Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann
ISBN 1-55860-508-8

“Teamwork is essential. It allows you to blame someone else.” (Anonymous)
Part II: Concurrency Control

- 3 Concurrency Control: Notions of Correctness for the Page Model
- 4 Concurrency Control Algorithms
- 5 Multiversion Concurrency Control
- 6 Concurrency Control on Objects: Notions of Correctness
- 7 Concurrency Control Algorithms on Objects
- 8 Concurrency Control on Relational Databases
- 9 Concurrency Control on Search Structures
- 10 Implementation and Pragmatic Issues
Chapter 3: Concurrency Control – Notions of Correctness for the Page Model

• 3.2 Canonical Synchronization Problems
• 3.3 Syntax of Histories and Schedules
• 3.4 Correctness of Histories and Schedules
• 3.5 Herbrand Semantics of Schedules
• 3.6 Final-State Serializability
• 3.7 View Serializability
• 3.8 Conflict Serializability
• 3.9 Commit Serializability
• 3.10 An Alternative Criterion: Interleaving Specifications
• 3.11 Lessons Learned

“Nothing is as practical as a good theory.” (Albert Einstein)
Lost Update Problem

<table>
<thead>
<tr>
<th>P1</th>
<th>Time</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>r (x)</td>
<td>/* x = 100 */</td>
<td>r (x)</td>
</tr>
<tr>
<td>x := x + 100</td>
<td>1</td>
<td>x := x + 200</td>
</tr>
<tr>
<td>w (x)</td>
<td>2</td>
<td>w (x)</td>
</tr>
</tbody>
</table>

/* x = 200 */

/* x = 300 */

update “lost”
Lost Update Problem

<table>
<thead>
<tr>
<th>P1</th>
<th>Time</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>/* x = 100 */</td>
<td></td>
</tr>
<tr>
<td>r (x)</td>
<td>1</td>
<td>r (x)</td>
</tr>
<tr>
<td>x := x+100</td>
<td>2</td>
<td>x := x+200</td>
</tr>
<tr>
<td>w (x)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>/* x = 200 */</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>/* x = 300 */</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Observation: problem is the interleaving $r_1(x) \ r_2(x) \ w_1(x) \ w_2(x)$
Inconsistent Read Problem

<table>
<thead>
<tr>
<th>P1</th>
<th>Time</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>r (x)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>x := x - 10</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>w (x)</td>
</tr>
<tr>
<td>sum := 0</td>
<td>4</td>
<td>r (x)</td>
</tr>
<tr>
<td>r (x)</td>
<td>5</td>
<td>x := x - 10</td>
</tr>
<tr>
<td>r (y)</td>
<td>6</td>
<td>w (x)</td>
</tr>
<tr>
<td>sum := sum + x</td>
<td>7</td>
<td>r (y)</td>
</tr>
<tr>
<td>sum := sum + y</td>
<td>8</td>
<td>y := y + 10</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>w (y)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

“sees” wrong sum
Inconsistent Read Problem

<table>
<thead>
<tr>
<th>P1</th>
<th>Time</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum := 0</td>
<td>1</td>
<td>r (x)</td>
</tr>
<tr>
<td>r (x)</td>
<td>2</td>
<td>x := x - 10</td>
</tr>
<tr>
<td>r (y)</td>
<td>3</td>
<td>w (x)</td>
</tr>
<tr>
<td>sum := sum + x</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>sum := sum + y</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

“sees” wrong sum

Observations:

- problem is the interleaving $r_2(x) w_2(x) r_1(x) r_1(y) r_2(y) w_2(y)$
- no problem with sequential execution
Dirty Read Problem

<table>
<thead>
<tr>
<th>P1</th>
<th>Time</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>r (x)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>x := x + 100</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>w (x)</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>failure & rollback</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

The table above shows a logical sequence where P1 operates on variable `x` and P2 is supposed to read and update the same variable. However, due to the failure and rollback, P2 cannot rely on the validity of previously read data.

```
r (x)
x := x + 100
w (x)
r (x)
x := x - 100
w (x)
```
Dirty Read Problem

<table>
<thead>
<tr>
<th>P1</th>
<th>Time</th>
<th>P2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r(x))</td>
<td>1</td>
<td>(r(x))</td>
</tr>
<tr>
<td>(x := x + 100)</td>
<td>2</td>
<td>(x := x - 100)</td>
</tr>
<tr>
<td>(w(x))</td>
<td>3</td>
<td>(w(x))</td>
</tr>
<tr>
<td>failure & rollback</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

cannot rely on validity of previously read data

Observation: transaction rollbacks could affect concurrent transactions
Chapter 3: Concurrency Control – Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- **3.3 Syntax of Histories and Schedules**
 - 3.4 Correctness of Histories and Schedules
 - 3.5 Herbrand Semantics of Schedules
 - 3.6 Final-State Serializability
 - 3.7 View Serializability
 - 3.8 Conflict Serializability
 - 3.9 Commit Serializability
 - 3.10 An Alternative Criterion: Interleaving Specifications
 - 3.11 Lessons Learned
Definition 3.1 (Schedules and histories):
Let $T=\{t_1, \ldots, t_n\}$ be a set of transactions, where each $t_i \in T$ has the form $t_i=(\text{op}_i, <_i)$ with op_i denoting the operations of t_i and $<_i$ their ordering.

(i) A history for T is a pair $s=(\text{op}(s),<_s)$ s.t.
 (a) $\text{op}(s) \subseteq \bigcup_{i=1..n} \text{op}_i \cup \bigcup_{i=1..n} \{a_i, c_i\}$
 (b) for all i, $1 \leq i \leq n$: $c_i \in \text{op}(s) \iff a_i \not\in \text{op}(s)$
 (c) $\bigcup_{i=1..n} <_i \subseteq <_s$
 (d) for all i, $1 \leq i \leq n$, and all $p \in \text{op}_i$: $p <_s c_i$ or $p <_s a_i$
 (e) for all $p, q \in \text{op}(s)$ s.t. at least one of them is a write and both access the same data item: $p <_s q$ or $q <_s p$

(ii) A schedule is a prefix of a history.
Schedules and Histories

Definition 3.1 (Schedules and histories):
Let \(T = \{t_1, \ldots, t_n\} \) be a set of transactions, where each \(t_i \in T \) has the form \(t_i = (\text{op}_i, <_i) \) with \(\text{op}_i \) denoting the operations of \(t_i \) and \(<_i \) their ordering.

(i) A **history** for \(T \) is a pair \(s = (\text{op}(s),<_s) \) s.t.

 (a) \(\text{op}(s) \subseteq \bigcup_{i=1..n} \text{op}_i \cup \bigcup_{i=1..n} \{a_i, c_i\} \)

 (b) for all \(i, 1 \leq i \leq n \): \(c_i \in \text{op}(s) \iff a_i \notin \text{op}(s) \)

 (c) \(\bigcup_{i=1..n} <_i \subseteq <_s \)

 (d) for all \(i, 1 \leq i \leq n \), and all \(p \in \text{op}_i \): \(p <_s c_i \) or \(p <_s a_i \)

 (e) for all \(p, q \in \text{op}(s) \) s.t. at least one of them is a write and both access the same data item: \(p <_s q \) or \(q <_s p \)

(ii) A **schedule** is a prefix of a history.

