Teamwork is essential. It allows you to blame someone else.” (Anonymous)
Part III: Recovery

• 11 Transaction Recovery
• 12 Crash Recovery: Notion of Correctness
• 13 Page-Model Crash Recovery Algorithms
• 14 Object-Model Crash Recovery Algorithms
• 15 Special Issues of Recovery
• 16 Media Recovery
• 17 Application Recovery
Recall: Funds Transfer Example

void main () {
/* read user input */
scanf (“%d %d %d”, &sourceid, &targetid, &amount);
/* subtract amount from source account */
EXEC SQL Update Account
 Set Balance = Balance - :amount Where Account_Id = :sourceid;
/* add amount to target account */
EXEC SQL Update Account
 Set Balance = Balance + :amount Where Account_Id = :targetid;
EXEC SQL Commit Work; }

Observation: failures may cause inconsistencies, require recovery for “atomicity” and “durability”
Also Recall: Dirty Read Problem

<table>
<thead>
<tr>
<th>P1</th>
<th>Time</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>r (x)</td>
<td>1</td>
<td>r (x)</td>
</tr>
<tr>
<td>x := x + 100</td>
<td>2</td>
<td>x := x - 100</td>
</tr>
<tr>
<td>w (x)</td>
<td>3</td>
<td>w (x)</td>
</tr>
<tr>
<td>failure & rollback</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

cannot rely on validity of previously read data

Observation: transaction rollbacks could affect concurrent transactions
Chapter 11: Transaction Recovery

- 11.2 Expanded Schedules
- 11.3 Page-Model Correctness Criteria
- 11.4 Sufficient Syntactic Conditions
- 11.5 Further Relationships Among Criteria
- 11.6 Extending Page-Model CC Algorithms
- 11.7 Object-Model Correctness Criteria
- 11.8 Extending Object-Model CC Algorithms
- 11.9 Lessons Learned

“And if you find a new way, you can do it today.
You can make it all true. And you can make it undo.” (Cat Stevens)
Expanded Schedules with Explicit Undo Steps

Dirty-read problem:
\[s = r_1(x) \ w_1(x) \ r_2(x) \ a_1 \ w_2(x) \ c_2 \]

Approach:
- schedules with aborts are expanded by making the undo operations that implement the rollback explicit
- expanded schedules are analyzed by means of serializability arguments

Dirty-read in expanded schedule:
\[s' = r_1(x) \ w_1(x) \ r_2(x) \ w_1^{-1}(x) \ c_1 \ w_2(x) \ c_2 \rightarrow \notin \text{CSR} \]
Examples

\[s = r_1(x) \, w_1(x) \, r_2(y) \, w_1(y) \, w_2(y) \, a_1 \, r_2(z) \, w_2(z) \, c_2 \]

Expansion?

How to handle active transactions, as in

\[s = w_1(x) \, w_2(x) \, w_2(y) \, w_1(x) \]
Definition 11.1 (Expansion of a Schedule):
For a schedule s the **expansion** of s, $\text{exp}(s)$, is defined as follows:

- **steps of $\text{exp}(s)$:**
 - $t_i \in \text{commit}(s) \Rightarrow \text{op}(t_i) \subseteq \text{op}(\text{exp}(s))$
 - $t_i \in \text{abort}(s) \Rightarrow (\text{op}(t_i) - \{a_i\}) \cup \{c_i\} \cup \{w_i^{-1}(x) \mid w_i(x) \in t_i\} \subseteq \text{op}(\text{exp}(s))$
 - $t_i \in \text{active}(s) \Rightarrow \text{op}(t_i) \cup \{c_i\} \cup \{w_i^{-1}(x) \mid w_i(x) \in t_i\} \subseteq \text{op}(\text{exp}(s))$

