
Winning* the SIGMOD 2013
programming contest
Henrik Mühe henrik.muehe@in.tum.de
Florian Funke florian.funke@in.tum.de

SIGMOD Conference and Challenge

Leaderboard

The Challenge

Q1: visa work aupair
Q2: justin bieber
Q3: alien attack
Q4: ...
...
Q999999:

System

1

5
3

99
9

Data Flow

The Metrics:
Exact Match

Query matches a document iff all query
words are contained in the document.

The Metrics:
Hamming Distance

Query matches a document iff all query
words are within hamming distance d of at

least on word inside the document.

Hamming?
Jamming?

1 position differs ⇨ HD=1

The Metrics:
Levenshtein Distance

Query matches a document iff all query
words are within levenshtein distance d of

at least on word inside the document.

Levenshtein?

Levenshtein Examples

levenshtein

henrik

jenrik

= 1 (= hd())

levenshtein

alfons

fonts

= 3

levenshtein

abc

abcdef

= 3

Levenshtein Definition

levenshtein(a,b) :=
Lowest number of
● Replace
● Insert
● Remove
to change a into b

O(|a|*|b|) ⇦ terrible

Baseline

● tar.gz download, fully functional
● Naive 'nested-loop' style
● Unbearably slow
● Horrible, horrible code

 int cur=0;

 ia=0;

 for(ib=0;ib<=nb;ib++)

 T[cur][ib]=ib;

 cur=1-cur;

Baseline Analysis
$./testdriver

Start Test ...

Your program has passed all tests.

Time=30704[30s:704ms]

$ perf record ./testdriver && perf report

API

● StartQuery
● EndQuery
● MatchDocument
● GetNextAvailRes

The Magic Sauce

1. Massive parallelism
2. Architecture-aware optimizations
3. Efficient computation of metrics
4. Filtering
5. Indexing
6. Caching

1. Parallelism & Concurrency

Intel®TBB

1. Parallelism & Concurrency

MatchDocument
● Spawn async task with subtasks for each

match type
● Parallelize Hamming & Levensthein distance
● Avoid sync points

Intel® TBB

Inherent Optimization Potentials

Deduplication

● Remove all duplicates in document

● Match every query word only once
(even if it is in multiple queries)

Caveats

Q1: henrik mühe
Q2: henrik database
Q3: henrik funfacts

QueryWords: henrik, mühe, database, funfacts

Caveats

Q1: henrik mühe
Q2: henrik database
Q3: henrik funfacts

QueryWords: henrik, mühe, database, funfacts

Document.probe(henrik) -> false
What about: mühe, database, funfacts

Cover Pruning

● For every word, determine which words can
be skipped.
○ Full computation too expensive
○ When a query is added, remove word from

invalidated dependency sets
○ Do not re-add
○ Recompute when queries have changed

substantially
● Skip vector in hot loop
● Harmless race condition

2. Architecture-Aware Optimizations

● SIMD: Single Instruction Multiple Data
○ Hamming/Edit Distance
○ Filter computation
○

● Special Instructions
○ CRC32

CENSORED

3. Efficient computation of metrics

Improving Exact Match

1. Probe each document word &
Mark QueryWord as matched

2. Count matching words per query
3. Generate result

Insert all query words into Hashmap
Signature: hash<QueryWord,vector<Query>>

Improving Hamming Distance

Materialize all and add to Exact Matcher?

Improving Hamming Distance
Materialize all and add to Exact Matcher?

Improving Hamming Distance

Materialize all and add to Exact Matcher?

For word with length 10 and distance 3 roughly

d=1 10 * 25
d=2 + (10 * 25)^2
d=3 + (10 * 25)^3

>> 15 000 000

Improving Hamming Distance

Hamming is essentially the sum of
bytewise XOR

x= aaaabbbb

y= bbaaabbb

sum (11001000) = 3 = hamming(x,y)

Improving Hamming Distance

SIMD fastest solution:

SIMD easy solution:

POPCNT(PCMPESTRM)

CENSORED

Improving Edit Distance:
Naive Algorithm
/// Compute levenshtein distance recursively

inline uint32_t levenshtein_rec(StringRef a,StringRef b) {

 // If one of the strings is empty, return the number of characters left

 if (a.length()==0) return b.length();

 if (b.length()==0) return a.length();

 // If the first two characters are equal, the edit distance is the edit

 // distance between the two suffixes

 if (a[0]==b[0]) return levenshtein_rec(a.substring(1),b.substring(1));

 // If they are not equal, try insert,remove and substitution

 // Pretend a is b with an extra letter in front

 uint32_t dInsert=levenshtein_rec(a.substring(1),b);

 // Pretend a is b with the first letter removed

 uint32_t dRemove=levenshtein_rec(a,b.substring(1));

 uint32_t dSubst= levenshtein_rec(a.substring(1),b.substring(1));

 // Return the best of the three possibilities above and add one for the

 // insert/remove/substitution we did

 return std::min(dInsert,std::min(dRemove,dSubst)) + 1;

}

Improving Edit Distance

● Superset of Hamming Operations

● Literature Research
○ Validation:

■ Levenshtein Automata

○ Improved Algorithms
■ Memoization (matrix)
■ Less memoization (column)
■ Bit-parallel Levenshtein

Levenshtein Automaton Example

CENSORED

4. Filtering

4. Filtering

● Determine if two words can be within
edit/hamming distance

● Filter computation should be cheaper than
metric invokation...

● Filters
○ Length
○ QGram
○ ...
○ Frequency

Frequency Filter

Looking at the histograms of two words:
x= aaabbb
y= aacbba

Define delta operation
Max possible delta: 2d-lengthdiff

a=3
b=3
c=0
d=0
...
z=0

Hx

a=3
b=2
c=1
d=0
...
z=0

Hy

CENSORED

5. Indexing

5. Indexing

● Physically reorganize words by some order
relation

● Limit search space to a collocated subset
● Orders

○ Length
○

● Build column store
● Additive pointer arithmetics in hot loop

CENSORED

6. Caching

● Obervation: People make the same mistakes
again and again

● Remember last match
○ for each query word
○ for each distance

● Probing a hashtable is a lot cheaper than
finding an edit distance match in an entire doc

6. Caching

● Observation: People make the same
mistakes again and again

● Remember last match
○ for each query word
○ for each distance

● Probing a (good!) hashtable is a lot cheaper
than finding an edit distance match in an
entire doc

Conclusion

$./testdriver

Start Test ...

Your program has passed all tests.

Time=30704[30s:704ms]

vs.

Questions?