Definition 3.2 (Serial history):
A history \(s \) is **serial** if for any two transactions \(t_i \) and \(t_j \) in \(s \), where \(i \neq j \), all operations from \(t_i \) are ordered in \(s \) before all operations from \(t_j \) or vice versa.
Example Schedules and Notation

Example 3.4:

\[\begin{array}{c}
 r_1(x) \rightarrow w_1(x) \rightarrow c_1 \\
 r_1(z) \quad \quad \quad \quad \quad \quad \quad \\
 r_2(x) \rightarrow w_2(y) \rightarrow c_2 \\
 r_3(z) \quad \quad \quad \quad \\
 r_3(z) \rightarrow w_3(y) \rightarrow c_3 \\
 \quad \quad \quad \quad \\
 w_3(z) \\
\end{array} \]

\[\text{trans}(s):= \{ t_i \mid s \text{ contains step of } t_i \} \]

\[\text{commit}(s):= \{ t_i \in \text{trans}(s) \mid c_i \in s \} \]

\[\text{abort}(s):= \{ t_i \in \text{trans}(s) \mid a_i \in s \} \]

\[\text{active}(s):= \text{trans}(s) - (\text{commit}(s) \cup \text{abort}(s)) \]

Example 3.6:

\[\begin{array}{c}
 r_1(x) \quad r_2(z) \quad r_3(x) \quad w_2(x) \quad w_1(x) \quad r_3(y) \quad r_1(y) \quad w_1(y) \quad w_2(z) \quad w_3(z) \quad c_1 \quad a_3 \\
\end{array} \]
Chapter 3: Concurrency Control – Notions of Correctness for the Page Model

• 3.2 Canonical Synchronization Problems
• 3.3 Syntax of Histories and Schedules
• 3.4 Correctness of Histories and Schedules
• 3.5 Herbrand Semantics of Schedules
• 3.6 Final-State Serializability
• 3.7 View Serializability
• 3.8 Conflict Serializability
• 3.9 Commit Serializability
• 3.10 An Alternative Criterion: Interleaving Specifications
• 3.11 Lessons Learned
Correctness of Schedules

1. Define equivalence relation \equiv on set S of all schedules.

2. “Good” schedules are those in the equivalence classes of serial schedules.

 • Equivalence must be efficiently decidable.
 • “Good” equivalence classes should be “sufficiently large”.

For the moment, disregard aborts: assume that all transactions are committed.
Activity

- What is an equivalence relation?
- List the three defining conditions!
Chapter 3: Concurrency Control – Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules

3.5 Herbrand Semantics of Schedules

- 3.6 Final-State Serializability
- 3.7 View Serializability
- 3.8 Conflict Serializability
- 3.9 Commit Serializability
- 3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned
Herbrand Semantics of Schedules

Definition 3.3 (Herbrand Semantics of Steps):
For schedule s the **Herbrand semantics H_s** of steps $r_i(x), w_i(x) \in \text{op}(s)$ is:

1. $H_s[r_i(x)] := H_s[w_j(x)]$ where $w_j(x)$ is the last write on x in s before $r_i(x)$.
2. $H_s[w_i(x)] := f_{ix}(H_s[r_{i_1}(y_1)], \ldots, H_s[r_{i_m}(y_m)])$ where the $r_{i_j}(y_j), 1 \leq j \leq m$, are all read operations of t_i that occur in s before $w_i(x)$ and f_{ix} is an uninterpreted m-ary function symbol.
Herbrand Semantics of Schedules

Definition 3.3 (Herbrand Semantics of Steps):
For schedule s the Herbrand semantics H_s of steps $r_i(x), w_i(x) \in \text{op}(s)$ is:

(i) $H_s[r_i(x)] := H_s[w_j(x)]$ where $w_j(x)$ is the last write on x in s before $r_i(x)$.

(ii) $H_s[w_i(x)] := f_{ix}(H_s[r_i(y_1)], ..., H_s[r_i(y_m)])$ where the $r_i(y_j), 1 \leq j \leq m$, are all read operations of t_i that occur in s before $w_i(x)$ and f_{ix} is an uninterpreted m-ary function symbol.

Definition 3.4 (Herbrand Universe):
For data items $D\{x, y, z, ...\}$ and transactions $t_i, 1 \leq i \leq n$, the Herbrand universe HU is the smallest set of symbols s.t.

(i) $f_{0x}() \in HU$ for each $x \in D$ where f_{0x} is a constant, and

(ii) if $w_i(x) \in \text{op}_i$ for some t_i, there are m read operations $r_i(y_1), ..., r_i(y_m)$ that precede $w_i(x)$ in t_i, and $v_1, ..., v_m \in HU$, then $f_{ix}(v_1, ..., v_m) \in HU$.
Herbrand Semantics of Schedules

Definition 3.3 (Herbrand Semantics of Steps):
For schedule s the **Herbrand semantics** H_s of steps $r_i(x)$, $w_i(x) \in \text{op}(s)$ is:

(i) $H_s[r_i(x)] := H_s[w_j(x)]$ where $w_j(x)$ is the last write on x in s before $r_i(x)$.

(ii) $H_s[w_i(x)] := f_{ix}(H_s[r_i(y_1)], ..., H_s[r_i(y_m)])$ where the $r_i(y_j)$, $1 \leq j \leq m$, are all read operations of t_i that occur in s before $w_i(x)$ and f_{ix} is an uninterpreted m-ary function symbol.

Definition 3.4 (Herbrand Universe):
For data items $D = \{x, y, z, \ldots\}$ and transactions t_i, $1 \leq i \leq n$, the **Herbrand universe** H_U is the smallest set of symbols s.t.

(i) $f_{0x}(\) \in H_U$ for each $x \in D$ where f_{0x} is a constant, and

(ii) if $w_i(x) \in \text{op}_i$ for some t_i, there are m read operations $r_i(y_1), ..., r_i(y_m)$ that precede $w_i(x)$ in t_i, and $v_1, ..., v_m \in H_U$, then $f_{ix}(v_1, ..., v_m) \in H_U$.

Definition 3.5 (Schedule Semantics):
The **Herbrand semantics of a schedule** s is the mapping $H[s]$: $D \rightarrow H_U$ defined by $H[s](x) := H_s[w_i(x)]$, where $w_i(x)$ is the last operation from s writing x, for each $x \in D$.
Herbrand Semantics: Example

\[s = w_0(x)\ w_0(y)\ c_0\ r_1(x)\ r_2(y)\ w_2(x)\ w_1(y)\ c_2\ c_1 \]

\[
\begin{align*}
H_s[w_0(x)] &= f_{0x}() \\
H_s[w_0(y)] &= f_{0y}() \\
H_s[r_1(x)] &= H_s[w_0(x)] = f_{0x}() \\
H_s[r_2(y)] &= H_s[w_0(y)] = f_{0y}() \\
H_s[w_2(x)] &= f_{2x}(H_s[r_2(y)]) = f_{2x}(f_{0y}()) \\
H_s[w_1(y)] &= f_{1y}(H_s[r_1(x)]) = f_{1y}(f_{0x}()) \\
\end{align*}
\]

\[
\begin{align*}
H[s](x) &= H_s[w_2(x)] = f_{2x}(f_{0y}()) \\
H[s](y) &= H_s[w_1(y)] = f_{1y}(f_{0x}()) \\
\end{align*}
\]
Chapter 3: Concurrency Control – Notions of Correctness for the Page Model

• 3.2 Canonical Synchronization Problems
• 3.3 Syntax of Histories and Schedules
• 3.4 Correctness of Histories and Schedules
• 3.5 Herbrand Semantics of Schedules
• 3.6 Final-State Serializability
• 3.7 View Serializability
• 3.8 Conflict Serializability
• 3.9 Commit Serializability
• 3.10 An Alternative Criterion: Interleaving Specifications
• 3.11 Lessons Learned
Final-State Equivalence

Definition 3.6 (Final State Equivalence):
Schedules s and s' are called **final state equivalent**, denoted $s \approx_f s'$, if $\text{op}(s) = \text{op}(s')$ and $H[s] = H[s']$.
Definition 3.6 (Final State Equivalence):
Schedules s and s' are called **final state equivalent**, denoted $s \approx_f s'$, if $\text{op}(s) = \text{op}(s')$ and $H[s] = H[s']$.