- **step ordering in $\text{exp}(s)$:**
 - all steps from $\text{op}(s) \cap \text{op}(\text{exp}(s))$ occur in $\text{exp}(s)$ in the same order as in s
 - all inverse steps of an aborted transaction occur in $\text{exp}(s)$ after the original steps in s and before the commit of this transaction
 - all inverse steps of active transactions occur in $\text{exp}(s)$ after the original steps of s and before the commits of these transactions
 - the ordering of inverse steps is the reverse of the ordering of the corresponding original steps

Example 11.2:

$s = w_1(x) \; w_2(x) \; w_2(y) \; w_1(y) \Rightarrow \text{exp}(s) = w_1(x) \; w_2(x) \; w_2(y) \; w_1(y) \; w_1^{-1}(y) \; w_2^{-1}(y) \; w_2^{-1}(x) \; w_1^{-1}(x) \; c_2 \; c_1$
Chapter 11: Transaction Recovery

- 11.2 Expanded Schedules
- **11.3 Page-Model Correctness Criteria**
 - 11.4 Sufficient Syntactic Conditions
 - 11.5 Further Relationships Among Criteria
 - 11.6 Extending Page-Model CC Algorithms
 - 11.7 Object-Model Correctness Criteria
 - 11.8 Extending Object-Model CC Algorithms
 - 11.9 Lessons Learned
Expanded Conflict Serializability (XCSR)

Definition 11.2 (Expanded Conflict Serializability):
A schedule \(s \) is **expanded conflict serializable** if its expansion, \(\text{exp}(s) \), is conflict serializable.

\(\text{XCSR} \) denotes the class of expanded conflict serializable schedules.

Example 11.4:
- \(s = r_1(x) \ w_1(x) \ r_2(x) \ a_1 \ c_2 \)
 - \(\Rightarrow \ \text{exp}(s) = r_1(x) \ w_1(x) \ r_2(x) \ w_1^{-1}(x) \ c_1 \ c_2 \notin \text{XCSR} \)
- \(s' = r_1(x) \ w_1(x) \ a_1 \ r_2(x) \ c_2 \)
 - \(\Rightarrow \ \text{exp}(s') = r_1(x) \ w_1(x) \ w_1^{-1}(x) \ c_1 \ r_2(x) \ c_2 \in \text{XCSR} \)

Lemma 11.1:
- \(\text{XCSR} \subseteq \text{CSR} \)

Example 11.5:
- \(s = w_1(x) \ w_2(x) \ a_2 \ a_1 \)
 - \(\Rightarrow \ \text{exp}(s) = w_1(x) \ w_2(x) \ w_2^{-1}(x) \ c_2 \ w_1^{-1}(x) \ c_1 \notin \text{XCSR} \)
Definition 11.3 (Reducibility):
A schedule s is **reducible** if its expansion, $\text{exp}(s)$, can be transformed into a serial history by finitely many applications of the following rules:

- **commutativity rule (CR):**
 if $p, q \in \text{op}(\text{exp}(s))$ s.t. $p < q$ and $(p, q) \not\in \text{conf}(\text{exp}(s))$ and if there is no step $o \in \text{op}(\text{exp}(s))$ with $p < o < q$, then the order of p and q can be reversed.

- **undo rule (UR):**
 if $p, q \in \text{op}(\text{exp}(s))$ are inverses of each other (i.e., of the form $p=w_i(x)$ and $q=w_i^{-1}(x)$) and if there is no other step o in between p and q, then the pair of steps p and q can be removed from $\text{exp}(s)$.

- **null rule (NR):**
 if $p \in \text{op}(\text{exp}(s))$ has the form $p=r_i(x)$ s.t. $t_i \in \text{active}(s) \cup \text{abort}(s)$, then p can be removed from $\text{exp}(s)$.

