
1 / 19

Database Implementation For Modern Hardware

Thomas Neumann

2 / 19

Introduction

Introduction

Database Management Systems (DBMS) are extremely important
• used in nearly all commercial data management
• very large data sets
• valuable data

Key challenges:
• scalability to huge data sets
• reliability
• concurrency

Results in very complex software.

3 / 19

Introduction

About This Lecture

Goals of this lecture
• learning how to build a modern DBMS
• understanding the internals of existing DBMSs
• understanding the effects of hardware behavior

Rough structure of the lecture
1. the classical DBMS architecture
2. efficient query processing
3. adapting the architecture to hardware trends

4 / 19

Introduction

Literature

• Theo Härder, Erhard Rahm: Datenbanksysteme - Konzepte und Techniken der
Implementierung. Springer-Verlag, 2001.

• Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom: Database Systems: The Complete
Book. Prentice-Hall, 2008.

• Jim Gray, Andreas Reuter: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann 1993

Unfortunately mainly cover the classical architecture.

5 / 19

Introduction

Motivational Example

Why is a DBMS different from most other programs?
• many difficult requirements (reliability etc.)
• but a key challenge is scalability

Motivational example
Given two lists L1 and L2, find all entries that occur on both lists.

Looks simple...

6 / 19

Introduction

Motivational Example (2)

Given two lists L1 and L2, find all entries that occur on both lists.

Simple if both fit in main memory

• sort both lists and intersect
• or put one in a hash table and probe
• or build index structures
• or ...

Note: pairwise comparison is not an option! O(n2)

6 / 19

Introduction

Motivational Example (2)

Given two lists L1 and L2, find all entries that occur on both lists.

Simple if both fit in main memory

• sort both lists and intersect
• or put one in a hash table and probe
• or build index structures
• or ...

Note: pairwise comparison is not an option! O(n2)

7 / 19

Introduction

Motivational Example (3)

Given two lists L1 and L2, find all entries that occur on both lists.

Slightly more complex if only one fits in main memory

• load the smaller list into memory
• build index structure/sort/hash/...
• scan the larger list
• search for matches in main memory

Code still similar to the pure main-memory case.

7 / 19

Introduction

Motivational Example (3)

Given two lists L1 and L2, find all entries that occur on both lists.

Slightly more complex if only one fits in main memory

• load the smaller list into memory
• build index structure/sort/hash/...
• scan the larger list
• search for matches in main memory

Code still similar to the pure main-memory case.

8 / 19

Introduction

Motivational Example (4)

Given two lists L1 and L2, find all entries that occur on both lists.

Difficult if neither list fits into main memory

• no direct interaction possible
• sorting works, but already a difficult problem
• or use some kind of partitioning scheme
• breaks the problem into smaller problem
• until main memory size is reached

Code significantly more involved.

8 / 19

Introduction

Motivational Example (4)

Given two lists L1 and L2, find all entries that occur on both lists.

Difficult if neither list fits into main memory

• no direct interaction possible
• sorting works, but already a difficult problem
• or use some kind of partitioning scheme
• breaks the problem into smaller problem
• until main memory size is reached

Code significantly more involved.

9 / 19

Introduction

Motivational Example (5)
Given two lists L1 and L2, find all entries that occur on both lists.

Hard if we make no assumptions about L1 and L2.

• tons of corner cases
• a list can contain duplicates
• a single duplicate might exceed main memory!
• breaks “simple” external memory logic
• multiple ways to solve this
• but all of them somewhat involved
• and a DBMS must not make assumptions about its data!

Code complexity is very high.

9 / 19

Introduction

Motivational Example (5)
Given two lists L1 and L2, find all entries that occur on both lists.

Hard if we make no assumptions about L1 and L2.

• tons of corner cases
• a list can contain duplicates
• a single duplicate might exceed main memory!
• breaks “simple” external memory logic
• multiple ways to solve this
• but all of them somewhat involved
• and a DBMS must not make assumptions about its data!

Code complexity is very high.

10 / 19

Introduction

Motivational Example (6)

Designing scalable algorithm is a hard problem
• must cope with very large instances
• hard even in main memory
• billions of data items
• rules out any O(n2) algorithm
• external algorithms are even harder

This requires a careful software architecture.

11 / 19

Introduction

Set-Oriented Processing

Small applications often loop over their data
• one for loop accesses all item x ,
• for each item, another loop access item y ,
• then both items are combined.

