
School of Computation, Information and Technology
Technical University of Munich

AACPP 2025
Week 6: Graphs 2 – Advanced
Boogaloo

Mateusz Gienieczko, Mykola Morozov

School of Computation, Information and Technology
Technical University of Munich

2025.06.17

AACPP 2025 Mateusz Gienieczko

Fourth round – survey

AACPP 2025 Mateusz Gienieczko

Fifth round

Deadline – 24.06.2025, 10:00 AM.

AACPP 2025 Mateusz Gienieczko

CAT – Catventure

We have a large 2D grid with 𝑛 points on it.

We can travel along the grid lines. Taking a turn forces us to switch between run
and stroll, while arriving at a point allows us to change the mode.

Objective: get from point 1 to 𝑛 while walking the least.

AACPP 2025 Mateusz Gienieczko

CAT – Catventure

Brute force – treat the entire grid as a graph, for each coordinate keep the best
cost of getting there from each of the four directions.

Run a BFS on it (all edges have length 1).

𝒪(𝑋𝑌 log𝑋𝑌) where 𝑋 is the max 𝑥𝑖 and 𝑌 is max 𝑦𝑖.

AACPP 2025 Mateusz Gienieczko

CAT – Catventure

Simplifying observations:
• always move between points;
• it always makes sense to move “towards” the target in both dimensions.

In fact, the following is true:

The best achievable cost to travel between 𝑖 and 𝑗 is min(|𝑥𝑖 − 𝑥𝑗 |, |𝑦𝑖 − 𝑦𝑗 |).

Better brute-force – create a complete graph on 𝑛 vertices with edge costs
defined as above and run a Dijkstra.

𝒪(𝑛2 log 𝑛)

AACPP 2025 Mateusz Gienieczko

CAT – Catventure

Can we make the graph sparser?

Assume we have a path with an optimal cost in which we travel from 𝑖 to 𝑗, 𝑥𝑖 <
𝑥𝑗 , and we choose to stroll horizontally (so the cost is 𝑥𝑗 − 𝑥𝑖). If there exists a 𝑘
such that 𝑥𝑖 < 𝑥𝑘 < 𝑥𝑗 then we can always first travel to 𝑘 and then to 𝑗, and the
cost remains the same.

This is also true for 𝑥𝑖 > 𝑥𝑗 and the 𝑌 dimension with vertical strolls.

AACPP 2025 Mateusz Gienieczko

CAT – Catventure

Create a sparse (planar, in fact) graph where each node is connected to at most
4 other nodes – the closest to the left, right, up, and down.

By our above reasoning for any shortest path in the complete graph there exists
a path of the same length in this simplified graph.

Running Dijkstra on this gives us 𝒪(𝑛 log 𝑛).

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

This was the hardest task by far.

The task describes an undirected graph and directly asks about cycles:

“routes that start and end at the same spot, and neither go through any other spot
more than once nor use any path more than once”

We have to decide:
• if all cycles in the graph are of the same length;
• the number of such cycles.

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

Aside: the task asks for the solution mod 109 + 7.

This is used when the actual number is so large it won’t fit into usual integers.
It doesn’t have “real life” sense.

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

As we know, the total number of cycles can be exponential, so exhaustively
checking all cycles only gets 2 points for 𝑛 ≤ 18.

The first step towards a solution is focusing on biconnected components.

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

Any cycle in a graph is fully contained within a single biconnected component.

Assume we can solve the task for a single BCC. Then we can solve it
individually for each BCC in the graph, assert cycle lengths are equal, and
return the sum of counts.

We know how to find BCCs in 𝒪(𝑛 + 𝑚) from the class.

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

A biconnected component that is just a single cycle of length 𝑙 obviously
satisfies the length requirement and contributes 2𝑙 to the result (we can start at
any node and go in either direction).

What can we add to a cycle like that to get more routes but not violate
the length restriction?

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

What can we add to a cycle like that to get more routes but not violate
the length restriction?

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

What can we add to a cycle like that to get more routes but not violate
the length restriction?

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

What can we add to a cycle like that to get more routes but not violate
the length restriction?

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

What can we add to a cycle like that to get more routes but not violate
the length restriction?

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

We’ll call 𝑘 paths of (edge) length 𝑙 arranged as that an (𝑘, 𝑙)-onion.

So this is a 5, 4 onion.