- **ordering rule (OR):**
 two commutative, unordered operations can be arbitrarily ordered.
Examples in RED and outside RED

Example 11.6:

\[s = r_1(x) w_1(x) r_2(x) w_2(x) a_2 a_1 \]

\[\Rightarrow \exp(s) = r_1(x) w_1(x) r_2(x) w_2(x) w_2^{-1}(x) c_2 w_1^{-1}(x) c_1 \quad \in \text{RED} \]

\~ r_1(x) w_1(x) r_2(x) c_2 w_1^{-1}(x) c_1 \quad \text{by UR}

\~ w_1(x) c_2 w_1^{-1}(x) c_1 \quad \text{by NR}

\~ w_1(x) w_1^{-1}(x) c_2 c_1 \quad \text{by CR}

\~ c_2 c_1 \quad \text{by UR}

Example 11.7:

\[s = w_1(x) r_2(x) c_1 c_2 \]

\[s \text{ is in RED, since reduction yields } s' = w_1(x) c_1 r_2(x) c_2 \]

Example 11.8:

\[s = w_1(x) w_2(x) c_2 c_1 \quad \text{with prefix } s' = w_1(x) w_2(x) c_2 \]

\[s \text{ is in RED, but } s' \text{ is not} \]
Definition 11.9 (Prefix Reducibility):
A schedule s is **prefix reducible** if each of its prefixes is reducible. PRED denotes the class of all prefix-reducible schedules.

Theorem 11.1:
- $\text{PRED} \subseteq \text{RED}$ (Lemma 11.2)
- $\text{XCSR} \subseteq \text{RED}$
- XCSR and PRED are incomparable
Activity: Why Histories are [not] in PRED?

1) \(w_1(x) \ r_2(x) \ a_1 \ a_2 \) \(\in \ PRED \)
2) \(w_1(x) \ r_2(x) \ a_1 \ c_2 \) \(\not\in \ PRED \)
3) \(w_1(x) \ r_2(x) \ c_2 \ c_1 \) \(\not\in \ PRED \)
4) \(w_1(x) \ r_2(x) \ c_2 \ a_1 \) \(\not\in \ PRED \)
5) \(w_1(x) \ r_2(x) \ a_2 \ a_1 \) \(\in \ PRED \)
6) \(w_1(x) \ r_2(x) \ a_2 \ c_1 \) \(\in \ PRED \)
7) \(w_1(x) \ r_2(x) \ c_1 \ c_2 \) \(\in \ PRED \)
8) \(w_1(x) \ r_2(x) \ c_1 \ a_2 \) \(\in \ PRED \)
9) \(w_1(x) \ w_2(x) \ a_1 \ a_2 \) \(\not\in \ PRED \)
10) \(w_1(x) \ w_2(x) \ a_1 \ c_2 \) \(\not\in \ PRED \)
11) \(w_1(x) \ w_2(x) \ c_2 \ c_1 \) \(\not\in \ PRED \)
12) \(w_1(x) \ w_2(x) \ c_2 \ a_1 \) \(\not\in \ PRED \)
13) \(w_1(x) \ w_2(x) \ a_2 \ a_1 \) \(\in \ PRED \)
14) \(w_1(x) \ w_2(x) \ a_2 \ c_1 \) \(\in \ PRED \)
15) \(w_1(x) \ w_2(x) \ c_1 \ c_2 \) \(\in \ PRED \)
16) \(w_1(x) \ w_2(x) \ c_1 \ a_2 \) \(\in \ PRED \)
Chapter 11: Transaction Recovery

- 11.2 Expanded Schedules
- 11.3 Page-Model Correctness Criteria
- **11.4 Sufficient Syntactic Conditions**
 - 11.5 Further Relationships Among Criteria
 - 11.6 Extending Page-Model CC Algorithms
 - 11.7 Object-Model Correctness Criteria
 - 11.8 Extending Object-Model CC Algorithms
- 11.9 Lessons Learned
Example

Consider

\[s = w_1(x) \ r_2(x) \ c_2 \ a_1 \]

s is not acceptable (why?),

yet an SR scheduler would consider it valid (why?).
Definition 11.5 (Recoverability):
A schedule s is recoverable if the following holds for all $t_i, t_j \in \text{trans}(s)$:
if t_i reads from t_j in s and $c_i \in \text{op}(s)$, then $c_j < c_i$.
RC denotes the class of all recoverable schedules.

