
1 / 29

Modern Hardware Main-Memory Databases

Main-Memory Databases

2 / 29

Modern Hardware Main-Memory Databases

Motivation
Hardware trends

• Huge main memory capacity
with complex access characteristics (Caches, NUMA)

• Many-core CPUs
• SIMD support in CPUs
• New CPU features (HTM)
• Also: Graphic cards, FPGAs, low latency networking,. . .

Database system trends
• Entire database fits into main memory
• New types of database systems
• New algorithms, new data structures

“The End of an Architectural Era.
(It’s Time for a Complete Rewrite).”

3 / 29

Modern Hardware Main-Memory Databases

Recap: Database Workloads
Analytics

• Long-running
• Access large parts of the database
• Often use scans
• Read-only
• Example: “Average order value per year and product group?”

Transaction processing
• Short running
• (Multiple) point queries + simple control flow
• Insert/Update/Delete/Read data
• Example: “Increment account x by 10, decrement account y by 10”

Universal DBMS used for both (but not concurrently).

4 / 29

Modern Hardware Main-Memory Databases

OLTP

Universal DBMS were optimized for 1970’s hardware
• Small fraction of DB in memory buffer
• Hide and avoid disk access at any cost

Today
• Even enterprises can store entire DB in memory
• Transaction are often “one-shot”
• Transactions execute in a few ms or even µs

5 / 29

Modern Hardware Main-Memory Databases

OLTP (2)

Main sources of overhead
• ARIES-style logging
• Locking (2PL)
• Latching
• Buffer Management

Useful work can be as low as 1
60 th of instructions1.

Modern systems avoid this overhead (see slide 9).

1Harizopoulos et al. – OLTP Through the Looking Glass, and What We Found There

6 / 29

Modern Hardware Main-Memory Databases

Physical Data Layout in Main Memory
Lightweight:

• Buffer Manager removed
• No need for segments
• No need for slotted pages

Store data in simple arrays. But: Row-wise or column-wise?

EmpId First Last
10 Joe Doe
20 Mary Jones
32 Bob Black
25 Jane Jones

Salery
40000
32000
60000
85000

EmpId

10
20
32
25

First

Joe
Mary
Bob
Jane

Last

Doe
Jones
Black
Jones

Salery

40000
32000
60000
85000

Tuples

10 Joe Doe 20 25 Jane Jones40000 85000Mary ...

Logical Table

Column Store

 R
ow Store

7 / 29

Modern Hardware Main-Memory Databases

Physical Data Layout in Main Memory (2)
Row Store:

• Beneficial when accessing many attributes
• For OLTP

Column Store:
• Excellent cache utilization
• Sometimes individually sorted
• Compression potential
• Vectorized processing
• For OLAP

Hybrid Row/Column Stores possible

8 / 29

Modern Hardware Main-Memory Databases

New Systems (Examples)
OLTP-only:

• VoltDB/H-Store
• Microsoft Hekaton

OLAP-only:
• Vectorwise
• MonetDB
• DB2 BLU

Hybrid OLTP and OLAP:
• SAP HANA
• HyPer

9 / 29

Modern Hardware Main-Memory Databases

New Systems: OLTP (Examples)
Challenge:

• Avoid overhead
• Guarantee ACID

Approaches:
• Buffer Management: Removed
• Logging

▶ H-Store/VoltDB: Log shipping to other nodes
▶ Hekaton: Lightweight logging (no index structures)

• Locking:
▶ H-Store/VoltDB: Serial execution (on private partitions)
▶ Hekaton: Optimistic MVCC

• Latching
▶ H-Store/VoltDB: Not necessary
▶ Hekaton: Latch-free data structures

10 / 29

Modern Hardware Main-Memory Databases

New Systems: Hekaton
• Integrated in SQL Server
• Code Generation
• Only access path: Index (Hash or B(w)-Tree)
• Latch-Free Indexes
• MVCC

10 John 10020

15 Jane 150inf

30 LarryTx75

20 John 110Tx75

Tx75 Larry 150inf

Tx75 John 130Inf

J

L

Old

New

Old

New

Hash index
on Name

Begin End Name City

Header Payload

Record format

100

100

100

100

Pointer••• Amount

Links

London

Paris

London

London

170Rome

Rome

Ordered index
on City

B
-tre

e

11 / 29

Modern Hardware Main-Memory Databases

New Systems: OLAP

• Vectorwise: Vectorized Processing
• HyPer: Query Compilation (cf. Chapter Code Generation)

12 / 29

Modern Hardware Main-Memory Databases

New Systems: Hybrid OLTP and OLAP

Traditionally:
• Mixing OLTP and OLAP leads to performance decline
• ETL architecture
• 2 systems, stale data

New Systems
• SAP HANA

▶ Split DB into read-optimized main and update-friendly delta
▶ OLAP queries read main, OLTP transactions read delta and main
▶ Periodically merge main and delta