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

In an (𝑘, 𝑙)-onion:

• there are (𝑘2) cycles (choose any two distinct paths);
• all cycles are of length 2𝑙;
• this adds (𝑘2) ⋅ 2𝑙 to the result (start at any point, go in either direction).

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

Onions are the only shape a biconnected component that satisfies our
requirements can have.

Recall any biconnected component can be decomposed into a main cycle and
then a number of paths (“ear decomposition”).

If we have a (𝑘, 𝑙)-onion then any path that we can add that wouldn’t violate
the requirements turns it into a (𝑘 + 1, 𝑙)-onion.

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

Plan now is:
1. Divide graph into BCCs.
2. For each BCC decide if it is an onion

• if no BCC is even a cycle then the result is FUR-LORN;
• if some are not onions then the result is MEOW-NO;
• if there are two BCCs with different onion lengths then MEOW-NO.

3. Sum the number of cycles over all BCCs.

AACPP 2025 Mateusz Gienieczko

PAW – Park Walks

How to check if a BCC is an onion?

If it is a cycle then it’s a (2, 𝑙)-onion and we’re done.

Otherwise, there should be exactly two vertices that have degree > 2. Call them
𝑣 and 𝑢.

All paths connecting 𝑣 and 𝑢 have to have length 𝑙.

Multiple ways to check this, e.g. run a BFS from 𝑣 and assert that
• 𝐷[𝑢] = 𝑙
• ∀𝑥 .𝐷[𝑥] ≤ 𝑙

Everything we’ve done is 𝒪(𝑛 + 𝑚).
AACPP 2025 Mateusz Gienieczko

Recall the plan

• Greedy and dynamic programming (DP)
• Trees
• Graphs
• Ways to turn graphs into trees (DFS, BFS, Dijkstra, MST)
• Ways to run DP on graphs (Toposort) ← we are here
• Advanced graph algorithms (Matchings, flows) ← we are here
• Binary Search Trees
• Number theory
• String algorithms (KMP, tries, suffix tables)
• Some problems can’t* even be solved efficiently (NP-completeness)

AACPP 2025 Mateusz Gienieczko

Graphs – strongly connected components

In a directed graph a connected component is not really coherent.

We define strongly connected components as maximal sets of vertices where
there exists a pair between each pair of vertices (bidirectional).

AACPP 2025 Mateusz Gienieczko

Graphs – strongly connected components

Any directed graph can be decomposed into a graph of its SCCs.

An SCC graph is always a DAG (Directed Acyclic Graph).

AACPP 2025 Mateusz Gienieczko

Graphs – strongly connected components

AACPP 2025 Mateusz Gienieczko

Graphs – strongly connected components

AACPP 2025 Mateusz Gienieczko

Graphs – strongly connected components

AACPP 2025 Mateusz Gienieczko

Graphs – finding SCCs

Surprise – algorithm by Tarjan.

Run a DFS and keep an additional stack and, for each vertex, a lowlink.

The lowlink is the earliest (in preorder) vertex on the stack reachable from the
current DFS root.

If the lowlink is the same as our preorder it means there are no backwards
edges in the entire subtree, so we must be in a distinct SCC from our ancestors.

AACPP 2025 Mateusz Gienieczko

Graphs – finding SCCs

for v in V

 if preorder[v] is None

 stack = new Stack

 DFS(v)

AACPP 2025 Mateusz Gienieczko

Graphs – finding SCCs

fn DFS(v)

 pre[v] = time

 lowlink[v] = time

 time += 1

 stack.push(v)

 onStack[v] = true

 for u in N[v]

 if preorder[u] is None

 DFS(u)

 lowlink[v] = min(lowlink[v], lowlink[u])

 else if onStack[u]

 lowlink[v] = min(lowlink[v], pre[u])

//after the loop

if lowlink[v] = pre[v]

 //v is a root of an SCC

 while (w = stack.pop())

 onStack[w] = false

 SCC[v].push(w)

 if v == w { break; }

AACPP 2025 Mateusz Gienieczko

Graphs – finding SCCs

AACPP 2025 Mateusz Gienieczko

Graphs – topological order

On a DAG, a topological order of vertices is an order such that if 𝑣 is before 𝑢
then there are no edges (𝑢, 𝑣).

Intuitively, “no going backwards”.

Tarjan’s SCC has a nice property – the SCCs are output in an order that is a
reverse topological order of the graph’s SCC DAG.
AACPP 2025 Mateusz Gienieczko

Graphs – topological sort

Any DAG can be topologically sorted in linear time.

