The "Internet of Things" for industrial applications
IoT Technologies: Semantics

Challenges in the Future of Embedded Networks
Growing number of interconnected heterogeneous devices in different kind of application domains such as home/building and industry automation, smart grid, and automotive industry.

Questions
How to identify particular devices in a network?
How to identify particular data in a network?
What is the meaning of the data?
How can machines make inferences?

Approaches
- Web Semantic technologies provide mechanisms for self-description of data which are also machine interpretable
- These technologies have to be made feasible to devices which have constrained resources such as memory or processing capabilities.
IoT Technologies: Semantics

Presentation Ideas
- Overview about known Web Semantic technologies relevant for devices
- Semantic for devices approaches presentation such as from SPITFIRE, DIEM, and MIoTE projects
- Comparison of semantic reasoners which are relevant for embedded environment

Possible Resources
- W3C:
 - Binary RDF
 - OMM
 - Semantic Sensor Networks
 - RDF/OWL 2/ SPARQL
- Papers:
 - “Enabling Semantic Technology Empowered Smart Spaces”, Kiljander et. al, 2012
 - "SPITFIRE: Towards a Semantic Web of Things“, Pfisterer et al, 2011
 - “Embedded EL+ Reasoning on Programmable Logic Controllers”, Grimm et al,
IoT Technologies: Data Processing

Data Processing in Embedded Networks
A multitude of devices and a bulk of measurements of sensors have to be monitored and processed. Typically, a measurement is provided to the network (streamed) and can not requested again (send & forget).

Questions
How to identify important data events?
How to detect malfunctions of a system?
Who has access to particular data?

Approaches
- Data stream management systems (DSMS), publish-subscribe mechanism, and complex event processors provide opportunities to identify requested data events and optimize data usage in networks
- Direct adaptations in industry ‘s embedded environment is in most cases not feasible due to the system requirements
IoT Technologies: Data Processing

Presentation Ideas
- Overview about filtering approaches known from publish-subscribe systems (e.g., YFilter)
- Data processing approaches for constrained devices such as TinyDB, Cougar, Binary XML Filtering
- How to realize data policy (data ownership) in stream-based networks?
- Overview about stream-based approaches such as from DSMS or semantic environment (e.g., EP-SPARQL)

Possible Resources
- Madden et al., TinyDB: An Acquisitional Query Processing System for Sensor Networks
- Diao et al., High-Performance XML Filtering: An Overview of YFilter
- Käbisch et al., Efficient Filtering of Binary XML in Resource Restricted Embedded Networks
- Darko et al., EP-SPARQL: a unified language for event processing and stream reasoning
IoT Technologies: Low Energy Communication

Challenges

- Devices should operate for months or years, powered by batteries or by harvested power
- Wireless communication has one of the biggest or THE biggest energy costs in the device’s lifetime

Approaches

- Low-energy communication protocols
 - Physical (IEEE 802.15.14, Bluetooth low energy, …)
 - Medium Access (TDMA-based, backoff-based, …)
 - Routing
- Reduce communication (Data-driven)
 - In-network aggregation (TAG, SIA, …)
 - Model-driven Data Prediction
- Duty-cycling
IoT Technologies: Low Energy Communication

Possible Topics

• Communication protocols / low energy stacks
 • E.g. ZigBee vs. Bluetooth low energy
• Comparison of different physical/MAC/routing protocols
• Overview data-driven approaches to energy saving
• Any sensible sub- or superset of the above topics

Literature

Advisor

• Thomas Kothmayr, kothmayr@in.tum.de
IoT Technologies: Constrained Devices

Smart Objects
- are nodes with constrained computational and memory resources
- are expected to integrate and interface with existing Internet and Web-technology in an interoperable manner

Hardware Platform
- Daily growing number of (evaluation) boards
- ARM Cortex M3 seems dominant
- Typical configuration 128/256k Flash / 8/16k RAM (Harvard)

 Approaches towards Resource Efficient Protocols
- Some protocols can be implemented efficiently (e.g. embedded IP stacks) but often with different API (e.g. no BSD sockets)
- Some protocols use extensions / add-ons to decrease overhead (e.g. IP header compression)
- Some protocols use different encoding / representation (e.g. EXI & XML)
- Newly defined protocols with well-defined mapping to existing Internet protocols (e.g. CoAP & HTTP)
IoT Technologies: Constrained Devices