Example 11.10:

$s_1 = w_1(x)\, w_1(y)\, r_2(u)\, w_2(x)\, r_2(y)\, w_2(y)\, w_3(u)\, c_3\, c_2\, w_1(z)\, c_1 \not\in \text{RC}$

$s_2 = w_1(x)\, w_1(y)\, r_2(u)\, w_2(x)\, r_2(y)\, w_2(y)\, w_3(u)\, c_3\, w_1(z)\, c_1\, c_2 \in \text{RC}$
Definition 11.20 (Avoiding Cascading Aborts): A schedule \(s \) avoids cascading aborts if the following holds for all \(t_i, t_j \in \text{trans}(s) \): if \(t_i \) reads \(x \) from \(t_j \) in \(s \), then \(c_j < r_i(x) \).

ACA denotes the class of all schedules that avoid cascading aborts.

Examples 11.10 and 11.11:

\[
\begin{align*}
 s_2 &= w_1(x) \ w_1(y) \ r_2(u) \ w_2(x) \ r_2(y) \ w_2(y) \ w_3(u) \ c_3 \ w_1(z) \ c_1 \ c_2 \\
 s_3 &= w_1(x) \ w_1(y) \ r_2(u) \ w_2(x) \ w_1(z) \ c_1 \ r_2(y) \ w_2(y) \ w_3(u) \ c_3 \ c_2 \\
 s &= w_0(x, 1) \ c_0 \ w_1(x, 2) \ w_2(x, 3) \ c_2 \ a_1
\end{align*}
\]

\(\notin \text{ACA} \)

\(\in \text{ACA} \)
Sufficient Condition: Strictness

Definition 11.7 (Strictness):
A schedule s is **strict** if the following holds for all $t_i, t_j \in \text{trans}(s)$:
for all $p_i(x) \in \text{op}(t_i)$, $p=r$ or $p=w$, if $w_j(x) < p_i(x)$ then $a_j < p_i(x)$ or $c_j < p_i(x)$.

ST denotes the class of all strict schedules.

Example 11.11 and 11.13:

\[s_3 = w_1(x) \ w_1(y) \ r_2(u) \ w_2(x) \ w_1(z) \ c_1 \ r_2(y) \ w_2(y) \ w_3(u) \ c_3 \ c_2 \notin \text{ST}\]

\[s_4 = w_1(x) \ w_1(y) \ r_2(u) \ w_1(z) \ c_1 \ w_2(x) \ r_2(y) \ w_2(y) \ w_3(u) \ c_3 \ c_2 \in \text{ST}\]
Definition 11.8 (Rigorousness):
A schedule s is **rigorous** if it is strict and the following holds for all $t_i, t_j \in \text{trans}(s)$:
if $r_j(x) < w_i(x)$ then $a_j < w_i(x)$ or $c_j < w_i(x)$.

RG denotes the class of all rigorous schedules.

Example 11.13 and 11.14:

$s_4 = w_1(x) \, w_1(y) \, r_2(u) \, w_1(z) \, c_1 \, w_2(x) \, r_2(y) \, w_2(y) \, w_3(u) \, c_3 \, c_2 \notin \text{RG}$

$s_5 = w_1(x) \, w_1(y) \, r_2(u) \, w_1(z) \, c_1 \, w_2(x) \, r_2(y) \, w_2(y) \, c_2 \, w_3(u) \, c_3 \in \text{RG}$
Theorems 11.2, 11.3, 11.4:

- $\text{RG} \subset \text{ST} \subset \text{ACA} \subset \text{RC}$
- $\text{RG} \subset \text{COCSR}$
- $\text{CSR} \cap \text{ST} \subset \text{PRED} \subset \text{CSR} \cap \text{RC}$

Proofs?
Situation
Log-Recoverability

Definition 11.9 (Log Recoverability):
A schedule s is **log recoverable** if the following properties hold:
- s is recoverable
- for all \(t_i, t_j \in \text{trans}(s) \): if there is a \(\text{ww} \) conflict of the form \(w_i(x) < w_j(x) \) in s, then
 - \(a_i < w_j(x) \) or \(c_i < c_j \) if \(t_j \) commits,
 - or \(a_j < a_i \) if \(t_i \) aborts.