One algorithm – you’re not gonna believe it –

AACPP 2025 Mateusz Gienieczko

Graphs – topological sort

Any DAG can be topologically sorted in linear time.

One algorithm – you’re not gonna believe it – is by Tarjan.

Idea: postorder is a reverse topological order.

AACPP 2025 Mateusz Gienieczko

Graphs – topological sort

topoorder = new List

for v in V

 if visited[v] = false

 DFS(v)

topoorder.reverse()

fn DFS()

 visited[v] = true

 for u in N[v]

 if visited[u] = false

 DFS(u)

 topoorder.push(v)

AACPP 2025 Mateusz Gienieczko

Graphs – DP on a DAG

DAGs are nice because dataflow has a set direction.

This allows us to run dynamic programming – calculate the result in a given
node based on its inputs, as long as we go along the topo order.

AACPP 2025 Mateusz Gienieczko

Graphs – DP on a DAG

Dexter’s house has 𝑛 platforms, connected with 𝑚 unidirectional paths of varying
lengths. After leaving a platform there is no way to come back to the same
platform. Dexter wants to plan a route from platform 1 to 𝑛 of shortest length.
Additionally, he can perform 𝑘 long-distance jumps that always count as length 1.

5 5 1

1 2 4

1 3 1

2 4 3

3 4 9

4 5 2

4
AACPP 2025 Mateusz Gienieczko

Graphs – DP on a DAG

Dexter’s house has 𝑛 platforms, connected with 𝑚 unidirectional paths of varying
lengths. After leaving a platform there is no way to come back to the same
platform. Dexter wants to plan a route from platform 1 to 𝑛 of shortest length.
Additionally, he can perform 𝑘 long-distance jumps that always count as length 1.

5 5 1

1 2 4

1 3 1

2 4 3

3 4 9

4 5 2

4
AACPP 2025 Mateusz Gienieczko

Graphs – DP on a DAG

Topo-sort the graph.

DP[𝑣][𝑥] – best time to reach 𝑣 when using 𝑥 jumps.

DP[1][0] = 0

In topo order:

DP[𝑣][𝑥] = min
(𝑢,𝑣 ,𝑑)∈𝐸

min(DP[𝑢][𝑥] + 𝑑, DP[𝑢][𝑥 − 1] + 1)

Return min𝑥 DP[𝑛][𝑥]

All in time 𝒪(𝑘(𝑛 + 𝑚))
AACPP 2025 Mateusz Gienieczko

Graphs – Matchings

A matching in an undirected graph is a set of edges such that every vertex
touches at most one edge.

We want to find the maximal matching.

AACPP 2025 Mateusz Gienieczko

Graphs – Matchings

A matching in an undirected graph is a set of edges such that every vertex
touches at most one edge.

We want to find the maximal matching.

In general graphs the best-known algorithms are very complicated.

AACPP 2025 Mateusz Gienieczko

Graphs – Bipartite graphs

A bipartite graph is a graph in which vertices can be separated into two disjoint
sets 𝐴 and 𝐵 where no edges connect vertices in the same set.

AACPP 2025 Mateusz Gienieczko

Graphs – Bipartite graphs

A bipartite graph is a graph in which vertices can be separated into two disjoint
sets 𝐴 and 𝐵 where no edges connect vertices in the same set.

In bipartite graphs a maximal matching can be found easily.
AACPP 2025 Mateusz Gienieczko

Graphs – Matching in bipartite graphs

Greedy algorithm doesn’t work.

AACPP 2025 Mateusz Gienieczko

Graphs – Augmenting paths

Key concept – augmenting paths.

Assume we have a candidate matching 𝑀 (valid but not necessarily maximal).

An augmenting path is a path that starts with an unmatched vertex, alternates
between edges in and out of 𝑀 , and ends in an unmatched vertex.

AACPP 2025 Mateusz Gienieczko

Graphs – Hopcroft-Karp

1. Start with 𝑀 = ∅
2. Find all augmenting paths.

• If none, matching is maximal, return;
3. Extend the matching with the symmetric difference of augmenting paths.
4. Go to 2.

The inner loop takes 𝒪(𝑚) time. It can be proven there are at most 𝒪(√𝑛)
iterations for a runtime of 𝒪(𝑚√𝑛).

