 Fine granularity is good for

write-heavy workloads

 Coarse granularity is better for

read-heavy workloads

 e.g., no need to acquire a lock for

every tuple during a scan

Granularity of locking

39
src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

 How well do different contention handling

strategies behave?

 Spinning

 Naïve (test-and-set)

 Test-test-and-set (with back-off)

 Local spinning

 Ticket-lock (with back-off)

 Blocking

 std:: mutex

 ParkingLot

 Each thread parks itself in a global

hashtable (parking lot) until the callback

condition is satisfied.

Evaluate contention handling strategies

40
src: Bottcher et al. Scalable and Robust Latches for Database Systems. DaMoN 2020

Efficient implementation of

concurrent data-structures

41

 Operations: insert(key), remove(key), contains(key)

 Keys are stored in a (single-)linked list, sorted by key

 head and tail are always there (“sentinel” elements)

 Why atomics like CAS is sometimes not enough?

 Thread A: remove(7)

 Thread B: insert(9)

Concurrent list-based set

42

-∞ 7 42 ∞

head tail

 Use a single lock to protect the entire data structure

 Positive:

 Very easy to implement

 Negative:

 Does not scale at all

Coarse-grained locking

43

-∞ 7 42 ∞

head tail

 Fine-grained locking

 Split object into independently synchronized components.

 Conflict when they access the same component at the same time.

 Optimistic synchronization

 Search without locking.

 If you find it, lock and check. If OK, we are done. If not, start over (can be expensive).

 Lazy synchronization

 Postpone the hard work

 Removing components: logical removal (mark to be deleted), physical removal (do what’s needed).

 Lock-free synchronization

 Don’t use locks at all. Disadvantages: complex and often with high overhead

Approaches to make it more scalable

44

 Also called hand-over-hand locking or crabbing

 Hold at most two locks at a time

 Interactive lock acquisitions / release pair-wise

 May use read/write locks to allow for concurrent readers

Fine grained locking with lock coupling

45

-∞ 7 42 ∞

 Also called “hand-over-hand locking” or “crabbing”

 Hold at most two locks at a time

 Interactive lock acquisitions / release pair-wise

 May use read/write locks to allow for concurrent readers

Lock coupling

46

-∞ 7 42 ∞

 Also called “hand-over-hand locking” or “crabbing”

 Hold at most two locks at a time

 Interactive lock acquisitions / release pair-wise

 May use read/write locks to allow for concurrent readers

Lock coupling

47

-∞ 7 42 ∞

 Also called “hand-over-hand locking” or “crabbing”

 Hold at most two locks at a time

 Interactive lock acquisitions / release pair-wise

 May use read/write locks to allow for concurrent readers

 Positive:

 Easy to implement

 No restarts

 Negative:

 Better than coarse-grained lock (e.g., threads can traverse in parallel), but inefficient.

Lock coupling

48

-∞ 7 42 ∞

 Trust, but verify

 Traverse the list optimistically without taking any locks

Optimistic

49

-∞ 𝑎 𝑏 𝑑 𝑒

 Trust, but verify

 Traverse the list optimistically without taking any locks

 Lock 2 nodes (predecessor and current)

Optimistic

50

-∞ 𝑎 𝑏 𝑑 𝑒

 Trust, but verify

 Traverse the list optimistically without taking any locks

 Lock 2 nodes (predecessor and current)

 Validate: traverse the list again and check that predecessor is still reachable and points to current

 If validation fails, unlock and restart

Optimistic

51

-∞ 𝑎 𝑏 𝑑 𝑒

𝑐

 Trust, but verify

 Traverse the list optimistically without taking any locks

 Lock 2 nodes (predecessor and current)

 Validate: traverse the list again and check that predecessor is still reachable and points to current

 If validation fails, unlock and restart

 Positive:

 Lock contention unlikely

 Negative:

 Must traverse list twice, method contains acquires a lock

Optimistic

52

-∞ 𝑎 𝑏 𝑑 𝑒

𝑐

 Associate lock with update counter

 Write:

 Acquire lock (exclude other writes)

 Increment counter when unlocking

 Do not acquire locks for nodes that are not modified (traverse like a reader)

 Read:

 Do not acquire locks, proceed optimistically

 Detect concurrent modifications through counters (and restart if necessary)

Optimistic lock coupling

53

 Associate lock with update counter

 Write:

 Acquire lock (exclude other writes)

 Increment counter when unlocking

 Do not acquire locks for nodes that are not modified (traverse like a reader)

 Read:

 Do not acquire locks, proceed optimistically

 Detect concurrent modifications through counters (and restart if necessary)

 Positive

 Easy to implement

 Scalable

 Negative

 has restarts

Optimistic lock coupling

54

Synchronization in ART tree

55

 Evaluate the different synchronization approaches (+ lazy (ROWEX), speculative (HTM) and Masstree)

on the Adaptive Radix Tree

src: Leis et al. The ART of Practical Synchronization. DaMoN 2016

 Various papers cross-referenced in the slides

 Lecture: Data Processing on Modern Hardware by Prof. Viktor Leis (Uni Jena, past TUM)

 Lecture: Data Processing on Modern Hardware by Prof. Jens Teubner (TU Dortmund, past ETH)

 Lecture: Supporting Parallelism in OS and Programming Languages by Dr. Kornilios Kourtis (IBM Research, past ETH)

 Book: Architecture of a Database System by Hellerstein, Stonebraker and Hamilton

 Chapters 2 and 3

 Book: The Art of Multiprocessor Programming by Herlihy and Shavit

 Chapters 7 and 8

 Book: Is Parallel Programming Hard, And, If So, What Can You Do About It? by McKenny

 Book: Computer Architecture: A Quantitative Approach by Hennessy and Patterson

 Chapter 5

References

56