LRC denotes the class of all log recoverable schedules.

Relationship to PRED for \(\text{wr} \) and \(\text{ww} \) conflicts:

1) \(w_1(x) r_2(x) a_1 a_2 \) \(\in \) PRED
2) \(w_1(x) r_2(x) a_1 c_2 \) \(\notin \) PRED
3) \(w_1(x) r_2(x) c_2 c_1 \) \(\notin \) PRED
4) \(w_1(x) r_2(x) c_2 a_1 \) \(\notin \) PRED
5) \(w_1(x) r_2(x) a_2 a_1 \) \(\in \) PRED
6) \(w_1(x) r_2(x) a_2 c_1 \) \(\in \) PRED
7) \(w_1(x) r_2(x) c_1 c_2 \) \(\in \) PRED
8) \(w_1(x) r_2(x) c_1 a_2 \) \(\in \) PRED

1) \(w_1(x) w_2(x) a_1 a_2 \) \(\notin \) PRED
2) \(w_1(x) w_2(x) a_1 c_2 \) \(\notin \) PRED
3) \(w_1(x) w_2(x) c_2 c_1 \) \(\notin \) PRED
4) \(w_1(x) w_2(x) c_2 a_1 \) \(\notin \) PRED
5) \(w_1(x) w_2(x) a_2 a_1 \) \(\in \) PRED
6) \(w_1(x) w_2(x) a_2 c_1 \) \(\in \) PRED
7) \(w_1(x) w_2(x) c_1 c_2 \) \(\in \) PRED
8) \(w_1(x) w_2(x) c_1 a_2 \) \(\in \) PRED
Theorem 11.5:

- \(\text{PRED} = \text{CSR} \cap \text{LRC} \)

Proof sketch:

- Lemma 11.3: If \(s \in \text{CSR} \cap \text{LRC} \), then all operations of uncommitted transactions can be eliminated using rules CR, UR, NR, and OR.

- \(\text{PRED} \supseteq \text{CSR} \cap \text{LRC} \):
 Assume \(s \in \text{CSR} \cap \text{LRC} \). After eliminating operations of uncommitted transactions by Lemma 11.3 (and preserving all conflict orders among committed transactions), \(s \) is still CSR and so is every prefix of \(s \). Thus \(s \) is in PRED.

- \(\text{PRED} \subseteq \text{LRC} \):
 Assume \(s \in \text{PRED} \) but \(\notin \text{LRC} \). Consider a conflict \(w_i(x) < w_j(x) \). Since \(s \notin \text{LRC} \), either a) \(t_j \) commits but \(t_i \) does not commit or commits after \(t_j \) or b) \(t_i \) aborts but \(t_j \) does not abort or aborts after \(t_i \).
 All cases lead to contradictions to the assumption that \(s \) is in PRED.
 Similarly, assuming that \(s \) does not satisfy the RC property for situations like \(w_i(x) < r_j(x) c_j \), leads to a contradiction.

- \(\text{PRED} \subseteq \text{CSR} \)
Situation
Chapter 11: Transaction Recovery

- 11.2 Expanded Schedules
- 11.3 Page-Model Correctness Criteria
- 11.4 Sufficient Syntactic Conditions
- 11.5 Further Relationships Among Criteria
- **11.6 Extending Page-Model CC Algorithms**
- 11.7 Object-Model Correctness Criteria
- 11.8 Extending Object-Model CC Algorithms
- 11.9 Lessons Learned
Extending 2PL for ST and RG