Proof sketch: Each phase increases the length of the shortest augmenting path.
After 𝒪(√𝑛) phases the length is at least 𝒪(√𝑛). There can be at most 𝒪(√𝑛)
new paths to contribute to the matching, bounding the remaining phases.
AACPP 2025 Mateusz Gienieczko

Graphs – Hopcroft-Karp

size = 0

while find_paths()

 for v in A

 if M[v] is None

 if extend_match(v)

 size += 1

AACPP 2025 Mateusz Gienieczko

Graphs – Hopcroft-Karp

fn find_paths()

 q = new Queue

 dist.fill(None)

 for v in A

 if M[v] is None

 dist[v] = 0

 q.push(v)

while v = q.pop()

for u in N[v]

 if M[u] is None

 return true

 else if D[M[u]] is None

 D[M[u]] = D[v] + 1

 q.push(M[u])

AACPP 2025 Mateusz Gienieczko

Graphs – Hopcroft-Karp

fn extend_match(v)

 for u in N[v]

 if M[u] is None or

 (D[M[u]] = D[v] + 1 and extend_match(M[u]))

 M[u] = v

 M[v] = u

 return true

 D[v] = None

 return v

AACPP 2025 Mateusz Gienieczko

Graphs – Vertex cover

Vertex cover is a set of vertices such that all edges in the graph touch one of the
vertices in the cover.

We want a minimal such set.

AACPP 2025 Mateusz Gienieczko

Graphs – Vertex cover

Vertex cover is a set of vertices such that all edges in the graph touch one of the
vertices in the cover.

We want a minimal such set.

In general, finding a minimal vertex cover is NP-complete.

AACPP 2025 Mateusz Gienieczko

Graphs – Kőnig’s theorem

In bipartite graphs we can get a cover based on the matching.

Theorem (Kőnig): In any bipartite graph, the number of edges in a maximum
matching equals the number of vertices in a minimum vertex cover.

A constructive proof of this theorem gives a method for obtaining the cover
from a matching (see XAP last year).

AACPP 2025 Mateusz Gienieczko

Graphs – Flow networks

Two distinguished vertices – source 𝑠 and sink 𝑡 .

Push units of flow from 𝑠 to 𝑡 while respecting edge capacities.

AACPP 2025 Mateusz Gienieczko

Graphs – Flow networks

Formally – find a function 𝑓 : 𝐸 → ℤ¹ assigning flow values to all edges. Define:

𝑓out : 𝑉 → ℤ as 𝑓 (𝑣) = ∑(𝑣 ,𝑢)∈𝐸 𝑓 (𝑣 , 𝑢); and
𝑓in : 𝑉 → ℤ as 𝑓 (𝑣) = ∑(𝑢,𝑣)∈𝐸 𝑓 (𝑢, 𝑣).

The following restrictions must be respected:

• For all 𝑣 , 𝑢: 𝑓 (𝑣 , 𝑢) = −𝑓 (𝑢, 𝑣);
• For all 𝑣 , 𝑢: 𝑓 (𝑣 , 𝑢) ≤ 𝑐(𝑣 , 𝑢);
• for all 𝑣 other than 𝑠, 𝑡 : 𝑓out(𝑣) = 𝑓in(𝑣);

value of the flow is defined as |𝑓 | ≔ 𝑓out(𝑠) − 𝑓in(𝑠).

¹Also works for ℚ, for ℝ it’s much harder to solve.
AACPP 2025 Mateusz Gienieczko

Graphs – Flow networks

AACPP 2025 Mateusz Gienieczko

Graphs – Flow networks

AACPP 2025 Mateusz Gienieczko

Graphs – Flow networks

AACPP 2025 Mateusz Gienieczko

Graphs – Flow networks

AACPP 2025 Mateusz Gienieczko

Graphs – Max-flow min-cut theorem

An 𝑠, 𝑡-cut in a graph is a set of edges that disconnects 𝑠 from 𝑡 .

The max-flow min-cut theorem states that if we treat the graph as a flow
network then the maximum flow value is equal to the minimum weight
(capacity) of any 𝑠, 𝑡-cut.

In particular, if all edges have capacity 1 then we get the minimal cut wrt.
number of edges.

AACPP 2025 Mateusz Gienieczko

Graphs – Max-flow min-cut theorem

An 𝑠, 𝑡-cut in a graph is a set of edges that disconnects 𝑠 from 𝑡 .

The max-flow min-cut theorem states that if we treat the graph as a flow
network then the maximum flow value is equal to the minimum weight
(capacity) of any 𝑠, 𝑡-cut.

