
IBM IBM CAMBRIDGE SCI’ENTIFIC CENTER
320-2096, January 1974

XRM
AN EXTENDED (N-ARY) RELATIONAL MEMORY

R. A. LORIE

.

.

IBM CAMBRIDGE SCIENTIFIC CENTER

TECHNICAL REPORT NO. 320-2096

JANUARY 1974

XRM

AN EXTENDED (N-ARY) RELATIONAL MEMORY

R. A. LORIE*

IBM CAMBRIDGE SCIENTIFIC CENTER
545 TECHNOLOGY SQUARE

CAMBRIDGE, MASSACHUSETTS 02139

*Present Address: IBM Research Laboratory, San Jose, California

,

ABSTRACT

The paper presents a low
relations. An n-ary

level interface for handling n-ary
relation is a set of

Values are encoded into integers.
tuples of values.

Operators are supplied to
create and drop a relation, to add or delete tuples in a
relation, to scan a relation, to retrieve a subset of a
relation.

An implementation is described. It uses a binary relation
processor as a base. Hashing and inversions are used to
speed up the processing.

Some experiments are also described.

XRM

AN EXTENDED (N-ARY) RELATIONAL MEMORY

1. INTRODUCTION

Research in the area of data structures and data bases
started in 1968 at the Cambridge Scientific Center as part
of a project for graphics support. After an experimental
implementation based on the J. Feldman and P. Rovner
"triple" approach (6) a new system design was made, keeping
some of the original concepts, but at the same time,
introducing a more powerful relational structure
(4) (5) (7) (8) (9).

The central design objective was to provide a low level data
management system where the user could define entities
(records) and relate them in an arbitrary number of ways.
Many applications
networks and this

have a natural formulation in terms o:
justifies the emphasis put on

implementation of an efficient binary relation processor.
This processor - called RM - has been used successfully in
various applications since mid-1970.

The shift from the "triple" logical view towards a
relational model was triggered by the work of E. F. Codd on
the representation of data bases in terms of n-ary relations
(2) (3). We also recognize that a large spectrum of
applications require a relational model involving relations
of degree higher than 2. We felt that the basic Relational
Memory would provide an excellent tool for implementing
n-ary relations. In mid-1972 we coded a prototype set of
functions for creating and updating n-ary relations . The
encouraging results stimulated a new project aimed at
defining an n-ary relation interface.

At the same time D. B jorner et al. (1) at IBM Research
started a project with the same goal. Discussions with the
group r and later on with J. Gray, also of IBM Research, lead
us to the interface here presented.

The implementation of a prototype based on the Relational
Memory will be presented. in application will be considered
and some measurements discussed.

2 DESIGN OBJECTIVES OF XRM

2. DESIGN OBJECTIVES OF XRM

The following objectives were set:

XRM is a low level n-ary relation processor which
can be used for
and/or calculus.

implementing a relational algebra
It can also be used directly by a

more sophisticated application programmer.

LOW level means that internal names (or
identifiers) of data elements are visible to the
user. It also means that parameters
the physical

controlling

the
implementation may

interface.
still appear in

Inversions for
retrieval are also visible.

speeding up

Relations are identified by internal names and
domains are identified by their position index.

For performance reasons some descriptive
information needed for XRM for which the access
path is known and constant should not necessarily
be accessed in a relational way.

The notion of unary and binary relation as known
in RM must be preserved in order to take advantage
of the high performance of the binary relation
processor.

The notion of ordering is not introduced at this
level. We feel that a separate ordering mechanism
provides much flexibility. The primitive operators
would deal with
identifiers

maintaining

themselves.
independently

sequences of
of the data elements

This allows multiple orderings for
example. Such a facility is provided in RM but
more work should be done in that area.

3. THE INTERFACE

3.1. The Data Model

One defines

3.1.1. Class-relations

A class-relation is a collection of data elements. A data
element ' string of bytes. Every
class-relatQonais given an identifier (id)

entry in a
An id is a fixed

integer; it is the internal name of the' data element. A
class establishes a
identifier.

mapping between a string and its

Example: class-relation LOCATION

id data-element
+------------------+

(l)---' NEW-YORK t
+------------------+

+-------w---w+

(2)------' BOSTON '
+-w-v--------+

+ ------------+

(3) --m--w I CHICAGO '
+------------+

There are several types of class-relations depending upon
the properties of the mapping:

One-to-one permanent mapping: to a particular data
element corresponds one and only one id. Once a
data-element has been assigned an id this
assignment is permanent: if the data element is
deleted, the id will not be reused: if it is
recreated, it will be assigned the same id.

One-to-one non permanent mapping: to a particular
data element corresponds one and only one id. When
a data element is deleted, the id is freed and
returned to the common pool of id's, It can be
assigned to any data element later defined.

One-to-n mapping: When a data element is created,
it is given a new id. No checking is made to see
if such data element exists already or not.

4

Notes:

A one-to-one mapping is actually an encoding of a
data element. A one-to-n mapping is not an
encoding of the data element but provides an
addressing scheme. Consider a piece of text; every
data element is a sentence of the text. By chance
two lines have the same contents but they are
logically two different entities and should be
referenced by two different id's. They could later
be updated independently.