Theorem 11.6:
Gen(SS2PL) = RG

Theorem 11.7:
Gen(S2PL) ⊆ CSR ∩ ST
Extending SGT for LRC

Approach:
- **defer commit** upon commit request of \(t_j \)
 if there is a \(\text{ww} \) or \(\text{wr} \) conflict from \(t_i \) to \(t_j \) and \(t_i \) is not yet committed
- **enforce cascading abort** for \(t_j \) upon abort request of \(t_i \)
 if there is a \(\text{ww} \) or \(\text{wr} \) conflict from \(t_i \) to \(t_j \)

ESGT algorithm:
- process w and r steps as usual and maintain serialization graph
 with explicit labeling of edges that correspond to \(\text{ww} \) or \(\text{wr} \) conflicts
- upon \(c_i \) test if \(t_i \) has a predecessor w.r.t. \(\text{ww} \) or \(\text{wr} \) edges in the graph;
 if no predecessor exists then perform \(c_i \) and resume waiting successors
- upon \(a_i \) test if \(t_i \) has successor w.r.t. \(\text{ww} \) or \(\text{wr} \) edges in the graph;
 if no successor exists then perform \(a_i \),
 otherwise enforce aborts for all successors of \(t_i \)

Theorem 11.8:
\[\text{Gen(ESGT)} \subseteq \text{CSR} \cap \text{LRC} \]

Remark: similar approaches are feasible for other CC protocols
(including non-strict 2PL)
Chapter 11: Transaction Recovery

• 11.2 Expanded Schedules
• 11.3 Page-Model Correctness Criteria
• 11.4 Sufficient Syntactic Conditions
• 11.5 Further Relationships Among Criteria
• 11.6 Extending Page-Model CC Algorithms
• 11.7 Object-Model Correctness Criteria
• 11.8 Extending Object-Model CC Algorithms
• 11.9 Lessons Learned
Aborts in Flat Object Schedules

Definition 11.10 (Inverse operations):
An operation \(f' (x_1', \ldots, x_m', \uparrow y_1', \ldots, \uparrow y_k') \) with input parameters \(x_1' \) through \(x_m' \) and output parameters \(y_1' \) through \(y_k' \) is the \textbf{inverse operation} of operation \(f (x_1, \ldots, x_m, \uparrow y_1, \ldots, \uparrow y_k) \) if for all possible sequences \(\alpha \) and \(\omega \) of operations on a given interface, the return parameters in the sequence \(\alpha f (...) f' (...) \omega \) are the same as in \(\alpha \omega \). \(f' (...) \) is also denoted as \(f^{-1} (...) \).

With the notion of inverse operations, the concepts of expanded schedules and \(PRED \) generalize to flat object schedules.

Examples 11.17 and 11.18:
\(s_1 = \text{withdraw}_1(a) \text{withdraw}_2(b) \text{deposit}_2(c) \text{deposit}_1(c) c_1 a_2 \in PRED \)
\Rightarrow \text{exp}(s_1) =
\text{withdraw}_1(a) \text{withdraw}_2(b) \text{deposit}_2(c) \text{deposit}_1(c) c_1 \text{reclaim}_2(c) \text{deposit}_2(b) c_2
\(s_2 = \text{insert}_1(x) \text{delete}_2(x) \text{insert}_3(y) a_1 a_2 a_3 \notin PRED \)
\Rightarrow \text{exp}(s_2) = \text{insert}_1(x) \text{delete}_2(x) \text{insert}_3(y) \text{delete}_1(x) c_1 \text{insert}_2(x) c_2 \text{delete}_3(y) c_3
Example of Correctly Expanded Flat Object Schedule

```
t 1
  /
 withdraw11(a)
   /
  r111(p)  w112 (p)
   |
  t 2
  /
 withdraw21(b)
   /
  r211(p)  w212 (p)
   |
  t 3
  /
 deposit22(c)
   /
  r221(p)  w222 (p)
   |
  t 4
  /
 deposit12(c)
   /
  r121(p)  w122 (p)
   |
  t
```

```
Expansion
```

```
t 1
  /
 withdraw11(a)
   /
  r111(p)  w112 (p)
   |
  t 2
  /
 withdraw21(b)
   /
  r211(p)  w212 (p)
   |
  t 3
  /
 deposit22(c)
   /
  r221(p)  w222 (p)
   |
  t 4
  /
 deposit12(c)
   /
  r121(p)  w122 (p)
   |
  t
```

```
Expansion
```

```
t 1
  /
 withdraw11(a)
   /
  r111(p)  w112 (p)
   |
  t 2
  /
 withdraw21(b)
   /
  r211(p)  w212 (p)
   |
  t 3
  /
 deposit22(c)
   /
  r221(p)  w222 (p)
   |
  t 4
  /
 deposit12(c)
   /
  r121(p)  w122 (p)
   |
  t
```

```
t 1
  /
 withdraw11(a)
   /
  r111(p)  w112 (p)
   |
  t 2
  /
 withdraw21(b)
   /
  r211(p)  w212 (p)
   |
  t 3
  /
 deposit22(c)
   /
  r221(p)  w222 (p)
   |
  t 4
  /
 deposit12(c)
   /
  r121(p)  w122 (p)
   |
  t
```

```
tree-reducible
```
Example of Incorrectly Expanded Flat Object Schedule

