Modern Hardware Main-Memory Databases

Main-Memory Databases

Modern Hardware Main-Memory Databases

Motivation
Hardware trends
= Huge main memory capacity
with complex access characteristics (Caches, NUMA)
= Many-core CPUs
= SIMD support in CPUs
= New CPU features (HTM)
= Also: Graphic cards, FPGAs, low latency networking,. ..

Database system trends
= Entire database fits into main memory
= New types of database systems
= New algorithms, new data structures

“The End of an Architectural Era.
(It's Time for a Complete Rewrite).”

Modern Hardware Main-Memory Databases

Recap: Database Workloads
Analytics
= Long-running
= Access large parts of the database
= Often use scans
= Read-only

= Example: “Average order value per year and product group?”

Transaction processing
= Short running
= (Multiple) point queries + simple control flow
= Insert/Update/Delete/Read data
= Example: “Increment account x by 10, decrement account y by 10"

Universal DBMS used for both (but not concurrently).

OLTP

Universal DBMS were optimized for 1970's hardware
= Small fraction of DB in memory buffer

* Hide and avoid disk access at any cost

Today
= Even enterprises can store entire DB in memory
= Transaction are often “one-shot”

= Transactions execute in a few ms or even yus

OLTP (2)

Main sources of overhead
= ARIES-style logging
= Locking (2PL)
= Latching
= Buffer Management

Useful work can be as low as %th of instructions!.

Modern systems avoid this overhead (see slide 9).

]'Harizopoulos et al. — OLTP Through the Looking Glass, and What We Found There

Modern Hardware Main-Memory Databases

Physical Data Layout in Main Memory
Lightweight:

= Buffer Manager removed

= No need for segments

= No need for slotted pages
Store data in simple arrays. But: Row-wise or column-wise?

Logical Table
Empld| First | Last |Salery

50 Joe Doe 10 | Joe Doe 40000
Mary 440000 20 | Mary | Jones|32000
32 Bob | ey 32000 o co B Bob | Black|60000
25/ Jane 60000 25 | Jane | Jones|85000
Jones =000 &
o

| 10 Joe | Doe [40000] 20| Maryl|..] 25] Jane | Jones|[85000]

R T
Physical Data Layout in Main Memory (2)

Row Store:
= Beneficial when accessing many attributes
= For OLTP

Column Store:
= Excellent cache utilization
= Sometimes individually sorted
= Compression potential
= Vectorized processing
= For OLAP

Hybrid Row/Column Stores possible

Main-Memory Databases
New Systems (Examples)

OLTP-only:
= VoltDB/H-Store
= Microsoft Hekaton

OLAP-only:
= Vectorwise
= MonetDB
= DB2 BLU

Hybrid OLTP and OLAP:
= SAP HANA
= HyPer

Modern Hardware Main-Memory Databases

New Systems: OLTP (Examples)
Challenge:

= Avoid overhead

= Guarantee ACID

Approaches:
= Buffer Management: Removed

= Logging
> H-Store/VoltDB: Log shipping to other nodes
> Hekaton: Lightweight logging (no index structures)
= Locking:
» H-Store/VoltDB: Serial execution (on private partitions)
» Hekaton: Optimistic MVCC
= Latching

> H-Store/VoltDB: Not necessary
» Hekaton: Latch-free data structures

Modern Hardware Main-Memory Databases

New Systems: Hekaton

= Integrated in SQL Server

= Code Generation

= Only access path: Index (Hash or B(w)-Tree)
= Latch-Free Indexes

= MVCC

Header Links Payload

‘Begin‘ End ‘ ‘Poimer‘ Name ‘ City ‘Amount‘

Record format

Hash index Ordered index
on Name on City
" 10 [20 [[John [London[100 |« -
I
] [15 [inf] \f\ Jane | Paris [150 |4~ =

v
—— [20 [Tx75] [[John [London] 110]
100 [[T old

sall-g

—— [Tx75] Inf [[[John [London] 130]
100 New

30 [Tx75] [[Larry | Rome [170 |«
100] T Old

[Tx75] inf | [[Larry | Rome | 150

100 New

R T
New Systems: OLAP

= Vectorwise: Vectorized Processing

= HyPer: Query Compilation (cf. Chapter Code Generation)