As id's will be used to maintain relationships
among data elements, the difference between
permanent or non-permanent mapping is significant.
When' a data element is deleted in a permanent
mapping all references to its id should be deleted
from the data base. However, if such references
are kept, an error will be signaled when one tries
to decode an id corresponding to a deleted data
element. When a data element is deleted from a
non-permanent mapping all' references to its id
should be carefully removed from the data base.
Otherwise, the id will be reused for a different
data element and false relationships will exist.

3.1.2. Regular Relations

relation or relation of degree n is a set of
Each n-tuple (or tuple) is a vector of n integers

element values or identifiers or "undefined").
The ith value of the tuple corresponds to the ith domain of
the relation. The
domains such that

key of a relation is a subset of
corresponding to these domains

uniquely identify the tuple. A relation is
relation identifier (rid).

identified by a

There are several types of relations depending upon the fact
that identifiers are associated with each tuple in the
relation (relation with tuple-identifiers) or not (relation
without tuple-Etifiers). Relations without
tuple-identifiers are defined only for unary (degree 1) or
binary (degree 2) relations. A tuple identifier will be
called a tid.

We need at this point to discuss the introduction of
tuple-identifiers and why we introduce a special case for
unary and binary relations although they can be thought of
as n-ary relations with n-l or 2. The justification for such "
a particular case lies in the relative simplicity of unary
or binary relation processing with the present
A relation can be represented as

technology.
a sorted list of tuples. A

search operation can take advantage of the ordering when the

THE INTERFACE 5

value of the sorting key is specified. To be able to search
efficiently on any subset of the domains, one needs to store
multiple permutations of the domains. The price in storage
becomes rapidly prohibitive when the degree increases and
another technique must be used.

We adopt the following representation: a tuple is stored as

tid el e2 e3 e4 . . . en

where tid is the tuple-identifier. With the jth domain one
can associate an inversion binary relation rj. For each
tuple the pairs

el tid
e2 tid '
e3 tid
. . .
en tid

are added respectively to rl, r2, . . . rn. We use the first
representation for unary and binary relations. The second
representation is used for nl3.

This justifies the use of tid's for building inversion. In
fact it only illustrates the use of tid's as synonyms of the
primary keys, much easier to manipulate. Note also that in
some cases (one-to-n mapping) the tid is the only way of
uniquely identifying the data element.

Two remarks for relations with tuple-identifiers:

The mapping is always a one-to-one mapping but can
be permanent or non-permanent as for
class-relations.

The primary key may be specified to be external to
the tuple. In this case the relation is equivalent
to a regular relation and a class relation. To
each tuple in the relation corresponds one and
only one data element of the class relation and
they are both identified by the same id. Depending
upon the function the relation is seen as regular
or class relation (Figure 1).

6 THE INTERFACE

SEEN AS RELATION
A

I
1

11 357 -pxisGq
\ I

I I
I
I

I-
SEEN AS CLASS-RELATION

I

Figure 1.

3.1.3 Special Relations

Two special types of relations are defined. They are binary
by nature and do not have tuple-identifiers. They are:

- the hash relations
- the inversion relations

Although they are used internally and cannot be explicitly
updated by the user, they are made available for retrieval.
Inversion relations have been defined above.

A hash relation contains pairs of the form (h,i) where i is
the identifier of a data element (or tuple) and h a hash
value obtained by applying a hash function to the
data-element (or the key in the tuple).

THE INTERFACE 7

3.1.4. The Master Relation

The master relation is unique and is used for storing
information about all relations defined in the memory. A
relation before being used must be defined by adding a tuple
to the master relation. The master relation is predefined in
the system. It is referred to by a unique master relation
identifier. Note that any rid is also a tid of a 'tuple in
the master relation.

The domains in the master relation specify for each
relation:

- the type of relation
- the degree
- the primary key
- some control information
- some user's information.

8 THE INTERFACE

3.1.5. Summary

The types of relations can be grouped and numbered in a
tree-like form as in Figure 2.

Type # +-"""""""""""""'------------------------------+--------+
permanent 1

/ I
/

.
I

/

mapping l-l I

\
I

Non-permanent '
I

' class-relation- I

I

I *
\

I

mapping l-n I
I I

I permanent I

I

/

I

I I
I
' regular relation /

With tuple-id
\

I

1
I \

non-permanent '
I

without tuple-id I
I 1

I hash relation I
I

/ I

* special relation I
I

\ I

I inversion relation I
I 1

1 master relation I
I I

0

1

2

4

9

I

I

I

I

I

I

I

I

I

I

I

I

I

I

1

I

I

I

I

I

I

1

1

I

I

I

1

+-------------------“““““‘------------------------------+
--------+

Figure 2

Note the logical similarity between
regular relation with tuple id.

class relation and
In the next section the

terms relation and tid will also be used to denote class
relation and data element identifier.

THE INTERFACE 9

3.2. Functions

The functions operating on the data model may be divided in
three groups.

* Functions which deal with the existence of a relation
in the memory:

DEFINE defines a new relation by making an entry
in the master relation.

DROP deletes the whole relation from the memory
and suppresses the entry in the master relation.

The master relation cannot be defined or dropped.

* Functions which deal with one single entry of a
relation:

ADD and DELETE makes or suppresses an entry in a
relation (and creates or frees its tid when
needed); these functions are invalid for the
master relation and special relations.