Example a:

$s = r_1(x) \ r_2(y) \ w_1(y) \ r_3(z) \ w_3(z) \ r_2(x) \ w_2(z) \ w_1(x)$

$s' = r_3(z) \ w_3(z) \ r_2(y) \ r_2(x) \ w_2(z) \ r_1(x) \ w_1(y) \ w_1(x)$

$H[s](x) = H_s[w_1(x)] = f_{1x}(f_{0x}()) = H_s'[w_1(x)] = H[s'](x)$

$H[s](y) = H_s[w_1(y)] = f_{1y}(f_{0x}()) = H_s'[w_1(y)] = H[s'](y)$

$H[s](z) = H_s[w_2(z)] = f_{2z}(f_{0x}(), f_{0y}()) = H_s'[w_2(z)] = H[s'](z)$

$\Rightarrow s \approx_f s'$
Final-State Equivalence

Definition 3.6 (Final State Equivalence):
Schedules s and s' are called \textbf{final state equivalent}, denoted $s \approx_f s'$, if $\text{op}(s)=\text{op}(s')$ and $H[s]=H[s'].$

Example a:

$s = r_1(x) \ r_2(y) \ w_1(y) \ r_3(z) \ w_3(z) \ r_2(x) \ w_2(z) \ w_1(x)$
$s' = r_3(z) \ w_3(z) \ r_2(y) \ r_2(x) \ w_2(z) \ r_1(x) \ w_1(y) \ w_1(x)$

$H[s](x) = H_s[w_1(x)] = f_{1x}(f_{0x}()) = H_{s'}[w_1(x)] = H[s'](x)$

$H[s](y) = H_s[w_1(y)] = f_{1y}(f_{0x}()) = H_{s'}[w_1(y)] = H[s'](y)$

$H[s](z) = H_s[w_2(z)] = f_{2z}(f_{0x}(), f_{0y}()) = H_{s'}[w_2(z)] = H[s'](z)$

$\Rightarrow s \approx_f s'$

Example b:

$s = r_1(x) \ r_2(y) \ w_1(y) \ w_2(y)$
$s' = r_1(x) \ w_1(y) \ r_2(y) \ w_2(y)$

$H[s](y) = H_s[w_2(y)] = f_{2y}(f_{0y}())$

$H[s'](y) = H_{s'}[w_2(y)] = f_{2y}(f_{1y}(f_{0x}()))$

$\Rightarrow \neg (s \approx_f s')$
Definition 3.7 (Reads-from Relation; Useful, Alive, and Dead Steps):

Given a schedule s, extended with an initial and a final transaction, t_0 and t_∞.

(i) $r_j(x)$ reads x in s from $w_i(x)$ if $w_i(x)$ is the last write on x s.t. $w_i(x) <_s r_j(x)$.

(ii) The reads-from relation of s is

$$RF(s) := \{(t_i, x, t_j) \mid \text{an } r_j(x) \text{ reads } x \text{ from a } w_i(x)\}.$$

(iii) Step p is **directly useful** for step q, denoted $p \rightarrow q$, if q reads from p, or p is a read step and q is a subsequent write step of the same transaction.

\rightarrow^*, the “useful” relation, denotes the reflexive and transitive closure of \rightarrow.

(iv) Step p is **alive** in s if it is useful for some step from t_∞, and **dead** otherwise.

(v) The live-reads-from relation of s is

$$LRF(s) := \{(t_i, x, t_j) \mid \text{an alive } r_j(x) \text{ reads } x \text{ from } w_i(x)\}.$$
Definition 3.7 (Reads-from Relation; Useful, Alive, and Dead Steps):
Given a schedule s, extended with an initial and a final transaction, t_0 and t_∞.

(i) $r_j(x)$ reads x in s from $w_i(x)$ if $w_i(x)$ is the last write on x s.t. $w_i(x) <_s r_j(x)$.

(ii) The reads-from relation of s is

$$RF(s) := \{(t_i, x, t_j) \mid \text{an } r_j(x) \text{ reads } x \text{ from } a \text{ } w_i(x)\}.$$

(iii) Step p is directly useful for step q, denoted $p \rightarrow q$, if q reads from p, or p is a read step and q is a subsequent write step of the same transaction.

\rightarrow^*, the “useful” relation, denotes the reflexive and transitive closure of \rightarrow.

(iv) Step p is alive in s if it is useful for some step from t_∞, and dead otherwise.

(v) The live-reads-from relation of s is

$$LRF(s) := \{(t_i, x, t_j) \mid \text{an alive } r_j(x) \text{ reads } x \text{ from } w_i(x)\}.$$

Example 3.7:

$s = r_1(x) \ r_2(y) \ w_1(y) \ w_2(y)$
$s' = r_1(x) \ w_1(y) \ r_2(y) \ w_2(y)$

$RF(s) = \{(t_0, x, t_1), (t_0, y, t_2), (t_0, x, t_\infty), (t_2, y, t_\infty)\}$
$RF(s') = \{(t_0, x, t_1), (t_1, y, t_2), (t_0, x, t_\infty), (t_2, y, t_\infty)\}$

$LRF(s) = \{(t_0, y, t_2), (t_0, x, t_\infty), (t_2, y, t_\infty)\}$
$LRF(s') = \{(t_0, x, t_1), (t_1, y, t_2), (t_0, x, t_\infty), (t_2, y, t_\infty)\}$
Theorem 3.1:
For schedules s and s' the following statements hold.

(i) \(s \approx_f s' \) iff \(\text{op}(s) = \text{op}(s') \) and \(\text{LRF}(s) = \text{LRF}(s') \).

(ii) For s let the step graph \(D(s) = (V, E) \) be a directed graph with vertices \(V : = \text{op}(s) \) and edges \(E : = \{(p, q) \mid p \rightarrow q \} \), and the reduced step graph \(D_1(s) \) be derived from \(D(s) \) by removing all vertices that correspond to dead steps. Then \(\text{LRF}(s) = \text{LRF}(s') \) iff \(D_1(s) = D_1(s') \).
Theorem 3.1:
For schedules s and s' the following statements hold.

(i) $s \approx_f s'$ iff $\text{op}(s) = \text{op}(s')$ and $\text{LRF}(s) = \text{LRF}(s')$.

(ii) For s let the step graph $D(s) = (V,E)$ be a directed graph with vertices $V := \text{op}(s)$ and edges $E := \{ (p,q) \mid p \rightarrow q \}$, and the reduced step graph $D_1(s)$ be derived from $D(s)$ by removing all vertices that correspond to dead steps. Then $\text{LRF}(s) = \text{LRF}(s')$ iff $D_1(s) = D_1(s')$.

Corollary 3.1:
Final-state equivalence of two schedules s and s' can be decided in time that is polynomial in the length of the two schedules.
Theorem 3.1:
For schedules s and s' the following statements hold.

(i) $s \approx_f s'$ iff $op(s) = op(s')$ and $LRF(s) = LRF(s')$.

