Transactional Information Systems:

Theory, Algorithms, and the Practice of Concurrency Control and Recovery

Gerhard Weikum and Gottfried Vossen

© 2002 Morgan Kaufmann
ISBN 1-55860-508-8

“Teamwork is essential. It allows you to blame someone else.” (Anonymous)
Part II: Concurrency Control

- 3 Concurrency Control: Notions of Correctness for the Page Model
- 4 Concurrency Control Algorithms
- 5 Multiversion Concurrency Control
- 6 Concurrency Control on Objects: Notions of Correctness
- 7 Concurrency Control Algorithms on Objects
- 8 Concurrency Control on Relational Databases
- 9 Concurrency Control on Search Structures
- 10 Implementation and Pragmatic Issues
Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned

“The optimist believes we live in the best of all possible worlds. The pessimist fears this is true.” (Robert Oppenheimer)
Scheduler Actions and Transaction States

- **begin**
- **restart**
- **active**
 - **block**
 - **resume**
 - **running**
 - **blocked**
- **aborted**
- **committed**

Actions:
- **begin**
- **block**
- **resume**
- **reject**
- **commit**
- **restart**
Definition 4.1 (CSR Safety):
For a scheduler S, $\text{Gen}(S)$ denotes the set of all schedules that S can generate. A scheduler is called CSR safe if $\text{Gen}(S) \subseteq \text{CSR}$.
Scheduler Classification

Concurrency control protocols:

- Pessimistic
- Optimistic
- Hybrid

Non-locking:
- TO
- SGT

Locking:
- Two-phase
 - AL
 - O2PL
 - WTL
 - RWTL
- Non-two-phase
 - 2PL
 - C2PL
 - S2PL
 - SS2PL
Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- **4.3 Locking Schedulers**
 - 4.3.1 Introduction
 - 4.3.2 Two-Phase Locking (2PL)
 - 4.3.3 Deadlock Handling
 - 4.3.4 Variants of 2PL
 - 4.3.5 Ordered Sharing of Locks (O2PL)
 - 4.3.6 Altruistic Locking (AL)
 - 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 - 4.3.8 Geometry of Locking
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned
For each step the scheduler requests a lock on behalf of the step's transaction. Each lock is requested in a specific mode (read or write). If the data item is not yet locked in an incompatible mode the lock is granted; otherwise there is a lock conflict and the transaction becomes blocked (suffers a lock wait) until the current lock holder releases the lock.
General Locking Rules

For each step the scheduler requests a lock on behalf of the step's transaction. Each lock is requested in a specific mode (read or write). If the data item is not yet locked in an incompatible mode the lock is granted; otherwise there is a lock conflict and the transaction becomes blocked (suffers a lock wait) until the current lock holder releases the lock.

Compatibility of locks:

<table>
<thead>
<tr>
<th>lock holder</th>
<th>rl_i(x)</th>
<th>wl_i(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rl_j(x)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>wl_j(x)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

lock requestor
General Locking Rules

For each step the scheduler requests a lock on behalf of the step's transaction. Each lock is requested in a specific mode (read or write). If the data item is not yet locked in an incompatible mode the lock is granted; otherwise there is a lock conflict and the transaction becomes blocked (suffers a lock wait) until the current lock holder releases the lock.

Compatibility of locks:

<table>
<thead>
<tr>
<th>lock holder</th>
<th>rl_i(x)</th>
<th>wl_i(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rl_j(x)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>wl_j(x)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

General locking rules:

LR1: Each data operation \(o_i(x) \) must be preceded by \(ol_i(x) \) and followed by \(ou_i(x) \).

LR2: For each \(x \) and \(t_i \) there is at most one \(ol_i(x) \) and at most one \(ou_i(x) \).

LR3: No \(ol_i(x) \) or \(ou_i(x) \) is redundant.