FETCH returns a tuple when its tid is given.

TID returns the tid when the key is given.

UPDATE allows modification of some domains of a
tuple; the key cannot be altered.

* Functions which deal with the relation as a whole:

OPEN/NEXT/CLOSE allow successive retrieval of
every tid (and the tuple if wanted) in the
relation.

c NUMBER returns the number of entries in a
relation.

EMPTY deletes all entries in a relation.

INVERT associates one or several inversion
relation(s) - previously defined - with one or
several domain(s) of a relation. The inversion
relation is said to be active for that domain. If
the relation is not empty the inversion is
automatically updated; an entry is made for each
tuple in the relation. When subsequent tuples are
made in or deleted from the relation corresponding 5
entries are made or deleted automatically in the
inversion relation.

10 THE INTERFACE

RETRIEVE performs a search for all tupleS in a
relation which have specified values for some
domains. For relations with tuple-identifiers the
result is a set of tid's (unary relation without
tid). This operation does not apply to
class-relations. Note that TID should be used when
the values of all domains constituting the primary
key are specified, as it uses the hashing
mechanism and is therefore faster.

For relations without tuple-identifiers the value
of the unspecified domain of the binary relation
is added to the set instead of the (unexisting)
tid. The operation is meaningless for unary
relation.

RETRIEVE requires that inversions exist on all
domains for which a value is specified.

IMPLEMENTATION 11

4. IMPLEMENTATION

The implementation of the n-ary relation processor is
entirely based on the binary relation processor (RM). It
uses from RM the capabilities of defining entities and
maintaining unary and binary relations of the form R(a) and
R(a,W - The only retrieval capability which is used is: find
all entries in R or find all b's associated with a given a
in a relation R. The reader who is not familiar with RM
should refer to the appendix, where those functions are
briefly explained or to the papers cited in the
bibliography.

As there are also id's and rid's in RM we will always
qualify them by the prefix RM when they could be confused
with an id or rid at the XRM level.

4.1 The master relation.

The master relation is used to store the logical
characteristics of the relation defined in the system like
the type, the degree, the primary key but also some control
information used by the implementation. For ease of
reference we number those as follows:

dl tentative RM entity-id
d2 tentative RM relation-id
d3 last RM entity-id used for the relation
d4 main RM relation-id
d5 alternate RM relation-id
d6 Block RM relation-id
d7 encoding control tuple id
d8 inversion control tuple id
d9 retrieval control tuple id

Their usage is explained in the following sections.

4.2. Representation of a Class-relation, l-n Mapping

When the class-relation is defined a RM unary relation C is
created and its RM-rid stored in the master relation (d4).
The clustering mechanism of RM is used by specifying a
tentative id which is also stored in the master relation

(d2) l

Every creation of a data element in that class implies

The creation of an entity in RM, where the data
element is stored; its RM-id becomes the id of the
data element. The clustering mechanism of RM can
be used by specifying a tentative id when a data

12 IMPLEMENTATION

element is created. An automatic clustering can be
used in which one simple tentative id is provided
by the user when the relation is defined and the
last id allocated to a data element of that class
is used as tentative id for the creation of the
next element. The single tentative id is stored in
the master relation (al); so is the last id (d3).

The addition of this id to the relation C.

4.3 Representation of a Class-relation, l-l Mapping, Non
Permanent

When the class-relation is defined a RM binary relation is
created and its RM-rid (call it C) is stored in the master
relation as in 4.2.

Every creation of a data element in that class implies

A test for existence. If negative:

The creation of an entity in RM, where the data
element is stored: its RM-id becomes the id of the
data element.

The addition of the pair (h,d) to C, where h is
the value of a hashing function applied to the
data element.

The test for existence proceeds as follows: The data element
is hashed to find the value h. The RM retrieval mechanism is
used to find all id's associated with h in C. The entities
corresponding to these id's are fetched to see which one, if
any p contains actually the data element.

Note that the hash value does not correspond to any physical
slot; its range is
size

very large as it is limited
of an integer

only by the
in the particular implementation.

Therefore the probability of "multiple hit" (conflict) is
very small.

4.4 Representation of a Permanent Mapping

The representation of the class is identical to the one used
for a non-permanent mapping. However, a second RM binary
relation is created when the class relation is defined and
stored (alternate RM relation C') in the master relation

(d5) l

When a data element is deleted from the class the RM entity
is not erased but only flagged; the entry (h,d) is deleted
from C and added to C'.

IMPLEMENTATION 13

When a data element is added to the class the normal
existence test is made by using C. If negative another
existence test must be made by using Cl. If positive the
entity already exists, the flag is removed and the pair
(h,d) transferred from C' to C.

4.5. Representation of a Relation Without Tuple Identifiers

When a relation without tuple identifiers is defined, a RM
binary relation of identical degree (1 or 2) is created and
its RM-id stored in the master relation (d4). The RM
relation is then used to store the contents of the relation.

4.6. Representation of a Relation With Tuple-Identifiers

When the relation is defined a RM binary relation is created
and its RM-id (call it C) is stored in the master relation
as in 4.2.