(ii) For s let the step graph $D(s) = (V,E)$ be a directed graph with vertices $V := op(s)$ and edges $E := \{(p,q) \mid p \rightarrow q\}$, and the reduced step graph $D_1(s)$ be derived from $D(s)$ by removing all vertices that correspond to dead steps. Then $LRF(s) = LRF(s')$ iff $D_1(s) = D_1(s')$.

Corollary 3.1:
Final-state equivalence of two schedules s and s' can be decided in time that is polynomial in the length of the two schedules.

Definition 3.8 (Final State Serializability):
A schedule s is **final state serializable** if there is a serial schedule s' s.t. $s \approx_f s'$. FSR denotes the class of all final-state serializable histories.
FSR: Example 3.9

\[
s = r_1(x) \, r_2(y) \, w_1(y) \, w_2(y)
\]

D(s):

\[
\begin{align*}
 & w_0(x) \\
 & \downarrow \\
 & r_1(x) \\
 & \quad \downarrow \\
 & \quad w_1(y) \\
 & \quad \downarrow \\
 & \quad r_\infty(y) \\
 & \quad \downarrow \\
 & \quad r_\infty(x)
\end{align*}
\]

D(s’):

\[
\begin{align*}
 & w_0(y) \\
 & \downarrow \\
 & r_1(x) \\
 & \quad \downarrow \\
 & \quad w_1(y) \\
 & \quad \downarrow \\
 & \quad r_\infty(y) \\
 & \quad \downarrow \\
 & \quad r_\infty(x)
\end{align*}
\]

dead steps

\[
s' = r_1(x) \, w_1(y) \, r_2(y) \, w_2(y)
\]
Chapter 3: Concurrency Control – Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules
- 3.5 Herbrand Semantics of Schedules
- 3.6 Final-State Serializability
- **3.7 View Serializability**
- 3.8 Conflict Serializability
- 3.9 Commit Serializability
- 3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned
 Canonical Anomalies Reconsidered

• Lost update anomaly:
 \[L = r_1(x) r_2(x) w_1(x) w_2(x) c_1 c_2 \]
 \[\rightarrow \text{history is not FSR} \]
 \[\text{LRF}(L) = \{(t_0,x,t_2), (t_2,x,t_\infty)\} \]
 \[\text{LRF}(t_1 t_2) = \{(t_0,x,t_1), (t_1,x,t_2), (t_2,x,t_\infty)\} \]
 \[\text{LRF}(t_2 t_1) = \{(t_0,x,t_2), (t_2,x,t_1), (t_1,x,t_\infty)\} \]

• Inconsistent read anomaly:
 \[I = r_2(x) w_2(x) r_1(x) r_1(y) r_2(y) w_2(y) c_1 c_2 \]
 \[\rightarrow \text{history is FSR} ! \]
 \[\text{LRF}(I) = \{(t_0,x,t_2), (t_0,y,t_2), (t_2,x,t_\infty), (t_2,y,t_\infty)\} \]
 \[\text{LRF}(t_1 t_2) = \{(t_0,x,t_2), (t_0,y,t_2), (t_2,x,t_\infty), (t_2,y,t_\infty)\} \]
 \[\text{LRF}(t_2 t_1) = \{(t_0,x,t_2), (t_0,y,t_2), (t_2,x,t_\infty), (t_2,y,t_\infty)\} \]
Canonical Anomalies Reconsidered

• Lost update anomaly:
 $L = r_1(x) \ r_2(x) \ w_1(x) \ w_2(x) \ c_1 \ c_2$

 \rightarrow history is not FSR

 $L_{RF}(L) = \{(t_0,x,t_2), (t_2,x,t_\infty)\}$

 $L_{RF}(t_1 \ t_2) = \{(t_0,x,t_1), (t_1,x,t_2), (t_2,x,t_\infty)\}$

 $L_{RF}(t_2 \ t_1) = \{(t_0,x,t_2), (t_2,x,t_1), (t_1,x,t_\infty)\}$

• Inconsistent read anomaly:
 $I = r_2(x) \ w_2(x) \ r_1(x) \ r_1(y) \ r_2(y) \ w_2(y) \ c_1 \ c_2$

 \rightarrow history is FSR !

 $L_{RF}(I) = \{(t_0,x,t_2), (t_0,y,t_2), (t_2,x,t_\infty), (t_2,y,t_\infty)\}$

 $L_{RF}(t_1 \ t_2) = \{(t_0,x,t_2), (t_0,y,t_2), (t_2,x,t_\infty), (t_2,y,t_\infty)\}$

 $L_{RF}(t_2 \ t_1) = \{(t_0,x,t_2), (t_0,y,t_2), (t_2,x,t_\infty), (t_2,y,t_\infty)\}$

Observation: (Herbrand) semantics of all read steps matters!
Definition 3.9 (View Equivalence):
Schedules s and s' are view equivalent, denoted $s \approx_v s'$, if the following hold:

(i) $\text{op}(s) = \text{op}(s')$
(ii) $H[s] = H[s']$
(iii) $H_s[p] = H_{s'}[p]$ for all (read or write) steps
Definition 3.9 (View Equivalence):
Schedules \(s \) and \(s' \) are **view equivalent**, denoted \(s \approx_v s' \), if the following hold:
(i) \(\text{op}(s) = \text{op}(s') \)
(ii) \(H[s] = H[s'] \)
(iii) \(H_s[p] = H_{s'}[p] \) for all (read or write) steps

Theorem 3.2:
For schedules \(s \) and \(s' \) the following statements hold.
(i) \(s \approx_v s' \) iff \(\text{op}(s) = \text{op}(s') \) and \(\text{RF}(s) = \text{RF}(s') \)
(ii) \(s \approx_v s' \) iff \(D(s) = D(s') \)
View Serializability

Definition 3.9 (View Equivalence):
Schedules s and s' are **view equivalent**, denoted $s \approx_v s'$, if the following hold:

(i) $\text{op}(s) = \text{op}(s')$
(ii) $H[s] = H[s']$
(iii) $H_s[p] = H_{s'}[p]$ for all (read or write) steps

Theorem 3.2:
For schedules s and s' the following statements hold.

(i) $s \approx_v s'$ iff $\text{op}(s) = \text{op}(s')$ and $\text{RF}(s) = \text{RF}(s')$
(ii) $s \approx_v s'$ iff $D(s) = D(s')$

Corollary 3.2:
View equivalence of two schedules s and s' can be decided in time that is polynomial in the length of the two schedules.
View Serializability

Definition 3.9 (View Equivalence):
Schedules s and s' are **view equivalent**, denoted $s \approx_v s'$, if the following hold:

(i) $\text{op}(s) = \text{op}(s')$
(ii) $H[s] = H[s']$
(iii) $H_s[p] = H_{s'}[p]$ for all (read or write) steps

Theorem 3.2:
For schedules s and s' the following statements hold.

(i) $s \approx_v s'$ iff $\text{op}(s) = \text{op}(s')$ and $\text{RF}(s) = \text{RF}(s')$
(ii) $s \approx_v s'$ iff $D(s) = D(s')$

Corollary 3.2:
View equivalence of two schedules s and s' can be decided in time that is polynomial in the length of the two schedules.

Definition 3.10 (View Serializability):
A schedule s is **view serializable** if there exists a serial schedule s' s.t. $s \approx_v s'$. VSR denotes the class of all view-serializable histories.
Inconsistent Read Reconsidered

• Inconsistent read anomaly:
 \[I = r_2(x) w_2(x) r_1(x) r_1(y) r_2(y) w_2(y) c_1 c_2 \]

→ history is not VSR!