Important observation:

Page-level undo is, in general, incorrect for object-model transactions.
Perfect Commutativity

Definition 11.11 (Perfect Commutativity):
Given a set of operations for an object type, such that for each operation \(f(x, p_1, ..., p_m) \) an appropriate inverse operation \(f^{-1}(x, p_1', ..., p_m') \) is included. A commutativity table for these operations is called perfect if the following holds:

- if \(f(x, p_1, ..., p_m) \) and \(g(x, q_1, ..., q_n) \) commute then
 - \(f(x, p_1, ..., p_m) \) and \(g^{-1}(x, q_1', ..., q_n') \) commute,
 - \(f^{-1}(x, p_1', ..., p_m') \) and \(g(x, q_1, ..., q_n) \) commute, and
 - \(f^{-1}(x, p_1', ..., p_m') \) and \(g^{-1}(x, q_1', ..., q_n') \) commute.

Definition 11.12 (Perfect Closure):
The perfect closure of a commutativity table for the operations of a given object type is the largest, perfect subset of the original commutativity table's commutative operation pairs.

Important observation:
For object types with perfect or perfectly closed commutativity tables, S2PL does not need to acquire any additional locks for undo, and therefore is deadlock-free during rollback.
Examples of Commutativity Tables with Inverse Operations

for object type “page”

\[
\begin{array}{ccc}
\text{r}_i(x) & \text{w}_i(x) & \text{w}^{-1}_i(x) \\
\hline
\text{r}_i(x) & + & - & - \\
\text{w}_i(x) & - & - & - \\
\text{w}^{-1}_i(x) & - & - & - \\
\end{array}
\]

perfectly closed

for object type “set”

\[
\begin{array}{cccccc}
\text{insert} & \text{delete} & \text{test} & \text{insert}^{-1} & \text{delete}^{-1} \\
\hline
\text{insert} & - & - & - & - & - \\
\text{delete} & - & - & - & - & - \\
\text{test} & - & - & + & - & - \\
\text{insert}^{-1} & - & - & - & + & - \\
\text{delete}^{-1} & - & - & - & - & + \\
\end{array}
\]

not perfect

\[
\begin{array}{cccccc}
\text{insert} & \text{delete} & \text{test} & \text{insert}^{-1} & \text{delete}^{-1} \\
\hline
\text{insert} & - & - & - & - & - \\
\text{delete} & - & - & - & - & - \\
\text{test} & - & - & + & - & - \\
\text{insert}^{-1} & - & - & - & + & - \\
\text{delete}^{-1} & - & - & - & - & + \\
\end{array}
\]

perfectly closed
Chapter 11: Transaction Recovery

- 11.2 Expanded Schedules
- 11.3 Page-Model Correctness Criteria
- 11.4 Sufficient Syntactic Conditions
- 11.5 Further Relationships Among Criteria
- 11.6 Extending Page-Model CC Algorithms
- 11.7 Object-Model Correctness Criteria
- 11.8 Extending Object-Model CC Algorithms
- 11.9 Lessons Learned
Complete and Partial Rollbacks in General Object-Model Schedules