Presentation Ideas

- Overview of the whole picture in both worlds (the Internet stack vs. the constrained stack)
- Comparison of protocol / solution on a specific layer
- ? (open for suggestions)

Possible Resources

- Specs / docs / examples for eval boards
- Standards
 - W3C Efficient XML Interchange (EXI)
 - IETF Constrained Application Protocol (CoAP)
 - IETF IPv6 over Low power WPAN (6LoWPAN)
- Working Group mailing lists
 - To browse discussions for specific design decisions
- Open source projects / implementations
- IoT startups
IoT Applications: Smart Grid

Smart Grid

- **Past:** centralized generation, predictable consumption
 Control paradigm: generation follows load
- **Today:** fluctuating decentralized generation, local optimization of consumption
 Control paradigm: generation follows weather conditions
- **Tomorrow:** smart prosumers managing their own energy production and consumption, electricity, heat and mobility closely interconnected
 Control paradigm: internet of energy

- **Don’t forget the physics!**
 - In every second you have to produce and consume *exactly* the same amount of energy
 - Control loops at various timescales (from milliseconds to months) and extent (from single device to trans-european grid) have to interoperate
 - System stability is essential!
IoT Applications: Smart Grid

Presentation Ideas
- System stability and robustness in a massively distributed system: problem scope and approaches
- Timescales in the electric grid: from millisecond control loops to long-term planning
- Smart Grid communication protocols and their application areas
- Economic aspects of Smart Grids (virtual power plants, dynamic prizes, trading)

Possible Resources
- Research projects (e.g. E-Energy)
- Communication standards
 - IEC 61850, IEC 61968, IEC 61870
 - OpenADR
 - Homeplug / ZigBee Smart Energy Profile 2
- Government institutions, organizations (Bundesnetzagentur, ENTSO-E, …)
IoT Applications: Electro Mobility

Charging Technologies
- Different technologies with different benefits available
- Various challenges, e.g. charging speed, ease of use, Ecar weight, costs, complexity

Communication between Ecars and Charge Spots
- “Dump” charging will cause problems for grid stability
- Charging parameters should be negotiable
- Fast and efficient control of the charging process
- Strong interest for value-add/other applications (telemetry, software update, etc)

End Users
- What are acceptable charging approaches (what flexibility is the user willing to provide)
- HMIs, how can the user monitor the charging process, how can the user configure and influence the charging process
- Fleet management
IoT Applications: Electro Mobility

Presentation Ideas

- Mechanisms / solutions for the identification of Ecars users at charging spots
- Charging technologies, their differences, common and unique challenges
- Charging control from the user perspective (applications)
- Ecar to charging station communication protocols and their functionalities

Possible Resources

- Google search
- Communication standards
 - ISO/IEC 15118
 - IEC 61841-1
 - Siemens presentation V2G ISO/IEC 15118 standardization - A key for electromobility
- Final report of the project Harz.ErneuerbareEnergien-Mobility
IoT Applications: Home /Building Automation

Trends in Home Automation
• IT integration, at least for smart phone
• Smart automation coming from high end
• Nerd solutions coming from the electronic distributors

Technology enabler
• Affordable 32bit uC including the wireless interface
• Powerfull open source router plattforms
• uIP stacks for embedded networks
• Affordable development boards and IDEs

Architectures driven by stakeholder interests
• Decentralized, networked devices vs
• Router based star networks vs
• Online hosted direct connectivity
IoT Technologies: Home /Building Automation

Presentation Ideas

• Architectures, Openess and Motivation of the different solutions / stakeholders on the market
• Protocol technologies and IT integration
• ? (open for suggestions)

Possible Resources

Solutions

• Telecom / QIVICON
 www.qivicon.com
• RWE
 http://www.rwe-smarthome.de
• ELV
• Belkin WEMO
 http://www.belkin.com/de/PRODUKTE/home-automation
• Philips hue
 https://www.meethue.com/
• OGEMA
 http://www.ogema.org

Discussion Boards

• Elektronik Foren