LR4: If \(x \) is locked by both \(t_i \) and \(t_j \), then these locks are compatible.
• 4.2 General Scheduler Design
• 4.3 Locking Schedulers
 • 4.3.1 Introduction
 • 4.3.2 Two-Phase Locking (2PL)
 • 4.3.3 Deadlock Handling
 • 4.3.4 Variants of 2PL
 • 4.3.5 Ordered Sharing of Locks (O2PL)
 • 4.3.6 Altruistic Locking (AL)
 • 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 • 4.3.8 Geometry of Locking
• 4.4 Non-Locking Schedulers
• 4.5 Hybrid Protocols
• 4.6 Lessons Learned
Two-Phase Locking (2PL)

Definition 4.2 (2PL):
A locking protocol is **two-phase (2PL)** if for every output schedule s and every transaction $t_i \in \text{trans}(s)$ no q_l step follows the first o_l step ($q, o \in \{r, w\}$).

Example 4.4:
$s = w_1(x) \ r_2(x) \ w_1(y) \ w_1(z) \ r_3(z) \ c_1 \ w_2(y) \ w_3(y) \ c_2 \ w_3(z) \ c_3$
Two-Phase Locking (2PL)

Definition 4.2 (2PL):
A locking protocol is two-phase (2PL) if for every output schedule s and every transaction $t_i \in \text{trans}(s)$ no ql$_i$ step follows the first ou$_i$ step ($q, o \in \{r, w\}$).

Example 4.4:
$s = w_1(x) \ r_2(x) \ w_1(y) \ w_1(z) \ r_3(z) \ c_1 \ w_2(y) \ w_3(y) \ c_2 \ w_3(z) \ c_3$
Definition 4.2 (2PL):
A locking protocol is two-phase (2PL) if for every output schedule s and every transaction $t_i \in \text{trans}(s)$ no q_{l_1} step follows the first o_{i} step ($q, o \in \{r, w\}$).

Example 4.4:
$s = w_1(x) \ r_2(x) \ w_1(y) \ w_1(z) \ r_3(z) \ c_1 \ w_2(y) \ w_3(y) \ c_2 \ w_3(z) \ c_3$

\[
\begin{align*}
&\quad\quad w_1(x) \quad w_1(y) \quad w_1(z) \\
&\downarrow t_1 \\
&r_2(x) \quad \quad \quad \quad \quad \quad w_2(y) \\
&\downarrow t_2 \\
&\quad r_3(z) \quad w_3(y) \quad w_3(z) \\
&\downarrow t_3 \\
&wl_1(x) \quad w_1(x) \quad wl_1(y) \quad w_1(y) \quad wl_1(z) \quad w_1(z) \quad wu_1(x) \quad rl_2(x) \quad r_2(x) \quad wu_1(y) \quad wu_1(z) \quad c_1 \\
&rl_3(z) \quad r_3(z) \quad wl_2(y) \quad w_2(y) \quad wu_2(y) \quad ru_2(x) \quad c_2 \\
&wu_3(y) \quad w_3(y) \quad w_3(z) \quad wu_3(z) \quad wu_3(y) \quad c_3
\end{align*}
\]
Correctness and Properties of 2PL

Theorem 4.1:
$Gen(2PL) \subseteq CSR$ (i.e., 2PL is CSR-safe).

Example 4.5:
$s = w_1(x) \; r_2(x) \; c_2 \; r_3(y) \; c_3 \; w_1(y) \; c_1 \in CSR$

but $\notin Gen(2PL)$ for $wu_1(x) < rl_2(x)$ and $ru_3(y) < wl_1(y)$,

$rl_2(x) < r_2(x)$ and $r_3(y) < ru_3(y)$, and $r_2(x) < r_3(y)$

would imply $wu_1(x) < wl_1(y)$ which contradicts the two-phase property.
Correctness and Properties of 2PL

Theorem 4.1:
Gen(2PL) ⊂ CSR (i.e., 2PL is CSR-safe).