Definition 11.15 (Terminated Subtransactions):
An object-model history has terminated subtransactions if each non-leaf node \(p_ω \) has either a child \(c_ων \) or \(a_ων \) that follows all other \((ν-1)\) children of \(p_ω \). An object-model schedule with terminated subtransactions is a prefix of an object-model history with terminated subtransactions.

Definition 11.16 (Expanded Object Model Schedule):
For an object model schedule \(s \) with terminated subtransactions the expansion of \(s \), \(\exp(s) \), is an object-model history derived as follows:

- All operations whose parent has a commit child are included in \(\exp(s) \).
- For each operation whose parent \(p_ω \) has an abort child \(a_ων \) an inverse operation is added for all of \(p \)'s children that do themselves have a commit child, and a commit child is added to \(p \).
 The inverse operations have the reverse order of the corresponding forward operations and placed in between the forward operations and the new commit child. All new children of \(p \) precede an operation \(q \) in \(\exp(s) \) if the abort child of \(p \) preceded \(q \) in \(s \).
- For each transaction in \(\text{active}(s) \) and each non-terminated subtransaction, inverse operations and a final commit child are added as children of the transaction roots, with ordering analagous to above.
Definition 11.17 (Extended Tree Reducibility):
An object model schedule s is **extended tree reducible** if its expansion, $\text{exp}(s)$, can be transformed into a serial order of s's committed transaction roots by applying the following rules finitely many times:
1. the commutativity rule applied to adjacent leaves,
2. the tree-pruning rule for isolated subtrees,
3. the undo rule applied to adjacent leaves,
4. the null rule for read-only operations, and
5. the ordering rule applied to unordered leaves.
Example with Complete and Partial Rollbacks

```
withdraw(a)  withdraw(b)  withdraw(b)  deposit(c)  deposit(c)  c  a
r(p)         r(q) w(p)   c  w(q) a  r(q)  w(q) c  r(q)w(q) c
withdraw(b)  withdraw(b)  deposit(c)  reclaim(c)  deposit(b)
```

Expansion
Theorem 11.10:
A layered object-model schedule for which all level-to-level schedules are order-preserving conflict serializable and strict is extended tree reducible.

Definition 11.14 (Strictness):
A flat object schedule s is strict if for each pair of L1 operations, p_j and q_i, from different transactions t_i and t_j such that p_j is an update operation, the order $p_j < q_i$ implies that $a_j < q_i$ or $c_j < q_i$.

Theorem 11.12:
The layered S2PL protocol with perfect commutativity tables generates only schedules that are extended tree reducible.
Chapter 11: Transaction Recovery

• 11.2 Expanded Schedules
• 11.3 Page-Model Correctness Criteria
• 11.4 Sufficient Syntactic Conditions
• 11.5 Further Relationships Among Criteria
• 11.6 Extending Page-Model CC Algorithms
• 11.7 Object-Model Correctness Criteria
• 11.8 Extending Object-Model CC Algorithms
• 11.9 Lessons Learned
Lessons Learned

• PRED captures correct schedules in the presence of aborts by means of intuitive transformation rules.
• Among the sufficient syntactic criteria, LRC, ACA, ST, and RG (all in conjunction with CSR), ST is the most practical one.
• Consequently, S2PL is the method of choice (and can be shown to guarantee PRED).
• PRED carries over to the object model, in combination with the transformation rules of tree-reducibility, leading to TPRED, and captures both complete and partial rollbacks of transactions.
• The most practical sufficient syntactic condition for layered schedules with perfect commutativity requires OCSR and ST for each level-to-level schedule, and can be implemented by layered S2PL.