

Database Systems on Modern CPU Architectures

Adrian Riedl, Stefan Lehner, Felix Rinderer

Technical University of Munich

Chair for Database Systems

Database Systems on Modern CPU Architectures

Database Systems on Modern CPU Architectures Database Systems and Modern CPU Architectures

Implementation of Database Systems

Implementation of Database Systems

(on Modern CPU Architectures)

Implementation of Database Systems

1. The Classical

Architecture

- 1.1. Storage
- 1.2. Access paths
- 1.3. Transactions &

recovery

ТШ

Lecture Overview

Implementation of Database Systems

1. The Classical

Architecture

- 1.1. Storage
- 1.2. Access paths
- 1.3. Transactions & recovery

2. Efficient Query

Processing

2.1. Set oriented query

processing

- 2.2. Algebraic operators
- 2.3. Code generation

Implementation of Database Systems

1. The Classical

Architecture

- 1.1. Storage
- 1.2. Access paths
- 1.3. Transactions & recovery

- 2. Efficient Query Processing
 - 2.1. Set oriented query
 - processing
 - 2.2. Algebraic operators
 - 2.3. Code generation

- 3. Designing a DBMS for Modern Hardware
 - 3.1. Re-designing storage
 - 3.2. Optimizing cache locality
 - 3.3. Main memory databases

Implementation of Database Systems

- The Classical External Sorting
 Architecture
 1.1. Storage
 - 1.2. Access paths
 - 1.3. Transactions &

recovery

Implementation of Database Systems

Implementation of Database Systems

Implementation of Database Systems

1. The Classical

Architecture

1.1. Storage
1.2. Access paths
1.3. Transactions &

recovery

 $\bowtie \Gamma \blacksquare$

Lecture Overview

Implementation of Database Systems

1. The Classical

Architecture

- 1.1. Storage
- 1.2. Access paths
- 1.3. Transactions & recovery

2. Efficient Query

Processing

2.1. Set oriented query

processing

2.2. Algebraic operators

2.3. Code generation

Implementation of Database Systems

1. The Classical

Architecture

- 1.1. Storage
- 1.2. Access paths
- 1.3. Transactions & recovery

- 2. Efficient Query Processing
 - 2.1. Set oriented query
 - processing
 - 2.2. Algebraic operators
 - 2.3. Code generation

- 3. Designing a DBMS for Modern Hardware
 - 3.1. Re-designing storage
 - 3.2. Optimizing cache locality
 - 3.3. Main memory databases

ПШ

Exercises

- Sessions: Tuesdays 15:30 17:00
- Programming assignments every 2 weeks, starting today
- Announcements on website & Mattermost
- Implementation assignment tasks on GitLab
 - Submit via git
 - Due two weeks later, Tuesdays @14:00
- No Teams. We will check for copied code!
- Bonus System:
 - .3/.4 grade bonus on final exam (>= % exercises passed)
 - Bonus is only applied to this year's exam, it is not transferable
 - Passed: Green GitLab CI (build, lint, test)
 - Fail: CI pipeline failed, skipped/disabled tests

Exam

- Written exam, 90 minutes
- Exam date and location: please check TUMOnline
- Exam registration: via TUMOnline (only!)
- No retake exam!

٦Ш

GitLab & Mattermost

- Register: <u>https://gitlab.db.in.tum.de/</u>
- Join Group: <u>https://gitlab.db.in.tum.de/moderndbs-2025</u>
- Fork first task External Sort
- Clone & Push your solution
- Announcements / Questions:

https://mattermost.db.in.tum.de/moderndbs25