The addition of a tuple (el, e2 . ..en) to the relation rid
implies:

The creation of an entity (suppose its id is k) in
which the tuple is stored. Clustering applies as
in 4.2.

The addition of the pair (h,k) to C, where h is
the value of a hashing function applied to the
values of the domains which constitute the primary
key of the relation.

The procedure becomes identical to the one
described for a class relation in 4.3. The
permanent mapping can be implemented exactly as in
4.4.

4.7. Inversions

The creation of a tuple in a relation as explained in 4.6
assumes there are no inversions active at that moment for
the relation rid.

We have mentioned in the interface description that an
inversion relation must be defined explicitly and then
associated with a particular domain of a particular
relation. Let us identify the relation by its rid and the ,
inversion relation corresponding to its kth domain by rik.

The associations between domains and inversion relations are
kept in an inversion control tuple.

14 IMPLEMENTATION

The tid of the control tuple is kept in the master relation
(d8) in the tuple corresponding to the relation rid. The kth
item in the control tuple contains the identifier rik. The
structure is displayed in Figure 3.

MASTER RELATION

ril

ri3

rid

ri2

d--,_ -a-----__ - ,:r;-
e-j >

. --. *
.

/ #
: ,*

i
: 1’

r-. /
/' .

I- -we-* -**

Figure 3

When the inversion relation rik is defined it is associated
a RM binary relation identified by its RM-id. This id is
stored in the master relation (d4) in the tuple relative to
rik.

Anytime an entry (el, e2, . . . ek . . . en) is made in the
relation identified by rid and is given the tid x for
example, a pair (ek,x) is added to the RX binary relation
associated with rk. The converse process is done when an
entry is deleted from rid.

4.8 Block Relation

The operation of retrieving all the tuples in a relation is
very common not only at the user's level but also at the

IMPLEMENTATION 15

system level (see 4.9). It is also convenient to obtain the
identifiers of such tuples in some predetermined order. For
performance reasons this order should follow the physical
relative position of the tuples so that every block is
fetched only once during a scanning of the relation. This is
achieved by associating another RM unary relation (called a
block-relation) with every relation. Its R&rid is stored in
the master relation (d5). The unary block-relation contains
a block identifier for each block which contains at least
one tuple of the relation. We choose as block identifier the
lowest possible RM-id in the block.

4.9. Inversions Revisited

When an inversion relation is associated with the kth domain
of a relation rid by an INVERT command it must be updated
for each tuple already existing in the relation. This
implies the scanning of all tuples already in the relation.
The scanning uses the block relation to find each block and
then scan all entities in the block to find the ones which
correspond to tuples in the relation. The pairs (value of
kth domain, tid) are stored in a working buffer. When the
buffer is full the pairs are sorted on the values and
entered in the inversion relation. Several buffers can be
used at once, corresponding to several domains to be
inverted in order to reduce the amount of scanning.

4.10. Retrieval

When a relation is defined a retrieval control tuple is
created and its tid stored in the master relation (d9). The
control tuple can be updated by the user to specify an
ordering of the domains in decreasing order of selectivity.

Let us suppose that the retrieval
values of the domains j, k,

command specifies the

of selectivity is k,
1 and that the decreasing order

1, j. The inversion relation rik is
used to find all tid's of tuples which satisfy the
constraint on domain k. These id's are stored in a buffer
until all have been stored or until buffer is full. The
inversion relation ril is then used to test if tid's in the
buffer also satisfy the constraint on domain 1.
used for a similar process.

The rij is
The tid's which satisfy the

specified constraints are added to the answer set. If all
entries in rik have
iterates.

not been processed the procedure

16 XRM APPLICATION

5. XRM APPLICATION

In order to debug the XRM package with a non-trivial data
base and get some performance estimates we generated a data
base automatically.

The data base describes a company organization. The main
relation is an 8-ary relation EMPLOYEE. The other relations
are essentially classes. Their characteristics are given in
tables 1 and 2. Type refers to the numbers in Figure 2. The
abbreviation Ext. refers to external key as explained in
3.1.2.

+%%P%P%%P%%PPPPPPPI%P3PtPt’lPPP-----~ ------~PPPP%fPPP%~PP%%~%%%~+

I I I I I I 'Data-item'
'Relation' I I 'Primary' 'for I
' Names 'Description'Type'Degree'Key 'Domains'Classes '
+ -------- +-----------+----+ --w--B -------+-----.m- + +---------+
I

'DEPC
I
I
'DEPD I
I
'JOBC
I

I

'JOBD I
I

'LOC
I

I

'FNAME
I

I

‘NAME
I

I I

'Department ' 4
'code I
I I
'Department ' 4
'description' I I

'Job code ' 4 I I
I I

'Job '4
'description'
I I

'Location ' 5
I I
I I

'first name ' 1 I I
I I

'name '1
I I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Ext

Ext

Ext

Ext

Ext

'EMPLOYEE'employee * 5
I I I

First
'Domain

I I I

'tid in 'Dept-code'
'DEPD ' I
I I I

'tid in 'Dept de- '
'DEPC 'scription'
I I I

'tid in 'Job-code '
'JOBD ' I

I I I

'tid in 'Job de- '
'JOBC 'scription'
I I I
'area 'Location '
'code ' I
I I I
I 'first '
I 'name I

I I I

' - 'name I
I I I

@ See ’ - I

'Table 2' I

.