RF(I) = \{ (t_0, x, t_2), (t_2, x, t_1), (t_0, y, t_1), (t_0, y, t_2), (t_2, x, t_\infty), (t_2, y, t_\infty) \}

RF(t_1 \ast t_2) = \{ (t_0, x, t_1), (t_0, y, t_1), (t_0, x, t_2), (t_0, y, t_2), (t_2, x, t_\infty), (t_2, y, t_\infty) \}

RF(t_2 \ast t_1) = \{ (t_0, x, t_2), (t_0, y, t_2), (t_2, x, t_1), (t_2, y, t_1), (t_2, x, t_\infty), (t_2, y, t_\infty) \}
Inconsistent Read Reconsidered

• Inconsistent read anomaly:
 \[I = r_2(x) w_2(x) r_1(x) r_1(y) r_2(y) w_2(y) c_1 c_2 \]

→ history is not VSR !

\[RF(I) = \{(t_0,x,t_2), (t_2,x,t_1), (t_0,y,t_1), (t_0,y,t_2), (t_2,x,t_\infty), (t_2,y,t_\infty)\} \]
\[RF(t_1 t_2) = \{(t_0,x,t_1), (t_0,y,t_1), (t_0,x,t_2), (t_0,y,t_2), (t_2,x,t_\infty), (t_2,y,t_\infty)\} \]
\[RF(t_2 t_1) = \{(t_0,x,t_2), (t_0,y,t_2), (t_2,x,t_1), (t_2,y,t_1), (t_2,x,t_\infty), (t_2,y,t_\infty)\} \]

Observation: VSR properly captures our intuition
Relationship Between VSR and FSR

Theorem 3.3:
VSR \subset FSR.

Theorem 3.4:
Let s be a history without dead steps. Then $s \in$ VSR iff $s \in$ FSR.
Theorem 3.5:
The problem of deciding for a given schedule s whether $s \in VSR$ holds is NP-complete.
Definition 3.11 (Monotone Classes of Histories)
Let \(s \) be a schedule and \(T \subseteq \text{trans}(s) \). \(\Pi_T(s) \) denotes the projection of \(s \) onto \(T \). A class \(E \) of histories is called monotone if the following holds:

if \(s \) is in \(E \), then \(\Pi_T(s) \) is in \(E \) for each \(T \subseteq \text{trans}(s) \).

VSR is not monotone.

Example:
\[
\begin{align*}
 s &= w_1(x) \ w_2(x) \ w_2(y) \ c_2 \ w_1(y) \ c_1 \ w_3(x) \ w_3(y) \ c_3 \\
 \Pi_{\{t_1, t_2\}}(s) &= w_1(x) \ w_2(x) \ w_2(y) \ c_2 \ w_1(y) \ c_1 \\
 &\rightarrow \in \ VSR \\
\end{align*}
\]
Chapter 3: Concurrency Control – Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules
- 3.5 Herbrand Semantics of Schedules
- 3.6 Final-State Serializability
- 3.7 View Serializability
- **3.8 Conflict Serializability**
- 3.9 Commit Serializability
- 3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned
Definition 3.12 (Conflicts and Conflict Relations):
Let s be a schedule, $t, t' \in \text{trans}(s)$, $t \neq t'$.
(i) Two data operations $p \in t$ and $q \in t'$ are in conflict in s if they access the same data item and at least one of them is a write.
(ii) $\{(p, q)\} \mid p, q \text{ are in conflict and } p <_s q$ is the conflict relation of s.
Definition 3.12 (Conflicts and Conflict Relations):
Let s be a schedule, t, t' ∈ trans(s), t ≠ t'.
(i) Two data operations p ∈ t and q ∈ t' are in conflict in s if they access the same data item and at least one of them is a write.
(ii) \{ (p, q) \mid p, q are in conflict and p <_s q \} is the conflict relation of s.

Definition 3.13 (Conflict Equivalence):
Schedules s and s' are conflict equivalent, denoted s ≈_c s', if op(s) = op(s') and conf(s) = conf(s').
Conflict Serializability

Definition 3.12 (Conflicts and Conflict Relations):
Let s be a schedule, $t, t' \in \text{trans}(s)$, $t \neq t'$.

(i) Two data operations $p \in t$ and $q \in t'$ are in **conflict** in s if they access the same data item and at least one of them is a write.

(ii) $\{(p, q)\} | p, q \text{ are in conflict and } p <_s q$} is the **conflict relation** of s.

Definition 3.13 (Conflict Equivalence):
Schedules s and s' are **conflict equivalent**, denoted $s \approx_c s'$, if $\text{op}(s) = \text{op}(s')$ and $\text{conf}(s) = \text{conf}(s')$.

Definition 3.14 (Conflict Serializability):
Schedule s is **conflict serializable** if there is a serial schedule s' s.t. $s \approx_c s'$. CSR denotes the class of all conflict serializable schedules.
Conflict Serializability

Definition 3.12 (Conflicts and Conflict Relations):
Let s be a schedule, $t, t' \in \text{trans}(s)$, $t \neq t'$.
(i) Two data operations $p \in t$ and $q \in t'$ are in conflict in s if they access the same data item and at least one of them is a write.
(ii) $\{(p, q)\} | p, q \text{ are in conflict and } p <_s q$ is the conflict relation of s.

Definition 3.13 (Conflict Equivalence):
Schedules s and s' are conflict equivalent, denoted $s \approx_c s'$, if $\text{op}(s) = \text{op}(s')$ and $\text{conf}(s) = \text{conf}(s')$.

Definition 3.14 (Conflict Serializability):
Schedule s is conflict serializable if there is a serial schedule s' s.t. $s \approx_c s'$. CSR denotes the class of all conflict serializable schedules.

Example a: $r_1(x) \ r_2(x) \ r_1(z) \ w_1(x) \ w_2(y) \ r_3(z) \ w_3(y) \ c_1 \ c_2 \ w_3(z) \ c_3$ $\rightarrow \in$ CSR

Example b: $r_2(x) \ w_2(x) \ r_1(x) \ r_1(y) \ r_2(y) \ w_2(y) \ c_1 \ c_2$ $\rightarrow \notin$ CSR
Properties of CSR

Theorem 3.8:
CSR ⊂ VSR

Example: $s = w_1(x) w_2(x) w_2(y) c_2 w_1(y) c_1 w_3(x) w_3(y) c_3$
$s \in VSR$, but $s \notin CSR$.

Theorem 3.9:
(i) CSR is monotone.
(ii) $s \in CSR \iff \Pi_T(s) \in VSR$ for all $T \subseteq \text{trans}(s)$
 (i.e., CSR is the largest monotone subset of VSR).
Activity

• What is a directed graph?

• Think of ways to associate a graph with a schedule!
Definition 3.15 (Conflict Graph):
Let s be a schedule. The conflict graph $G(s) = (V, E)$ is a directed graph with vertices $V := \text{commit}(s)$ and edges $E := \{(t, t') \mid t \neq t' \text{ and there are steps } p \in t, q \in t' \text{ with } (p, q) \in \text{conf}(s)\}$.
Definition 3.15 (Conflict Graph):
Let s be a schedule. The conflict graph \(G(s) = (V, E) \) is a directed graph with vertices \(V := \text{commit}(s) \) and edges \(E := \{(t, t') \mid t \neq t' \text{ and there are steps } p \in t, q \in t' \text{ with } (p, q) \in \text{conf}(s)\} \).

Theorem 3.10:
Let s be a schedule. Then \(s \in \text{CSR} \) iff \(G(s) \) is acyclic.