Example 4.5:
s = w_1(x) r_2(x) c_2 r_3(y) c_3 w_1(y) c_1 ∈ CSR
but ∉ Gen(2PL) for wu_1(x) < rl_2(x) and ru_3(y) < wl_1(y),
rl_2(x) < r_2(x) and r_3(y) < ru_3(y), and r_2(x) < r_3(y)
would imply wu_1(x) < wl_1(y) which contradicts the two-phase property.

Theorem 4.2:
Gen(2PL) ⊂ OCSR

Example:
w_1(x) r_2(x) r_3(y) r_2(z) w_1(y) c_3 c_1 c_2
Proof of 2PL Correctness

Let s be the output of a 2PL scheduler, and let G be the conflict graph of $\text{CP}(\text{DT}(s))$ where DT is the projection onto data and termination operations and CP is the committed projection.

The following holds (Lemma 4.2):
(i) If (t_i, t_j) is an edge in G, then $p_{u_i}(x) < q_{l_j}(x)$ for some x with conflicting p, q.
(ii) If $(t_1, t_2, ..., t_n)$ is a path in G, then $p_{u_1}(x) < q_{l_n}(y)$ for some x, y.
(iii) G is acyclic.

This can be shown as follows:
(i) By locking rules LR1 through LR4.
(ii) By induction on n.
(iii) Assume G has a cycle of the form $(t_1, t_2, ..., t_n, t_1)$.
 By (ii), $p_{u_1}(x) < q_{l_1}(y)$ for some x, y,
 which contradicts the two-phase property.
Chapter 4: Concurrency Control Algorithms

• 4.2 General Scheduler Design
• 4.3 Locking Schedulers
 • 4.3.1 Introduction
 • 4.3.2 Two-Phase Locking (2PL)
 • 4.3.3 Deadlock Handling
 • 4.3.4 Variants of 2PL
 • 4.3.5 Ordered Sharing of Locks (O2PL)
 • 4.3.6 Altruistic Locking (AL)
 • 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 • 4.3.8 Geometry of Locking
• 4.4 Non-Locking Schedulers
• 4.5 Hybrid Protocols
• 4.6 Lessons Learned
Deadlock Detection

Deadlocks are caused by cyclic lock waits (e.g., in conjunction with lock conversions).

Example:

\[
\begin{align*}
 & t_1 \quad r_1(x) \quad w_1(y) \\
 & t_2 \quad w_2(y) \quad w_2(x)
\end{align*}
\]

Deadlock detection:

(i) Maintain dynamic waits-for graph (WFG) with active transactions as nodes and an edge from \(t_i \) to \(t_j \) if \(t_j \) waits for a lock held by \(t_i \).

(ii) Test WFG for cycles

- continuously (i.e., upon each lock wait) or
- periodically.
Deadlock Resolution

Choose a transaction on a WFG cycle as a **deadlock victim** and abort this transaction, and repeat until no more cycles.

Possible victim selection strategies:
1. Last blocked
2. Random
3. Youngest
4. Minimum locks
5. Minimum work
6. Most cycles
7. Most edges
Most-cycles strategy would select t_1 (or t_3) to break all 5 cycles.
Illustration of Victim Selection Strategies

Example WFG:

Most-cycles strategy would select t_1 (or t_3) to break all 5 cycles.

Example WFG:

Most-edges strategy would select t_1 to remove 4 edges.
Deadlock Prevention

Restrict lock waits to ensure acyclic WFG at all times.

Reasonable deadlock prevention strategies:
1. **Wait-die:**
 upon \(t_i \) blocked by \(t_j \):
 if \(t_i \) started before \(t_j \) then wait else abort \(t_i \)
2. **Wound-wait:**
 upon \(t_i \) blocked by \(t_j \):
 if \(t_i \) started before \(t_j \) then abort \(t_j \) else wait
3. **Immediate restart:**
 upon \(t_i \) blocked by \(t_j \): abort \(t_i \)
4. **Running priority:**
 upon \(t_i \) blocked by \(t_j \):
 if \(t_j \) is itself blocked then abort \(t_j \) else wait
5. **Timeout:**
 abort waiting transaction when a timer expires
Abort entails later restart.
Chapter 4: Concurrency Control Algorithms