+ ----w--e ----------- + + w-w-+ -w-w-- + ------- ------- + + --------- +

TABLE 1

XRM APPLICATION 17

The EMPLOYEE relation:

+---+

t I I

I domain 1 ' employee serial number I
I 1 I
I domain 2 ' tid in NAME r
I I *
I domain 3 ' tid in FNAME I
I I 1
t domajn 4. I tid in LOC I
I I I
9 domain 5 ' salary 8
n 8 8
t domain 6 ' tid in JOBC I
I I 8
t domain 7 ' tid in DEPC I
I I n
t domain 8 ' tid of manager e
I I (in EMPLOYEE) t
I 8 I

TABLE 2

The lengths of the data items are (in characters):

dept code + 0
job code 1 70
dept description T 16
job description 4: T 10
location 8 T 4
first name 7 7: 3
name 10 z 6

18 xm APPLIWN

The structure of the data base consists of:

nd departments
nj jobs
nl locations
nf first names
nn names
n employees

There is one second level manager. There are nm first level
managers in each department and ne employees reporting to
each manager.

Jobs are assigned randomly. Salaries are
although a

assigned randomly
constant is added to the salaries of managers.

All employees working in a given department are working at
the same location except the employees reporting to one of
the managers of the department. These emnlovees
at locations chosen randomly.

- - are working

Clustering is organized as follows:

The pairs department code - department
are clustered together
The same is true for jobs
Locations are clustered together
First names are clustered together

description

All employees in a same department are clustered
together in a tree-like manner.

mgr
c

empl
dept empl

empl
mgr

c
empl

A name is clustered together with the first
employee with such a name.

The program consists of a set of transactions. Each of these
transactions is coded in PL/I.
mapping from a language into XRM.

There is, therefore, no

We shall describe the sequence of XRM calls for each
transaction and record the time and number of disk accesses
required by each transaction for four or five different data
base sizes (sl,s2,...).

These sizes are defined in terms of the parameters described
above.

XRM APPLICATION 19

.

+-- --W-W+

' Data ' I I I I I ' I I

' Base ' nd ' nj ' nl ' nf ' nm ' ne ' nn ' n '
' Size ' I I I I I I I I

+ --w---- --w-B --B-B ----+-----+----+----+------+------- + + + +

I I 1 I I I I I I I

1 Sl ' 4' 4' 4' 4'3 '2 ' 36' 37 '
I I I I I I 8 I I I

I s2 ' 30 ' 20 ' 10 ' 40 ' 5 ' 3 ' 557 ' 601 '
I I I I I 1 I 1 I I

I S3 ' 50 ' 60 ' 15 ' 70 ' 5 ' 5 ' 1254 ' 1501 '
I I I I I I I I I I

I S4 ' 98 ' 200 ' 19 ' 93 ' 5 ' 7 ' 2542 ' 3921 '
I I I I I I I I I 1

I ss ' 117, ' 200 ' 19 ' 97 ' 5 ' 8 ' 2932 ' 5266 '
I I I I I I I I I #

Notes

The system uses a pool of ten pages of 4k in core.

The first two buffers are always occupied by the
same pages (containing the master relation).

The fact that the buffers are used for write and
read operations explains why a buffer can be
written back during a query involving reads only.

The number of read and write operations is not
significant when it is very small. This is due to
the buffering mechanism.

The times recorded for the transactions do not
include the destruction of work relations as this
operation should be almost immediate in a multiple
segments environment.

The application program is written in PL/I

The program is run in CP-CMS on a 360/67. Times
are given in seconds (virtual time) if not
otherwise specified.

20 XEM APPLICATION

Tl: -

T2: -

T3: -

T4:

create departments

Create entry in DEPC

Create entry in DEPD

Update entry in DEPC with tid of entry in DEPD

time: 31 to 33 ms per department

create jobs

Same as Tl but using relations JOBC and JOBD

time: 30 to 34 ms per job \
create locations

Create entry in LOC

time: 14 to 15 ms per location

create first names

Create entry in FNAME

time: 11 to 13 ms per first name

As there are only a small number of entries involved in
these transactions the number of disk accesses is very small
and no meaningful results may be derived from them.

When created the tid's of entries in DEPC, JOBC, LOC and
FNAME are kept
from this table.

in a table in core. T5 draws tid's randomly

c

XRM APPLICATION 21

s: create employees

triple DO loop on departments, managers in
department, employees reporting to manager.

For each employee:

Generate name

Find tid of
name in NAME

Create entry

Measurements:

name or create entry for

in EMPLOYEE

the

such

+------------------------------------+

I 1 I I I I

I I n ' CPU Time ' R ' W ' I I I I I I

+ -w-M ---m-m + + ---------- ------ ---e-m+ + +
I I I I I I

' Sl ' 37 ' 0.8 I 8' 11' I I I 1 I I
' s2 ' 601 ' 20 ' 72 ' 277 '
1 I I I I I

' s3 ' 1501 ' 52 ' 1904 ' 577 '
I I I I' I 1

' s4 ' 3921 ' 142 ' 6368 ' 3759 '
I I I I I I

' S5 ' 5266 ' 186 '10069 ' 5569 ' I I I I I I

+------------------------------------+

time: propotional to n (as soon as the size is not
trivial); constant per employee = 35 ms

R represents the number of disk accesses in read mode.