Corollary 3.4:
Testing if a schedule is in CSR can be done in time polynomial to the schedule's number of transactions.
Conflict Graph

Definition 3.15 (Conflict Graph):
Let s be a schedule. The **conflict graph** $G(s) = (V, E)$ is a directed graph with vertices $V := \text{commit}(s)$ and edges $E := \{(t, t') | t \neq t' \text{ and there are steps } p \in t, q \in t' \text{ with } (p, q) \in \text{conf}(s)\}.$

Theorem 3.10:
Let s be a schedule. Then $s \in \text{CSR}$ iff $G(s)$ is acyclic.

Corollary 3.4:
Testing if a schedule is in CSR can be done in time polynomial to the schedule's number of transactions.

Example 3.12:
$s = r_1(y) r_3(w) r_2(y) w_1(y) w_1(x) w_2(x) w_2(z) w_3(x) c_1 c_3 c_2$

$G(s):$

```
   t1 --t2
    v    v
  t3    t3
```
Activity

• What is a characterization (in a mathematical sense)?

• How do you prove a necessary and sufficient condition?

• What needs to be shown for the serializability theorem?
Proof of the Conflict-Graph Theorem

(i) Let s be a schedule in CSR. So there is a serial schedule s' with $conf(s) = conf(s')$. Now assume that $G(s)$ has a cycle $t_1 \rightarrow t_2 \rightarrow ... \rightarrow t_k \rightarrow t_1$. This implies that there are pairs $(p_1, q_2), (p_2, q_3), \ldots, (p_k, q_1)$ with $p_i \in t_i, q_i \in t_i, p_i <_s q_{(i+1)}$, and p_i in conflict with $q_{(i+1)}$. Because $s' \approx_c s$, it also implies that $p_i <_{s'} q_{(i+1)}$. Because s' is serial, we obtain $t_i <_{s'} t_{(i+1)}$ for $i=1, ..., k-1$, and $t_k <_{s'} t_1$. By transitivity we infer $t_1 <_{s'} t_2$ and $t_2 <_{s'} t_1$, which is impossible. This contradiction shows that the initial assumption is wrong. So $G(s)$ is acyclic.

(ii) Let $G(s)$ be acyclic. So it must have at least one source node. The following topological sort produces a total order $<$ of transactions:
 a) start with a source node (i.e., a node without incoming edges),
 b) remove this node and all its outgoing edges,
 c) iterate a) and b) until all nodes have been added to the sorted list.
The total transaction ordering order $<$ preserves the edges in $G(s)$; therefore it yields a serial schedule s' for which $s' \approx_c s$.
Commutativity and Ordering Rules

Commutativity rules:

C1: $r_i(x) \sim r_j(y)$ if $i \neq j$

C2: $r_i(x) w_j(y) \sim w_j(y) r_i(x)$ if $i \neq j$ and $x \neq y$

C3: $w_i(x) w_j(y) \sim w_j(y) w_i(x)$ if $i \neq j$ and $x \neq y$

Ordering rule:

C4: $o_i(x), p_j(y)$ unordered $\Rightarrow o_i(x) p_j(y)$ if $x \neq y$ or both o and p are reads

Example for transformations of schedules:

$s = w_1(x) r_2(x) w_1(y) w_1(z) r_3(z) w_2(y) w_3(y) w_3(z)$

$\sim>[\text{C2}] w_1(x) w_1(y) r_2(x) w_1(z) w_2(y) r_3(z) w_3(y) w_3(z)$

$\sim>[\text{C2}] w_1(x) w_1(y) w_1(z) r_2(x) w_2(y) r_3(z) w_3(y) w_3(z)$

$= t_1 t_2 t_3$
Commutativity-based Reducibility

Definition 3.16 (Commutativity Based Equivalence):
Schedules s and s' s.t. $\text{op}(s) = \text{op}(s')$ are **commutativity based equivalent**, denoted $s \sim* s'$, if s can be transformed into s' by applying rules $C1, C2, C3, C4$ finitely many times.

Theorem 3.11:
Let s and s' be schedules s.t. $\text{op}(s) = \text{op}(s')$. Then $s \preceq_c s'$ iff $s \sim* s'$.
Commutativity-based Reducibility

<table>
<thead>
<tr>
<th>Definition 3.16 (Commutativity Based Equivalence):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedules s and s' s.t. op(s)=op(s') are commutativity based equivalent, denoted s ~* s', if s can be transformed into s' by applying rules C1, C2, C3, C4 finitely many times.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem 3.11:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let s and s' be schedules s.t. op(s)=op(s'). Then s ≈c s' iff s ~* s'.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Definition 3.17 (Commutativity Based Reducibility):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule s is commutativity-based reducible if there is a serial schedule s' s.t. s ~* s'.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary 3.5:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schedule s is commutativity-based reducible iff s ∈ CSR.</td>
</tr>
</tbody>
</table>
Order Preserving Conflict Serializability

Definition 3.18 (Order Preservation):
Schedule s is **order preserving conflict serializable** if it is conflict equivalent to a serial schedule s' and for all $t, t' \in \text{trans}(s)$: if t completely precedes t' in s, then the same holds in s'. OCSR denotes the class of all schedules with this property.

Theorem 3.12:
OCSR \subset CSR.

Example 3.13:
$s = w_1(x) \ r_2(x) \ c_2 \ w_3(y) \ c_3 \ w_1(y) \ c_1$

$\rightarrow \in$ CSR
$\rightarrow \notin$ OCSR
Commit-order Preserving Conflict Serializability

Definition 3.19 (Commit Order Preservation):
Schedule s is **commit order preserving conflict serializable** if for all $t_i, t_j \in \text{trans}(s)$: if there are $p \in t_i, q \in t_j$ with $(p, q) \in \text{conf}(s)$ then $c_i <_s c_j$.
COCSR denotes the class of all schedules with this property.

Theorem 3.13:
COCSR \subset CSR.
Commit-order Preserving Conflict Serializability

Definition 3.19 (Commit Order Preservation):
Schedule s is **commit order preserving conflict serializable** if for all $t_i, t_j \in \text{trans}(s)$: if there are $p \in t_i$, $q \in t_j$ with $(p,q) \in \text{conf}(s)$ then $c_i <_s c_j$. COCSR denotes the class of all schedules with this property.

Theorem 3.13:
COCSR \subseteq CSR.

Theorem 3.14:
Schedule s is in COCSR iff there is a serial schedule s' s.t. $s \simeq_c s'$ and for all $t_i, t_j \in \text{trans}(s)$: $t_i <_s t_j \iff c_i <_s c_j$.
Commit-order Preserving Conflict Serializability

Definition 3.19 (Commit Order Preservation):
Schedule s is **commit order preserving conflict serializable** if for all $t_i, t_j \in \text{trans}(s)$: if there are $p \in t_i$, $q \in t_j$ with $(p,q) \in \text{conf}(s)$ then $c_i <_s c_j$. COCSR denotes the class of all schedules with this property.

Theorem 3.13:
COCSR \subseteq CSR.

Theorem 3.14:
Schedule s is in COCSR iff there is a serial schedule s' s.t. $s \approx_c s'$ and for all $t_i, t_j \in \text{trans}(s)$: $t_i <_s t_j \iff c_i <_s c_j$.

Theorem 3.15:
COCSR \subseteq OCSR.