R T
New Systems: Hybrid OLTP and OLAP

Traditionally:
= Mixing OLTP and OLAP leads to performance decline
= ETL architecture

= 2 systems, stale data

New Systems
= SAP HANA

» Split DB into read-optimized main and update-friendly delta
» OLAP queries read main, OLTP transactions read delta and main
» Periodically merge main and delta

= HyPer: Virtual memory snapshots

R T
HyPer: Virtual Memory Snapshots

OLTP Data

OLTP Tx
00>

M mim >
I OO0

Modern Hardware Main-Memory Databases

HyPer: Virtual Memory Snapshots

forked OLAP-Snapshot

OLTP|Data

OLAP Queries

OLTP Tx
00>

M mm >
N loN@]

R T
HyPer: Virtual Memory Snapshots

fo rked OLAP-Snapshot

OLTP Data
OLAP Queries
read C
OLTP Tx /J
00> p
Vs

M mim >
I OO0

Modern Hardware Main-Memory Databases

HyPer: Virtual Memory Snapshots

OLTP Data

OLTP Tx

_fo rked OLAP-Snapshot

OLAP Queries

update C to

MmN > 0O

R T
HyPer: Virtual Memory Snapshots

_fo rked OLAP-Snapshot

OLTP Data
OLAP Queries
read C
OLTP Tx C read H
00> D

A | C*

B | D /

E G //

F | H

Modern Hardware Main-Memory Databases

In-Memory Index Structures

= |In-memory hash indexes

» Simple and fast

> Growing is very expensive

» Do not support range queries
= Search Trees

» BSTs are cache unfriendly
> B-Trees better (even though designed for disk)

= Radix-Trees (“Tries")

> Support range queries
» Height is independent from number of entries

Main-Memory Databases
Radix Trees

Properties:
= Height depends on key length, not number of entries
= No rebalancing
= All insertion orders yield same tree
= Keys are stored in the tree implicitely
Search:
= Node is array of size 2°
= 5 bits (often 8) are used as an index into the array
= s is a trade-off between lookup-performance and memory consuption

Radix Tree Adaptive Radix Tree

) (() ()

)
/ i { I EEEEERER RN EEEEEERR

D P
Adaptive Radix Trees

Four node types:
= Node4: 4 keys and 4 pointers at corresponding positions:

key child pointer
0 1 2 3 0 1 2 3
of2fspsy | | | | [
A A A A
= Nodel6: Like Node4, but with 16 keys. SIMD searchable.
= Node48: Full 256 keys (index offset), point to up to 48 values:

child index child pointer

r Y hY

= Node256: Regular trie node, i.e. array of size 256

A D 1*: 11 11 LI D o~

R T
Exploiting HTM for OLTP

= Intel's Haswell introduced HTM (via cache coherency protocol)

= Allows to group instructions to transactions

= Can help to implement DB transactions, but

» Do not guarantee ACID by themselves
> Limited in size/time

100% =

75% =

50% =

abort probability

T
16KB
transaction size

24IKB

32KB

abort probability

100%

75% =

50% =

25% =

0%+

100K ™
transaction duration in cycles (log scale)

= Use HTM transactions as building blocks for DB transactions

Main-Memory Databases
Exploiting HTM for OLTP (2)

Goals:
= As fine-grained as 2PL, but faster

= As fast as serial execution, but more flexible

atomic-elide-lock (lock) {
account [from] -—=amount ;
account [to] +=amount;

3

Modern Hardware Main-Memory Databases

Implementing DB transactions with HTM
Use TSO + HTM for latching:

+ database transaction

conflict detection: read/write sets via timestamps
elided lock: serial execution

request a new timestamp, record safe timestamp

>
] HTM transaction
<>

conflict detection: read/write sets in hardware
elided lock: latch
> single tuple access
™ verify/update tuple timestamps

]~ HTM transaction
conflict detection: read/write sets in hardware
elided lock: latch

[>~F single tuple access
I verify/update tuple timestamps

release ti p. update safe ti p

= Relation and index structure layout must avoid conflicts

R T
NUMA-Aware Data Processing

NUMA architectures:

Nehalem EX Sandy Bridge EP
DRAM DRAM DRAM
25.6GB/s
socketO mmmm socketl socket 1
8 cores 8 cores 8 cores
24MBL3 24MBL3 20MBL3 20MBL3
12. 16.0GB/