W represents the number of disk accesses in write mode.

R and W increase more than linearly because their are
more employees with the same name in
bases.

the largest data

22 XRM APPLICATION

T6: generate inversions on all domains of the relation
-' EMPLOYEE

Generate inversions on domains 2, 3, 4

Generate inversions on domains 5, 6

Generate inversions on domains 7,8

Measurements:

+----------------------------------+

I I I I I I

1 I n ' CPU Time ' R ' W ' I I t I I I

+ --A-+ ------+----------+-----+-----+

I I I t I I

' Sl ' 37 ' 0.9 ' 8 ' 16 '
I I I I I I

' 52 ' 601 ' 18 ' 48 ' 28 ' I I I I I I

' s3 ' 1501 ' 56 ' 149 ' 94 '
I I I I I I

' s4 ' 3921 ' 154 ' 497 ' 346 ' I I I I I I

' S5 ' 5266 ' 213 ' 732 ' 538 '
I I I I I I

Rough estimate: 5.5 ms per entry and per inversion.

XRM APPLICATION 23

T7: Find the salary of the manager of employee whose serial -
number is X.

Find the tid of entry in EMPLOYEE for which key is
X

Fetch tuple

Get manager's id, fetch tuple and get salary

Measurements:
.

+----------------------------+

I I 8 I 0

' 1 CPU Time ' R ' W ' I 8 * r I
+ -B-B ----------+------+-----+ +
* # I I 8
' Sl ' 0.20 ' 0 ' 0 '
w I I I 1
' s2 ' 0.14 ' 2 ' 0 '
I @ I I #
' 53 ' 0.14 ' 2 ' 0 '
I I I B t
' s4 ' 0.16 ' 3 ' 0 '
t I I I 8
' s5 ' 0.16 ' 3 ' 0 '
B m t 8 I

+ - --B-B

+

24 XRM APPLICATION

T8: - Find the names of employees in dept X

Encode dept x using DEPC

Associative retrieval on domain 7 (tid in DEPC) of
relation EMPLOYEE

For each tid in answer set fetch tuple and find
tid of name - then decode.

Measurements:

+-----------------------------------+
I I I I I I
I ' CPU Time I R I W ' K I
I , I I I I I

+ s-w- + ----------+------+ -v--w + ---we- +
I I I I I a

' Sl ' .83 ~0'0'10'
I v I I I I

I s2 ' .17 '3'0'21' I I I I I I

I s3 I 0.25 I 4 I 0 ' 31 '
I I I I I I

' s4 I 0.31 I 18 ' 0 ' 40 I
I I I I I #

I s5 I 0.34 I 3 I 0 ' 46 I I I I I I I

K is the number of names which satisfy the query. The
time increases only with K. Disk accesses occur mainly
during the decoding of names in the answer. Remember
that names are clustered together with the first
occurrence of an employee with such a name. For Sl, S2,
S3, S5 we specified one of the first departments
created. For employees in such departments the names
have a very high probability of being adjacent to the
employee tuples. For S4 we specified a department
created later and many employees in such a department
have names that have been previously defined and cannot
therefore be physically adjacent
tuples.

to the employee

XRM APPLICATION 25

T9: - Find the locations where at least one employee of dept
X is working

Encode dept x using DEPC

Associative retrieval on domain 7 (departments) of
relation EMPLOYEE

For each tid in answer set fetch tuple, get value
of domain 4 (location) and put value in a working
set.

Decode each tid in working set using relation
LOCATION.

Measurements:

+---------------------------------+

I I I I 1 I

8 ' CPUTIME ' R ' W ' K '
I I I I I I
+ w-v- + ----------+-----+ --m-v + -m--w +
I I I I I I
' Sl ' 0.13 ' 1 ' 1 ' 3 ' I I I I I I
' s2 ' 0.22 ' 1 ' 1 ' 4 ' I I I I I I
' s3 ' 0.24 ' 1 ' 1 ' 6 ' I I 0 8 I I
' s4 ' 0.35 ' 4 ' 1 ' 6 ' I I I I I I
' s5 ' 0.41 ' 1 ' 1 ' 8 ' I I I ' I 1
+---------------------------------+

K is the number of items in the answer.

The time increases less than linearly with the number
of employees per department (nm+nm*ne) because K does
not increase linearly with the number of departments.

26 XRM APPLICATION

TlO: Find the number of employees with job x in location y.

Encode x
Encode y
Associative retrieval on domains 4 and 6 in
relation EMPLOYEE
Get cardinality of answer set

Measurements:

+----------------------------------+

t I I B t I

I ' CPUTIME ' R ' W ' K '
I v I I I v

+
v-w- +----------+------+-----+-----+

\ I # I I 0

' Sl ' 0.11 ' 0 ' 0 ' 5 ' I I I I I t

' s2 ' 0.21 ' 2 ' 0 ' 3 '
8 1 1 I 8 I
' s3 ' 0.20 ' 3 ' 0 ' 0 '
I I I I I I

' 54 ' 0.5 ' 6'0'3'
8 v I B : 8

' s5 ' 1.3 ' 7'1'6' w * I # 8 v

This example illustrates the performance of the
associative retrieval. K is the answer.