Example:
$s = w_3(y) \ c_3 \ w_1(x) \ r_2(x) \ c_2 \ w_1(y) \ c_1$

$\rightarrow \in$ OCSR
$\rightarrow \notin$ COCSR
Chapter 3: Concurrency Control – Notions of Correctness for the Page Model

- 3.2 Canonical Synchronization Problems
- 3.3 Syntax of Histories and Schedules
- 3.4 Correctness of Histories and Schedules
- 3.5 Herbrand Semantics of Schedules
- 3.6 Final-State Serializability
- 3.7 View Serializability
- 3.8 Conflict Serializability
- **3.9 Commit Serializability**
- 3.10 An Alternative Criterion: Interleaving Specifications
- 3.11 Lessons Learned
Commit Serializability

Definition 3.20 (Closure Properties of Schedule Classes):
Let E be a class of schedules.
For schedule s let $CP(s)$ denote the projection $\Pi_{\text{commit}(s)}(s)$.
E is **prefix-closed** if the following holds: $s \in E \Leftrightarrow p \in E$ for each prefix of s.
E is **commit-closed** if the following holds: $s \in E \Rightarrow CP(s) \in E$.

Theorem 3.16:
CSR is prefix-commit-closed, i.e., prefix-closed and commit-closed.
Commit Serializability

Definition 3.20 (Closure Properties of Schedule Classes):
Let E be a class of schedules.
For schedule s let $CP(s)$ denote the projection $\Pi_{commit(s)}(s)$.
E is **prefix-closed** if the following holds: $s \in E \iff p \in E$ for each prefix of s.
E is **commit-closed** if the following holds: $s \in E \implies CP(s) \in E$.

Theorem 3.16:
CSR is prefix-commit-closed, i.e., prefix-closed and commit-closed.

Definition 3.21 (Commit Serializability):
Schedule s is **commit-Θ-serializable** if $CP(p)$ is Θ-serializable for each prefix p of s, where Θ can be FSR, VSR, or CSR.
The resulting classes of commit-Θ-serializable schedules are denoted CMFSR, CMVSR, and CMCSR.

Theorem 3.17:
(i) CMFSR, CMVSR, CMCSR are prefix-commit-closed.
(ii) CMCSR \subset CMVSR \subset CMFSR
Landscape of History Classes
3.2 Canonical Synchronization Problems
3.3 Syntax of Histories and Schedules
3.4 Correctness of Histories and Schedules
3.5 Herbrand Semantics of Schedules
3.6 Final-State Serializability
3.7 View Serializability
3.8 Conflict Serializability
3.9 Commit Serializability
3.10 An Alternative Criterion: Interleaving Specifications
3.11 Lessons Learned
Interleaving Specifications: Motivation

Example: all transactions known in advance
transfer transactions on checking accounts a and b and savings account c:
\[t_1 = r_1(a) \ w_1(a) \ r_1(c) \ w_1(c) \]
\[t_2 = r_2(b) \ w_2(b) \ r_2(c) \ w_2(c) \]
balance transaction:
\[t_3 = r_3(a) \ r_3(b) \ r_3(c) \]
audit transaction:
\[t_4 = r_4(a) \ r_4(b) \ r_4(c) \ w_4(z) \]

Possible schedules:
\[
\begin{align*}
r_1(a) \ w_1(a) \ r_2(b) \ w_2(b) & \ r_2(c) \ w_2(c) \ r_1(c) \ w_1(c) & \rightarrow \in \ CSR \\
r_1(a) \ w_1(a) \ r_3(a) & \ r_3(b) \ r_3(c) \ r_1(c) \ w_1(c) & \rightarrow \notin \ CSR \\
r_1(a) \ w_1(a) \ r_2(b) & \ w_2(b) \ r_1(c) \ r_2(c) \ w_2(c) \ w_1(c) & \rightarrow \notin \ CSR \\
r_1(a) \ w_1(a) \ r_4(a) & \ r_4(b) \ r_4(c) \ w_4(z) \ r_1(c) \ w_1(c) & \rightarrow \notin \ CSR
\end{align*}
\]
application-tolerable interleavings
\[\rightarrow \notin \ CSR \]
non-admissible interleavings
Interleaving Specifications: Motivation

Example: all transactions known in advance

transfer transactions on checking accounts a and b and savings account c:

\[t_1 = r_1(a) \; w_1(a) \; r_1(c) \; w_1(c) \]
\[t_2 = r_2(b) \; w_2(b) \; r_2(c) \; w_2(c) \]

balance transaction:

\[t_3 = r_3(a) \; r_3(b) \; r_3(c) \]

audit transaction:

\[t_4 = r_4(a) \; r_4(b) \; r_4(c) \; w_4(z) \]

Possible schedules:

\[
\begin{align*}
r_1(a) \; w_1(a) \; r_2(b) \; w_2(b) \; r_2(c) \; w_2(c) \; r_1(c) \; w_1(c) & \quad \rightarrow \in \text{CSR} \quad \text{application-tolerable interleavings} \\
r_1(a) \; w_1(a) \; r_3(a) \; r_3(b) \; r_3(c) \; r_1(c) \; w_1(c) & \quad \rightarrow \notin \text{CSR} \\
r_1(a) \; w_1(a) \; r_2(b) \; w_2(b) \; r_1(c) \; r_2(c) \; w_2(c) \; w_1(c) & \quad \rightarrow \notin \text{CSR} \\
r_1(a) \; w_1(a) \; r_4(a) \; r_4(b) \; r_4(c) \; w_4(z) \; r_1(c) \; w_1(c) & \quad \rightarrow \notin \text{CSR}
\end{align*}
\]

Observations: application may tolerate non-CSR schedules

a priori knowledge of all transactions impractical
Indivisible Units

Definition 3.22 (Indivisible Units):
Let $T=\{t_1, ..., t_n\}$ be a set of transactions. For $t_i, t_j \in T$, $t_i \neq t_j$, an **indivisible unit of t_i relative to t_j** is a sequence of consecutive steps of t_i s.t. no operations of t_j are allowed to interleave with this sequence.

$IU(t_i, t_j)$ denotes the ordered sequence of indivisible units of t_i relative to t_j.

$IU_k(t_i, t_j)$ denotes the k^{th} element of $IU(t_i, t_j)$.
Indivisible Units

Definition 3.22 (Indivisible Units):
Let $T=\{t_1, \ldots, t_n\}$ be a set of transactions. For $t_i, t_j \in T$, $t_i \neq t_j$, an **indivisible unit of t_i relative to t_j** is a sequence of consecutive steps of t_i s.t. no operations of t_j are allowed to interleave with this sequence.

$\text{IU}(t_i, t_j)$ denotes the ordered sequence of indivisible units of t_i relative to t_j. $\text{IU}_k(t_i, t_j)$ denotes the k^{th} element of $\text{IU}(t_i, t_j)$.

Example 3.14:

$t_1 = r_1(x) \ w_1(x) \ w_1(z) \ r_1(y)$
$t_2 = r_2(y) \ w_2(y) \ r_2(x)$
$t_3 = w_3(x) \ w_3(y) \ w_3(z)$

$IU(t_1, t_2) = \langle [r_1(x) \ w_1(x)], [w_1(z) \ r_1(y)] \rangle$
$IU(t_1, t_3) = \langle [r_1(x) \ w_1(x)], [w_1(z)], [r_1(y)] \rangle$
$IU(t_2, t_1) = \langle [r_2(y)], [w_2(y) \ r_2(x)] \rangle$
$IU(t_2, t_3) = \langle [r_2(y) \ w_2(y)], [r_2(x)] \rangle$
$IU(t_3, t_1) = \langle [w_3(x) \ w_3(y)], [w_3(z)] \rangle$
$IU(t_3, t_2) = \langle [w_3(x) \ w_3(y)], [w_3(z)] \rangle$
Indivisible Units

Definition 3.22 (Indivisible Units):
Let $T=\{t_1, ..., t_n\}$ be a set of transactions. For $t_i, t_j \in T$, $t_i \neq t_j$, an indivisible unit of t_i relative to t_j is a sequence of consecutive steps of t_i s.t. no operations of t_j are allowed to interleave with this sequence.