I x I(bi(ﬁ%%/tisonal) I(tﬁdirectisonal) I
socket3 | socket2 socket3 |EEMl sodket2
8 cores 8 cores 8 cores 8 cores
24MBL3 24MBL3 20MBL3 20MBL3

o

o

o o

= Local access cheap
= Remote access expensive

Modern Hardware Main-Memory Databases

NUMA-Aware Data Processing: Hash Join

HI(T)
/\ global
g Hash Table
4 N
W e l— 2% \ Sorage HT(M HT(S)
g g %, @, \ areaof
< E 67//?‘@.\ blue core - - D D an gy,
g -
I \, S o
= -— | =
g I Sorge | e = =~
/_>\ gg !ra@ o rage | gére;\‘ac?:ree - N \
B g of argaof areaof / - =" - N N\ \
% / L
% \/ redcore | | ggencore| | blug core Smm? \ \ ‘
S e |1
i o.R O.R O.R
.M o.M 0.(M
5 7
= g? 5.'
'
; : .
=] ‘e
L)
| =
E

Modern Hardware Main-Memory Databases

Compaction

= OLTP & OLAP share the same physical data model
> Fast modifications vs scan performance
> Row store vs column store

= Modifications require snapshot maintenance

» Use more memory
» Congest memory bus
» Stall transactions

Main-Memory Databases
Compaction: Hot/Cold Clustering

AA‘

ideal reality compacted

= Compression is applied asynchronously to cold part:
> Dictionary encoding
» Run-length encoding
» Other schemes possible
= Compact snapshots through a mix of regular and huge pages
> Keeps page table small
» Clustered updates
» No huge pages need to be replicated

Modern Hardware Main-Memory Databases

Compaction: Hot/Cold Clustering

- Hot & items mixed
- Uncompressed
- Small memory pages

- Cold & compressed data
- Huge memory pages

- Rarely accessed by OLTP

- Immutable: Deleted and
updated items are marked
"invalid" and copied to Hot

Column

Working Set (hot data),
Uncompressed
Small memory pages

1[4

e
oojoojoojooqoo
oojoojoojooqoe
00jo0joogoogoo

i

ISmaII memory page

data items only
Not compressed yet

AN

"Invalid frozen items"
data structure

Huge memory page

Main-Memory Databases
Compaction: Hot/Cold Clustering

How to detect temperature without causing overhead?
1. Software: LRU lists, counters
2. Hardware: mprotect

3. Hardware: dirty and young flags

Hardware

Main-Memory Databases
Data Blocks

= most data is cold and rarely / never changes
= it is attrative to compress these aggressively
= and pre-compute SMAs
= helps with skipping data

= fits well with a cloud storage setup

R T
Data Blocks - Scan Types

. JIT-compiIet_ﬂ o
tuple-at-a-time query pipeline

push matches
tuple-at-a-time
compressed data and vecto
unpacking of matches
compressed interpreted vectorized scan
Data Block on Data Block

|

-

vectorized evaluation of A E
SARGable predicates on

single interface

I — tuple- at-a time
——— evaluation of scan predicates
vectorized evaluation of I E E
SARGable predicates and
copying of matches vector Uncompressed
A C

chunk

vectors of e.g., 8192 records

uncompressed interpreted vectorized scan JIT-compiled tuple-at-a-time scan
chunk on uncompressed chunk on uncompressed chunk

Modern Hardware

Data Blocks - Layout

tuple count sma offset, dict offset, data offset,
compressiong string offsety sma offset; dict offset;
data offset; compression; string offset;

sma offset, dict offset, data offset,

compression, string offset, ming max

lookup tablegy

Positional SMA index for attribute 0

domain sizeg dictionary,

compressed datag

string datag

min, max;

Modern Hardware Main-Memory Databases

Data Blocks - Vectorized Evaluation

aligned data
unaligned data read offset
11
predicate
[1]] evaluation
[R
I 'y
data 0 IR
) movemask
remaining data
|l =1544
R o
0 H lookup
0,346 E add global scan position

and update match vector

255.

0,1,2,3,4,56,7
precomputed 1,3,5,7,9/11, 14,15, 17

positions table

O ' match positions

	The Classical Architecture
	Efficient Query Processing
	Modern Hardware
	Main-Memory Databases