I

, .

XRM APPLICATION 27

Tll: Find the jobs existing in all locations

Read successively all entries in the relation
EMPLOYEE. For each of these entries get the value
of the 4th domain (location) and the value of the
6th domain (job) and add to a work binary relation
rl the pair

(tid JOB, tid LOC)

Find K the number of locations

By reading and counting the entries in rl find
jobs for which there are k entries.

Measurements:

+ ------------------------------- +
I I I I I

I ' CPU Time ' R ' W '
I I I I 1

+

-B-B + - - - - - - - - - -+ - - - - - - -+ - - - - - - -+

I I I I I

' Sl ' 0.3 ' 0 ' 2 ' I I I I I

' s2 ' 4.5 ' 14 ' 5 '
I I I I I

' s3 ' 31.5 ' 29 ' 6 '
I I I I I

' s4 ' 31.6 ' 137 ' 70 ' I I I I I

' s5 ' 41.3 ' 285 1 182 1 I I I I I
+ ------------------------------- +

The increase in time is proportional to the number of
employees.

28 XRM APPLICATION

T12: Find the names of employees who make more than their
managers.

Consider the inversion relation on the domain 8 of
employee. Read successively each entry of the
form.

(manager's tid, employee's tid)

For the first occurrence of a manager tid fetch
tuple and get salary.

For each employer's tid fetch tuple and salary.

Compare - If tid is satisfied get tid of name and
decode

Measurements:

+------------------------------------+

I I I I I I

I ' CPUTime ' R ' W ' K '
I I I I I I
+ ---a + ---------- ---w-m- + + -w--w + ---w-w +
I I I I I I
' Sl ' 0.2 ' 0 ' 0 ' 1' I I I I I I
' s2 ' 3.0 ' 26 ' 1 ' 19 ' I I I I I I
' s3 ' 7.2 ' 59 ' 4 ' 71 ' I I I 8 I I
' s4 ' 16.0 ' 123 ' 5 ' 140 ' I I I I I I
' s5 ' 21.6 ' 187 ' 4 ' 189 ' I I I I I I

Time should be mainly proportional to the number of
employees but is influenced by
in the answer (k).

the number of employees

XRM APPLICATION 29

T13: List the whole relation EMPLOYEE

Read successively all entries in EMPLOYEE

Decode tid's using NAME, FNAME, LOC, JOBC and
DEPC.

Measurements:

.

+----------------------------+

I 1 I I 8

I ' CPU Time ' R ' W ' I I I I I
+ -M-w + ---w-s---- -a.----+-----+ +
I I 1 I I
' Sl '
I I
' s2 '
I 1
' s3 ' 8 I
' s4 ' I I
' s5 ' I I

1.4 ' 0 ' 1 '
I ' 1

15 ' 22 ' 0 ' I I I
37 ' 274 ' 0 '

8 I I
103 ' 3618 ' 0 '

I I I
139 ' 5956 ' 0 '

' ' I

Time is proportional to the number of employees.

Constant per employees = 29 ms.

When the data base becomes large the number of disk accesses
increases. This is due to the decoding of data elements
(mainly the names) and is the price to be paid for avoiding
redundancy of information in the application. Note, however,
that XRpll can be used with a different trade-off in mind.
For example, when a second occurrence of a name is
encountered a copy can be made,
tuple,

adjacent to the employee
and its tid stored in the tuple (2d domain). A binary

relation associates the tid of the copy with the tid of the
first occurrence which is the only one to appear in the
class NAME.

30 XRM APPLICATION

Space Requirements Analysis:

Let us discuss the space requirements in the case of S4.

The master relation and entries in classes DEPC, DEPD, JOBC,
JOBD, LOC and FNAME have been defined on 8 pages (1 page -
4K bytes). But 40% of the capacity is still free.

The entries in the relations NAME and EMPLOYEE occupy
completely 61 pages. A sequential file with fields
accommodating the maximum length of data elements and no
extra information would require 68 pages. So the overhead
for handling variable entity sizes and providing permanent
identifiers is well offset.

All binary' relations used for implementing the n-ary
relations, classes and all inversions start on 4 relation
pages and use 88 overflow pages. They contain 37000 entries.
The overflow pages are used at 57% of their capacity.

CONCLUSION 31

6. CONCLUSION:

The following conclusions can be drawn from the experiment:

The time to create an entry in a relation is
practically independent of the size of the data
base.

This is also true for transactions using the
inversion relations directly like T7, T8, T9, TlO.

The advantage of using id's internally is
illustrated by many queries. Data element
appearing in the query are encoded and tid's which
satisfy the query are decoded. The processing
itself is done entirely by using tid's.

The time should not be taken too strictly. The 12
ms required to create an entry in a class can be
divided as follows:

- 5% application program
- 45% processing in XRM
- 50% processing in RM

XRM is written in a higher level language and requires some
optimization. Note also that the interface requires the
master relation to be interrogated at each call to find the
characteristics of the relations. A slightly modified
interface could include a "batch mode" option where these
characteristics could be kept in a work area. All subsequent
calls involving the same relation could refer to the area.