In particular, if all edges have capacity 1 then we get the minimal cut wrt.
number of edges.

This is a central theorem for solving max-flow problems.

AACPP 2025 Mateusz Gienieczko

Graphs – Ford-Fulkerson

A template for greedy algorithms computing the max flow.

Core idea: residual network 𝐺𝑓 = (𝑉 , 𝐸𝑓).

The residual network is the flow network with some flow value applied.

Take 𝑐𝑓 (𝑣 , 𝑢) = 𝑐(𝑣 , 𝑢) − 𝑓 (𝑣 , 𝑢) and 𝐸𝑓 = {(𝑣 , 𝑢) | 𝑐(𝑣 , 𝑢) > 0}.

AACPP 2025 Mateusz Gienieczko

Graphs – Ford-Fulkerson

The idea is that any path from 𝑠 to 𝑡 in the residual network is an augmenting
path.

Given such a path we can push flow equal to minimum of capacities on the
path and increase the overall flow.

The bound on any implementation of this method on ℤ capacity values is
𝒪(𝑚 ⋅ |𝑓 |) – finding a path is 𝒪(𝑚) and each path increases the flow.

AACPP 2025 Mateusz Gienieczko

Graphs – Edmonds-Karp

Always choose the shortest path from 𝑠 to 𝑡 with a BFS.

𝒪(𝑛𝑚2).

AACPP 2025 Mateusz Gienieczko

Graphs – Dinitz

Also known as “Dinic” but Dinitz is correct.

Runs in 𝒪(𝑛2𝑚) and even faster in special cases.

Idea – find a blocking flow, i.e. a maximal set of augmenting paths in the
residual network.

More precisely:
• construct a DAG such that going forward always brings us closer to the sink;
• saturate the DAG with a series of DFS pushes.

AACPP 2025 Mateusz Gienieczko

Graphs – Dinitz

First construct a layer graph from the residual network.

Run a BFS from source to find distances to each vertex. If the sink is not
reachable then we already have maximum flow.

The layer graph has only the edges that increase the distance by 1, i.e. (𝑣 , 𝑢) is
kept iff 𝐷[𝑣] + 1 = 𝐷[𝑢].

AACPP 2025 Mateusz Gienieczko

Graphs – Dinitz

Now, repeat:
• run a DFS search from source to find any path to sink in the layer graph;
• push a flow through that path.

Crucial optimization: delete any useless edges from the layer graph.

An edge is useless if:
• during the DFS it doesn’t lead us to the sink;
• or we push flow through it and decrease its capacity to 0.

Once no more paths exist, go back to step one and construct a new layer graph.

AACPP 2025 Mateusz Gienieczko

Graphs – Dinitz running time

The layer graph construction takes 𝒪(𝑚) time.

Crucial lemma: Applying a blocking flow increases the distance from 𝑠 to 𝑡 in the
residual network.

From this we know the main loop iterates at most 𝑛 times.

AACPP 2025 Mateusz Gienieczko

Graphs – Dinitz running time

Assume for a moment all capacities in the original network are 1 (this is a
common occurrence).

Every time we use an edge when pushing a flow it gets deleted, therefore, the
body of the loop cannot take more than 𝒪(𝑚) time.

There is a stricter bound – after 𝑘 DFS runs all paths are of length at least 𝑘. So
further iterations can increase the flow by at most 𝑚𝑘 . Therefore, the total
iteration count is bounded by max𝑘 𝑘 +

𝑚
𝑘 . This is bounded by 𝒪(√𝑚), but also

𝒪(𝑛
2
3) if we take 𝑚 = 𝑂(𝑛2).

Together we have bounds 𝒪(𝑚
3
2) and 𝒪(𝑚𝑛

2
3) in unit networks.

AACPP 2025 Mateusz Gienieczko

Graphs – Dinitz running time

In general, since each push deletes at least one edge, there can be only 𝒪(𝑚)
pushes per blocking flow. Moreover, each DFS takes at most 𝒪(𝑛) amortized
time – each edge either gets traversed or deleted; deletion happens at most
once; traversal brings us closer to the sink and distance is bounded by 𝑛.

We have 𝒪(𝑛) iterations and 𝒪(𝑛𝑚) time for each for a total of 𝒪(𝑛2𝑚).