$IU(t_i, t_j)$ denotes the ordered sequence of indivisible units of t_i relative to t_j. $IU_k(t_i, t_j)$ denotes the k^{th} element of $IU(t_i, t_j)$.

Example 3.14:

$t_1 = r_1(x) w_1(x) w_1(z) r_1(y)$
$t_2 = r_2(y) w_2(y) r_2(x)$
$t_3 = w_3(x) w_3(y) w_3(z)$

$IU(t_1, t_2) = < [r_1(x) w_1(x)], [w_1(z) r_1(y)] >$
$IU(t_1, t_3) = < [r_1(x) w_1(x)], [w_1(z)], [r_1(y)] >$
$IU(t_2, t_1) = < [r_2(y)], [w_2(y) r_2(x)] >$
$IU(t_2, t_3) = < [r_2(y) w_2(y)], [r_2(x)] >$
$IU(t_3, t_1) = < [w_3(x) w_3(y)], [w_3(z)] >$
$IU(t_3, t_2) = < [w_3(x) w_3(y)], [w_3(z)] >$

Example 3.15:

$s_1 = r_2(y) r_1(x) w_1(x) w_2(y) r_2(x) w_1(z) w_3(x) w_3(y) r_1(y) w_3(z)$ \rightarrow respects all IUs

$s_2 = r_1(x) r_2(y) w_2(y) w_1(x) r_2(x) w_1(z) r_1(y)$ \rightarrow violates $IU_1(t_1, t_2)$ and $IU_2(t_2, t_1)$ but is conflict equivalent to an allowed schedule
Definition 3.23 (Dependence of Steps):
Step q directly **depends on** step p in schedule s, denoted p~>q, if p <ₚ q and either p, q belong to the same transaction t and p <ₜ q or p and q are in conflict.
~>* denotes the reflexive and transitive closure of ~>.
Relatively Serializable Schedules

Definition 3.23 (Dependence of Steps):
Step q directly depends on step p in schedule s, denoted $p \rightarrow q$, if $p <_s q$ and either p, q belong to the same transaction t and $p <_t q$ or p and q are in conflict. $\rightarrow \ast$ denotes the reflexive and transitive closure of \rightarrow.

Definition 3.24 (Relatively Serial Schedule):
s is relatively serial if for all transactions t_i, t_j: if $q \in t_j$ is interleaved with some $IU_k(t_i, t_j)$, then there is no operation $p \in IU_k(t_i, t_j)$ s.t. $p \rightarrow \ast q$ or $q \rightarrow \ast p$.

Example 3.16:
$s_3 = r_1(x) r_2(y) w_1(x) w_2(y) w_3(x) w_1(z) w_3(y) r_2(x) r_1(y) w_3(z)$
Relatively Serializable Schedules

Definition 3.23 (Dependence of Steps):
Step q directly **depends on** step p in schedule s, denoted p~>q, if p <s q and either p, q belong to the same transaction t and p <t q or p and q are in conflict. ~>* denotes the reflexive and transitive closure of ~>.

Definition 3.24 (Relatively Serial Schedule):
s is **relatively serial** if for all transactions t_i, t_j: if q ∈ t_j is interleaved with some IU_k(t_i, t_j), then there is no operation p ∈ IU_k(t_i, t_j) s.t. p~>* q or q~>* p

Example 3.16:
\[s_3 = r_1(x) \ r_2(y) \ w_1(x) \ w_2(y) \ w_3(x) \ w_1(z) \ w_3(y) \ r_2(x) \ r_1(y) \ w_3(z) \]

Definition 3.25 (Relatively Serializable Schedule):
s is **relatively serializable** if it is conflict equivalent to a relatively serial schedule.

Example 3.17:
\[s_4 = r_1(x) \ r_2(y) \ w_2(y) \ w_1(x) \ w_3(x) \ r_2(x) \ w_1(z) \ w_3(y) \ r_1(y) \ w_3(z) \]
Relative Serialization Graph

Definition 3.26 (Push Forward and Pull Backward):
Let \(\text{IU}_k(t_i, t_j) \) be an IU of \(t_i \) relative to \(t_j \). For an operation \(p_i \in \text{IU}_k(t_i, t_j) \) let

(i) \(F(p_i, t_j) \) be the last operation in \(\text{IU}_k(t_i, t_j) \) and

(ii) \(B(p_i, t_j) \) be the first operation in \(\text{IU}_k(t_i, t_j) \).

Definition 3.27 (Relative Serialization Graph):
The relative serialization graph \(\text{RSG}(s) = (V,E) \) of schedule \(s \) is a graph with vertices \(V := \text{op}(s) \) and edge set \(E \subseteq V \times V \) containing four types of edges:

(i) for consecutive operations \(p, q \) of the same transaction \((p, q) \in E \) (\(I \)-edge)

(ii) if \(p \sim >* q \) for \(p \in t_i, q \in t_j, t_i \neq t_j \), then \((p, q) \in E \) (\(D \)-edge)

(iii) if \((p, q) \) is a D-edge with \(p \in t_i, q \in t_j \), then \((F(p, t_j), q) \in E \) (\(F \)-edge)

(iv) if \((p, q) \) is a D-edge with \(p \in t_i, q \in t_j \), then \((p, B(q, t_i)) \in E \) (\(B \)-edge)

Theorem 3.18:
A schedule \(s \) is relatively serializable iff \(\text{RSG}(s) \) is acyclic.
RSG Example

Example 3.19:

\[t_1 = w_1(x) \cdot r_1(z) \]
\[t_2 = r_2(x) \cdot w_2(y) \]
\[t_3 = r_3(z) \cdot r_3(y) \]

\[s_5 = w_1(x) \cdot r_2(x) \cdot r_3(z) \cdot w_2(y) \cdot r_3(y) \cdot r_1(z) \]

\[IU(t_1, t_2) = < [w_1(x) \cdot r_1(z)] > \]
\[IU(t_1, t_3) = < [w_1(x)], [r_1(z)] > \]
\[IU(t_2, t_1) = < [r_2(x)], [w_2(y)] > \]
\[IU(t_2, t_3) = < [r_2(x)], [w_2(y)] > \]
\[IU(t_3, t_1) = < [r_3(z)], [r_3(y)] > \]
\[IU(t_3, t_2) = < [r_3(z) \cdot r_3(y)] > \]

RSG(s_5):

![Diagram of RSG(s_5)]
• 3.2 Canonical Synchronization Problems
• 3.3 Syntax of Histories and Schedules
• 3.4 Correctness of Histories and Schedules
• 3.5 Herbrand Semantics of Schedules
• 3.6 Final-State Serializability
• 3.7 View Serializability
• 3.8 Conflict Serializability
• 3.9 Commit Serializability
• 3.10 An Alternative Criterion: Interleaving Specifications
• 3.11 Lessons Learned
Lessons Learned

• Equivalence to serial history is a natural correctness criterion

• CSR, albeit less general than VSR, is most appropriate for
 • complexity reasons
 • its monotonicity property
 • its generalizability to semantically rich operations

• OCSR and COCSR have additional beneficial properties