• HyPer: Virtual memory snapshots

13 / 29

Modern Hardware Main-Memory Databases

HyPer: Virtual Memory Snapshots

C
D

A
B

G
H

E
F

OLTP Data

OLTP Tx

forked OLAP-Snapshot

13 / 29

Modern Hardware Main-Memory Databases

HyPer: Virtual Memory Snapshots

C
D

A
B

G
H

E
F

OLTP Data

OLTP Tx

OLAP Queries

forked OLAP-Snapshot
fo
rk

13 / 29

Modern Hardware Main-Memory Databases

HyPer: Virtual Memory Snapshots

C
D

A
B

G
H

E
F

OLTP Data

OLTP Tx

OLAP Queries

forked OLAP-Snapshot

read C

13 / 29

Modern Hardware Main-Memory Databases

HyPer: Virtual Memory Snapshots

C*
D

A
B

G
H

E
F

C
D

OLTP Data

OLTP Tx

OLAP Queries

forked OLAP-Snapshot

co
py-o

n-w
rit

e
update C to C*

13 / 29

Modern Hardware Main-Memory Databases

HyPer: Virtual Memory Snapshots

C*
D

A
B

G
H

E
F

C
D

OLTP Data

OLTP Tx

OLAP Queries

forked OLAP-Snapshot

read C

read H

14 / 29

Modern Hardware Main-Memory Databases

In-Memory Index Structures

• In-memory hash indexes
▶ Simple and fast
▶ Growing is very expensive
▶ Do not support range queries

• Search Trees
▶ BSTs are cache unfriendly
▶ B-Trees better (even though designed for disk)

• Radix-Trees (“Tries”)
▶ Support range queries
▶ Height is independent from number of entries

15 / 29

Modern Hardware Main-Memory Databases

Radix Trees
Properties:

• Height depends on key length, not number of entries
• No rebalancing
• All insertion orders yield same tree
• Keys are stored in the tree implicitely

Search:
• Node is array of size 2s

• s bits (often 8) are used as an index into the array
• s is a trade-off between lookup-performance and memory consuption

Radix Tree Adaptive Radix Tree

16 / 29

Modern Hardware Main-Memory Databases

Adaptive Radix Trees
Four node types:

• Node4: 4 keys and 4 pointers at corresponding positions:

0 2 3

key child pointer

b ca d

255

0 1 2 3 0 1 2 3

• Node16: Like Node4, but with 16 keys. SIMD searchable.
• Node48: Full 256 keys (index offset), point to up to 48 values:

0 1 2
… …

child index child pointer

3 255

da cb

0 1 2 47

• Node256: Regular trie node, i.e. array of size 256
Additionally: Header with node type, number of entries

17 / 29

Modern Hardware Main-Memory Databases

Exploiting HTM for OLTP
• Intel’s Haswell introduced HTM (via cache coherency protocol)
• Allows to group instructions to transactions
• Can help to implement DB transactions, but

▶ Do not guarantee ACID by themselves
▶ Limited in size/time

0%

25%

50%

75%

100%

0 8KB 16KB 24KB 32KB

transaction size

a
b

o
rt

 p
ro

b
a

b
ili

ty

0%

25%

50%

75%

100%

10K 100K 1M 10M

transaction duration in cycles (log scale)

a
b
o
rt

 p
ro

b
a
b
ili

ty

⇒ Use HTM transactions as building blocks for DB transactions

18 / 29

Modern Hardware Main-Memory Databases

Exploiting HTM for OLTP (2)

Goals:
• As fine-grained as 2PL, but faster
• As fast as serial execution, but more flexible

atomic-elide-lock (lock) {
account[from]-=amount;
account[to]+=amount;

}

19 / 29

Modern Hardware Main-Memory Databases

Implementing DB transactions with HTM
Use TSO + HTM for latching:

HTM transaction

conflict detection: read/write sets in hardware

elided lock: latch

single tuple access

verify/update tuple timestamps

...

...

database transaction

conflict detection: read/write sets via timestamps

elided lock: serial execution

request a new timestamp, record safe timestamp

release timestamp, update safe timestamp

HTM transaction

conflict detection: read/write sets in hardware

elided lock: latch

single tuple access

verify/update tuple timestamps

H
TM

 c
on

fli
ct

H
TM

 c
on

fli
ct

ti
m

es
ta

m
p

co
nf

li
ct

• Relation and index structure layout must avoid conflicts

20 / 29

Modern Hardware Main-Memory Databases

NUMA-Aware Data Processing
NUMA architectures:

DRAM

socket 0

DRAM

socket 1

socket 3 socket 2

DRAM DRAM

DRAM

socket 0

DRAM

socket 1

socket 3 socket 2

DRAM DRAM

NehalemEX SandyBridgeEP

25.6GB/s 51.2GB/s

12.8GB/s

8 cores
24MB L3

8 cores
24MB L3

8 cores
24MB L3

8 cores
24MB L3

8 cores
20MB L3

8 cores
20MB L3

8 cores
20MB L3

8 cores
20MB L3

16.0GB/s
(bidirectional)(bidirectional)