AACPP 2025 Mateusz Gienieczko

Graphs – Dinitz running time

In general, since each push deletes at least one edge, there can be only 𝒪(𝑚)
pushes per blocking flow. Moreover, each DFS takes at most 𝒪(𝑛) amortized
time – each edge either gets traversed or deleted; deletion happens at most
once; traversal brings us closer to the sink and distance is bounded by 𝑛.

We have 𝒪(𝑛) iterations and 𝒪(𝑛𝑚) time for each for a total of 𝒪(𝑛2𝑚).

A more rigorous analysis uses amortisation.

This reasoning is important, since in many specific networks the time can be
bounded further.

AACPP 2025 Mateusz Gienieczko

Graphs – Max flow min cost

We can give edges weights and ask for a minimum-cost flow.

The cost is computed as ∑(𝑣 ,𝑢),𝑓 (𝑣 ,𝑢)>0 𝑤(𝑣, 𝑢) ⋅ 𝑓 (𝑣 , 𝑢).

If there are no negative-cycles then plugging Bellman-Ford into Ford-Fulkerson
gives an 𝒪(𝑛2𝑚2) solution.

²This can be further brought down to 𝒪(𝑛2√𝑚)
³CF blog on Dinitz and max-flow min-cost: https://codeforces.com/blog/entry/104960.

AACPP 2025 Mateusz Gienieczko

https://codeforces.com/blog/entry/104960

Graphs – Max flow min cost

We can give edges weights and ask for a minimum-cost flow.

The cost is computed as ∑(𝑣 ,𝑢),𝑓 (𝑣 ,𝑢)>0 𝑤(𝑣, 𝑢) ⋅ 𝑓 (𝑣 , 𝑢).

If there are no negative-cycles then plugging Bellman-Ford into Ford-Fulkerson
gives an 𝒪(𝑛2𝑚2) solution.

In practice, push-relabel is used. A basic implementation gives 𝒪(𝑛2𝑚)⁴.

We skip the discussion on this.⁵

⁴This can be further brought down to 𝒪(𝑛2√𝑚)
⁵CF blog on Dinitz and max-flow min-cost: https://codeforces.com/blog/entry/104960.

AACPP 2025 Mateusz Gienieczko

https://codeforces.com/blog/entry/104960

See you next week

GRR and LUC: 24.06.2025,
10:00 AM

Good luck!

AACPP 2025 Mateusz Gienieczko

	AACPP 2025
	Week 6: Graphs 2 – Advanced Boogaloo

	Fourth round – survey
	Fifth round
	CAT – Catventure
	CAT – Catventure
	CAT – Catventure
	CAT – Catventure
	CAT – Catventure
	PAW – Park Walks
	PAW – Park Walks
	PAW – Park Walks
	PAW – Park Walks
	PAW – Park Walks
	PAW – Park Walks
	PAW – Park Walks
	PAW – Park Walks
	PAW – Park Walks
	PAW – Park Walks
	PAW – Park Walks
	PAW – Park Walks
	PAW – Park Walks
	PAW – Park Walks
	Recall the plan
	Graphs – strongly connected components
	Graphs – strongly connected components
	Graphs – strongly connected components
	Graphs – strongly connected components
	Graphs – strongly connected components
	Graphs – finding SCCs
	Graphs – finding SCCs
	Graphs – finding SCCs
	Graphs – finding SCCs
	Graphs – topological order
	Graphs – topological sort
	Graphs – topological sort
	Graphs – DP on a DAG
	Graphs – DP on a DAG
	Graphs – DP on a DAG
	Graphs – DP on a DAG
	Graphs – Matchings
	Graphs – Bipartite graphs
	Graphs – Matching in bipartite graphs
	Graphs – Augmenting paths
	Graphs – Hopcroft-Karp
	Graphs – Hopcroft-Karp
	Graphs – Hopcroft-Karp
	Graphs – Hopcroft-Karp
	Graphs – Vertex cover
	Graphs – Kőnig's theorem
	Graphs – Flow networks
	Graphs – Flow networks
	Graphs – Flow networks
	Graphs – Flow networks
	Graphs – Flow networks
	Graphs – Flow networks
	Graphs – Max-flow min-cut theorem
	Graphs – Ford-Fulkerson
	Graphs – Ford-Fulkerson
	Graphs – Edmonds-Karp
	Graphs – Dinitz
	Graphs – Dinitz
	Graphs – Dinitz
	Graphs – Dinitz running time
	Graphs – Dinitz running time
	Graphs – Dinitz running time
	Graphs – Max flow min cost
	See you next week