• 4.2 General Scheduler Design
• 4.3 Locking Schedulers
 • 4.3.1 Introduction
 • 4.3.2 Two-Phase Locking (2PL)
 • 4.3.3 Deadlock Handling
 • 4.3.4 Variants of 2PL
 • 4.3.5 Ordered Sharing of Locks (O2PL)
 • 4.3.6 Altruistic Locking (AL)
 • 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 • 4.3.8 Geometry of Locking
 • 4.4 Non-Locking Schedulers
 • 4.5 Hybrid Protocols
 • 4.6 Lessons Learned
Definition 4.3 (Conservative 2PL):
Under static or conservative 2PL (C2PL) each transaction acquires all its locks before the first data operation (preclaiming).
Variants of 2PL

Definition 4.3 (Conservative 2PL):
Under static or conservative 2PL (C2PL) each transaction acquires all its locks before the first data operation (**preclaiming**).

Definition 4.4 (Strict 2PL):
Under strict 2PL (S2PL) each transaction holds all its write locks until the transaction terminates.
Variants of 2PL

Definition 4.3 (Conservative 2PL):
Under static or conservative 2PL (C2PL) each transaction acquires all its locks before the first data operation (preclaiming).

Definition 4.4 (Strict 2PL):
Under strict 2PL (S2PL) each transaction holds all its write locks until the transaction terminates.

Definition 4.5 (Strong 2PL):
Under strong 2PL (SS2PL) each transaction holds all its locks (i.e., both r and w) until the transaction terminates.
Properties of S2PL and SS2PL

Theorem 4.3:
Gen(SS2PL) ⊂ Gen(S2PL) ⊂ Gen(2PL)

Theorem 4.4:
Gen(SS2PL) ⊂ COCSR
Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- **4.3 Locking Schedulers**
 - 4.3.1 Introduction
 - 4.3.2 Two-Phase Locking (2PL)
 - 4.3.3 Deadlock Handling
 - 4.3.4 Variants of 2PL
- **4.3.5 Ordered Sharing of Locks (O2PL)**
 - 4.3.6 Altruistic Locking (AL)
 - 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 - 4.3.8 Geometry of Locking
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned
Ordered Sharing of Locks

Motivation:
Example 4.6:

\[s_1 = w_1(x) \rightarrow r_2(x) \rightarrow r_3(y) \rightarrow c_3 \rightarrow w_1(y) \rightarrow c_1 \rightarrow w_2(z) \rightarrow c_2 \in \text{COCSR, but} \notin \text{Gen(2PL)} \]

Observation:
the schedule were feasible if write locks could be shared
s.t. the order of lock acquisitions dictates the order of data operations

Notation:

\[\text{pl}_i(x) \rightarrow \text{ql}_j(x) \ (\text{with } i \neq j) \text{ for } \text{pl}_i(x) <_s \text{ql}_j(x) \land \text{pl}_i(x) <_s \text{pq}_j(x) \]

Example reconsidered with ordered sharing of locks:

\[w_1(x) \rightarrow w_1(x) \rightarrow r_2(x) \rightarrow r_2(x) \rightarrow r_3(y) \rightarrow r_3(y) \rightarrow ru_3(y) \rightarrow c_3 \]

\[w_1(y) \rightarrow w_1(y) \rightarrow wu_1(x) \rightarrow wu_1(y) \rightarrow c_1 \rightarrow w_2(z) \rightarrow w_2(z) \rightarrow ru_2(x) \rightarrow wu_2(z) \rightarrow c_2 \]
Lock Compatibility Tables With Ordered Sharing

LT_1

<table>
<thead>
<tr>
<th></th>
<th>$rl_i(x)$</th>
<th>$wl_i(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$rl_i(x)$</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>$wl_i(x)$</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