This kind of code of code feels “natural”, but is bad
• Ω(n2) runtime
• does not scale

Instead: set oriented processing. Perform operations for large batches of data.

12 / 19

Introduction

Relational Algebra
Notation:

• A(e) attributes of the tuples produces by e
• F(e) free variables of the expression e
• binary operators e1θe2 usually require A(e1) = A(e2)

e1 ∪ e2 union, {x |x ∈ e1 ∨ x ∈ e2}
e1 ∩ e2 intersection, {x |x ∈ e1 ∧ x ∈ e2}
e1 \ e2 difference, {x |x ∈ e1 ∧ x ̸∈ e2}
ρa→b(e) rename, {x ◦ (b : x .a) \ (a : x .a)|x ∈ e}
ΠA(e) projection, {◦a∈A(a : x .a)|x ∈ e}
e1 × e2 product, {x ◦ y |x ∈ e1 ∧ y ∈ e2}
σp(e) selection, {x |x ∈ e ∧ p(x)}
e1 pe2 join, {x ◦ y |x ∈ e1 ∧ y ∈ e2 ∧ p(x ◦ y)}

per definition set oriented. Similar operators also used bag oriented (no implicit duplicate
removal).

13 / 19

Introduction

Relational Algebra - Derived Operators

Additional (derived) operators are often useful:
e1 e2 natural join, {x ◦ y|A(e2)\A(e1)|x ∈ e1 ∧ y ∈ e2 ∧ x =|A(e1)∩A(e2) y}
e1 ÷ e2 division, {x|A(e1)\A(e2)|x ∈ e1 ∧ ∀y ∈ e2∃z ∈ e1 :

y =|A(e2) z ∧ x =|A(e1)\A(e2) z}
e1 pe2 semi-join, {x |x ∈ e1 ∧ ∃y ∈ e2 : p(x ◦ y)}
e1 pe2 anti-join, {x |x ∈ e1∧ ̸ ∃y ∈ e2 : p(x ◦ y)}
e1 pe2 outer-join, (e1 pe2) ∪ {x ◦ ◦a∈A(e2)(a : null)|x ∈ (e1 pe2)}
e1 pe2 full outer-join, (e1 pe2) ∪ (e2 pe1)

14 / 19

Introduction

Relational Algebra - Extensions

The algebra needs some extensions for real queries:
• map/function evaluation

χa:f (e) = {x ◦ (a : f (x))|x ∈ e}
• group by/aggregation

ΓA;a:f (e) = {x ◦ (a : f (y))|x ∈ ΠA(e) ∧ y = {z |z ∈ e ∧ ∀a ∈ A : x .a = z .a}}
• dependent join (djoin). Requires F(e2) ⊆ A(e1)

e1 pe2 = {x ◦ y |x ∈ e1 ∧ y ∈ e2(x) ∧ p(x ◦ y)}

15 / 19

Introduction

Set-Oriented Processing (2)

Processing whole batches of tuples is more efficient:
• can prepare index structures
• or re-organize the data
• sorting/hashing
• runtime ideally O(nlogn)

Many different algorithms, we will look at them later.

16 / 19

Introduction

Traditional Assumptions

Historically, DBMS are designed for the following scenario:
• data is much larger than main memory
• I/O costs dominate everything
• random I/O is very expensive

This led to a very conservative, but also very scalable design.

17 / 19

Introduction

Hardware Trends
Hardware development changed some of the assumptions

• main memory size is increasing
• servers with 1TB main memory are affordable
• flash storage reduces random I/O costs
• ...

This has consequences for DBMS design
• CPU costs become more important
• often I/O is eliminated or greatly reduced
• the old architecture becomes suboptimal

But this is more evolution than revolution. Many of the old techniques are still required for
scalability reasons.

18 / 19

Introduction

Goals

Ideally, a DBMS
• handles arbitrarily large data sets efficiently
• never loses data
• offers a high-level API to manipulate and retrieve data
• shields the application from the complexity of data management
• offers excellent performance for all kinds of queries and all kinds of data

This is a very ambitious goal!
In many cases indeed reached, but implies complexity.

19 / 19

Introduction

Overview

1. The Classical Architecture
1.1 storage
1.2 access paths
1.3 transactions and recovery

2. Efficient Query Processing
2.1 set oriented query processing
2.2 algebraic operators
2.3 code generation

3. Designing a DBMS for Modern Hardware
3.1 re-designing storage
3.2 optimizing cache locality
3.3 main memory databases

	Introduction