But most of the savings can be achieved in RM. RM as it
stands now has an interface oriented towards the direct use
of RM by an application programmer. XRM only uses a subset
of that interface. By stripping RM of unnecessary features
performance could be improved.

We are also designing a new representation of binary
relations in RM. This design would use a vector
representation instead of rings. The maximum size of a ring
in RM allows for roughly 500 entries. In a vector
representation binary search could be used to locate an
entry (very frequent operation). All together we expect such
a new implementation to provide a drastic improvement in
performance. We hope to proceed with such enhancements and
publish new results in a following paper.

32 REFERENCES

REFERENCES

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Bjorner, D., E.F. Codd, K.L. Deckert, I.L. Traiger, The
Gamma-Zero n-ary Relational Data Base interface, IBM
Research, Report No. RJ-1200, April 1973.

Codd, E.F., A relational model of data for large shared
data banks, Communications of the ACM, Vol. 13, No 6,
June 1970.

---, Normalized data base structure: a brief tutorial,
IBM Research, Report No RJ 935, November 1971.

Crick, M.F.C., Lorie, R.A., Mosher, E.J., Symonds, A-J.
A data-base system for interactive applications,
CSC(*), Report No 6320-2058, July 1970.

Crick, M.F.C., Symonds, A.J., A software Associative
Memory for complex data structures, CSC Report No
G320-2060, August 1970.

Feldman, J.A., Rovner, P.D., An Algol-based associative
language, Communications of the ACM, Vol. 12, No 8,
August 1969.

Lorie, R.A., Symonds, A.J., Use of a relational access
method under APL, CSC Report No G320-2071, May 1971.

---, A schema for describing a relational data-base,
CSC Report No 6320-2059, July 1971.

User's guide for the Relational Memory, CSC, July 1972.

* IBM Cambridge Scientific Center, Cambridge (Mass.) .

APPENDIX 33

APPENDIX

RM- Binary Relational Memory

1. Logical data model

1.1. Entities

An entity is a record of arbitrary length, identified by an
entity-identifier (id). The record is a string of bytes: the
system is unaware of its content. An id is a positive
integer. Functions are provided to create, delete and modify
entities.

1

1.2. Relations

Relations can be of different types. The most common one is
the directed binary relation. It is a set of ordered pairs
ei - ej (also called entries) where ei and ej are
identifiers (or positive integers). An empty relation must
always be created before any pair can be added to it. It is
identified by a relation identifier (rid). Functions are
provided

- to create or release a relation,
- to add or suppress an entry in a relation,
- to retrieve successively all pairs ei-ej, all ei's

or all ej's associated with a given ei.

2. Physical implementation

Entities and relations are stored in two different spaces.
Both entity and relation spaces in the data base consist of
a series of blocks of equal size (4k bytes), numbered from
zero. During processing, a pool of buffers of the same size
as a page is maintained in core storage. Blocks are brought
in and rolled out when needed. This operation is transparent
to the user.

2.1. The entity space

Direct addressing is used: an entity with id I is found on
page P. The number p is the
X/k where k

largest integer such that p c
is a system parameter. Inside a page, pointers

are used to accommodate variable length records. The user
can monitor the clustering of entities when he creates them.
An overflow procedure exists.

2.2. The relation space

A similar direct addressing scheme is used to locate the
beginning of a relation. Inside a page, pointers are used to
link together (in lexicographic order) the entries in a same
relation (see Fig. 4). When an overflow occurs an index of
overflow pages is kept on the original page to provide quick
access to any entry.

rid _ - ---__--_ ______

relation

rid
el - e4

e2 - e5

e2 - e6

e2 - e7

e3 - e8

e te <e
1 2 3

I

i

! ---
l
:

CJ

e2 ; .

I
;

:
i

I-------- :- e7 I
I ,,A

Figure 4

TECHNICAL REPORT INDEXING INFORMATION

c

1. AUTHOR(S):
I

9. INDEX TERMS FOR THE IBM SUBJECT INDEX

R. A. Lorie
2. TITLE:

XRM - An Extended (n-ary)
Relational Memory

3. ORIGINATING DEPARTMENT:

Cambridge Scientific Center

4. REPORT NUMBER:

Data-Base
Data-Bank
Relational Model
Information Retrieval
Binary Relation
N-ary Relation
Files
Relation

G320-2096 05 - Computer Application
5a. NO. OF PAGES 5b. NO. OF REFERENCES

21 - Programming

34 I 9 I
- 6a. DATE COMPLETED 6b. DATE OF INITIAL PRINTING 6c. DATE OF LAST PRINTING

December 14, 1973 January 1974 November 1975
7. ABSTRACT:

The paper presents a low
relations. An n-ary

level interface for handling n-ary
relation is a set of

Values are encoded into integers.
tuples of values.

create and drop a relation,
Operators are supplied to

in a
relation,

to add or delete tuples
to scan a relation, to retrieve a subset of a

relation.

An implementation is described. It uses a binary relation
processor as a base. Hashing and inversions are used to
speed up the processing.

Some experiments are also described

I. REMARKS: None

::

	Title Page
	Abstract
	1. Introduction
	2. Design Objectives of XRM
	3. The Interface
	4. Implementation
	5. XRM Application
	6. Conclusion
	References
	Appendix