• Local access cheap
• Remote access expensive

21 / 29

Modern Hardware Main-Memory Databases

NUMA-Aware Data Processing: Hash Join
HT(T)

global
Hash Table

morsel

T

Ph
as
e
1:

pr
oc

es
s
T

m
or

se
l-w

is
e

an
d

st
or

e
N

U
M

A
-lo

ca
lly

Ph
as
e
2:

sc
an

 N
U

M
A
-lo

ca
l s

to
ra

ge
 a

re
a

an
d

in
se

rt
 p

oi
nt

er
s
in

to
 H

T

ne
xt

 m
or

se
l

Storage
area of
red core

Storage
area of

green core

Storage
area of

blue core

Insert the pointer

into HT

...(T) ...(T)...(T)

morsel

R

Storage
area of
red core

HT(T) HT(S)

Storage
area of

green core

Storage
area of

blue core

ne
xt

 m
or

se
l

...(R) ...(R)...(R)

s
c
a
n

s
c
a
n

σ σ σ
σ σ σ

22 / 29

Modern Hardware Main-Memory Databases

Compaction

• OLTP & OLAP share the same physical data model
▶ Fast modifications vs scan performance
▶ Row store vs column store

• Modifications require snapshot maintenance
▶ Use more memory
▶ Congest memory bus
▶ Stall transactions

23 / 29

Modern Hardware Main-Memory Databases

Compaction: Hot/Cold Clustering

ideal reality compacted

• Compression is applied asynchronously to cold part:
▶ Dictionary encoding
▶ Run-length encoding
▶ Other schemes possible

• Compact snapshots through a mix of regular and huge pages
▶ Keeps page table small
▶ Clustered updates
▶ No huge pages need to be replicated

24 / 29

Modern Hardware Main-Memory Databases

Compaction: Hot/Cold Clustering

Cold

Hot

Cooling

- Working Set (hot data)
- Uncompressed
- Small memory pages

- Hot & cold items mixed
- Uncompressed
- Small memory pages

- Cold & compressed data
- Huge memory pages
- Rarely accessed by OLTP
- Immutable: Deleted and
 updated items are marked
 "invalid" and copied to Hot

Frozen

Huge memory page

Small memory page

- Cold data items only
- Not compressed yet

Column

"Invalid frozen items"
data structure

25 / 29

Modern Hardware Main-Memory Databases

Compaction: Hot/Cold Clustering

How to detect temperature without causing overhead?
1. Software: LRU lists, counters
2. Hardware: mprotect

3. Hardware: dirty and young flags

...

26 / 29

Modern Hardware Main-Memory Databases

Data Blocks

• most data is cold and rarely / never changes
• it is attrative to compress these aggressively
• and pre-compute SMAs
• helps with skipping data
• fits well with a cloud storage setup

27 / 29

Modern Hardware Main-Memory Databases

Data Blocks - Scan Types

uncompressed
chunk

A B C D

vector
B

compressed
Data Block

A

B

C

D
A D

interpreted vectorized scan
on Data Block

vectorized evaluation of
SARGable predicates on
compressed data and
unpacking of matches

push matches
tuple-at-a-time

vector

B

uncompressed
chunk

A B C D

A D

interpreted vectorized scan
on uncompressed chunk

vectorized evaluation of
SARGable predicates and
copying of matches

JIT-compiled tuple-at-a-time scan
on uncompressed chunk

tuple-at-a-time
evaluation of scan predicates

vectors of e.g., 8192 records

JIT-compiled
tuple-at-a-time query pipeline

cold
scan

hot
scan

tuple

si
n

gl
e

in
te

rf
ac

e

In
d

ex

PSMAs

28 / 29

Modern Hardware Main-Memory Databases

Data Blocks - Layout
tuple count sma offset0 dict offset0 data offset0

compression0 string offset0 sma offset1 dict offset1

data offset1 compression1 string offset1 ...

sma offsetn... dict offsetn data offsetn

compressionn string offsetn min0 max0

lookup table0

Positional SMA index for attribute 0

domain size0 dictionary0

compressed data0

string data0

min1 max1 ...

29 / 29

Modern Hardware Main-Memory Databases

Data Blocks - Vectorized Evaluation

data

read offset

aligned data

unaligned data
11

remaining data

predicate
evaluation

movemask

=15410

precomputed
positions table

25
5

 ..
. 1

54
 ..

. 1

0

0, 3, 4, 6

0

-

0, 1, 2, 3, 4, 5, 6, 7

lookup

match positions

1, 3, 5, 7, 9, 11, 14, 15, 17

+11

add global scan position
and update match vector

write offset

	The Classical Architecture
	Efficient Query Processing
	Modern Hardware
	Main-Memory Databases