LT_2

<table>
<thead>
<tr>
<th></th>
<th>$rl_i(x)$</th>
<th>$wl_i(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$rl_i(x)$</td>
<td>+</td>
<td>$→$</td>
</tr>
<tr>
<td>$wl_i(x)$</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

LT_3

<table>
<thead>
<tr>
<th></th>
<th>$rl_i(x)$</th>
<th>$wl_i(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$rl_i(x)$</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>$wl_i(x)$</td>
<td>$→$</td>
<td>−</td>
</tr>
</tbody>
</table>

LT_4

<table>
<thead>
<tr>
<th></th>
<th>$rl_i(x)$</th>
<th>$wl_i(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$rl_i(x)$</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>$wl_i(x)$</td>
<td>−</td>
<td>$→$</td>
</tr>
</tbody>
</table>

LT_5

<table>
<thead>
<tr>
<th></th>
<th>$rl_i(x)$</th>
<th>$wl_i(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$rl_i(x)$</td>
<td>+</td>
<td>$→$</td>
</tr>
<tr>
<td>$wl_i(x)$</td>
<td>$→$</td>
<td>−</td>
</tr>
</tbody>
</table>

LT_6

<table>
<thead>
<tr>
<th></th>
<th>$rl_i(x)$</th>
<th>$wl_i(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$rl_i(x)$</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>$wl_i(x)$</td>
<td>$→$</td>
<td>$→$</td>
</tr>
</tbody>
</table>

LT_7

<table>
<thead>
<tr>
<th></th>
<th>$rl_i(x)$</th>
<th>$wl_i(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$rl_i(x)$</td>
<td>+</td>
<td>$→$</td>
</tr>
<tr>
<td>$wl_i(x)$</td>
<td>−</td>
<td>$→$</td>
</tr>
</tbody>
</table>

LT_8

<table>
<thead>
<tr>
<th></th>
<th>$rl_i(x)$</th>
<th>$wl_i(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$rl_i(x)$</td>
<td>+</td>
<td>$→$</td>
</tr>
<tr>
<td>$wl_i(x)$</td>
<td>$→$</td>
<td>$→$</td>
</tr>
</tbody>
</table>
OS1 (lock acquisition):

Assuming that pl\(_i\)(x) → ql\(_j\)(x) is permitted, if pl\(_i\)(x) <_s ql\(_j\)(x) then p\(_i\)(x) <_s q\(_j\)(x) must hold.

Example:

wl\(_1\)(x) w\(_1\)(x) wl\(_2\)(x) w\(_2\)(x) wl\(_2\)(y) w\(_2\)(y) wu\(_2\)(x) wu\(_2\)(y) c\(_2\)
w\(_1\)(y) w\(_1\)(y) wu\(_1\)(x) wu\(_1\)(y) c\(_1\)

Satisfies OS1, LR1 – LR4, is two-phase, but ∉ CSR
Additional Locking Rules for O2PL

OS1 (lock acquisition):
Assuming that \(p_l_i(x) \rightarrow q_l_j(x) \) is permitted, if \(p_l_i(x) <_s q_l_j(x) \) then \(p_i(x) <_s q_j(x) \) must hold.

Example:
\begin{align*}
wl_1(x) & \quad w_1(x) \quad wl_2(x) \quad w_2(x) \quad wl_2(y) \quad w_2(y) \quad wu_2(x) \quad wu_2(y) \quad c_2 \\
w_1(y) & \quad w_1(y) \quad wu_1(x) \quad wu_1(y) \quad c_1
\end{align*}
Satisfies OS1, LR1 – LR4, is two-phase, but \(\notin \) CSR

OS2 (lock release):
If \(p_l_i(x) \rightarrow q_l_j(x) \) and \(t_i \) has not yet released any lock, then \(t_j \) is order-dependent on \(t_i \). If such \(t_i \) exists, then \(t_j \) is on hold. While a transaction is on hold, it must not release any locks.

O2PL: locking with rules LR1 - LR4, two-phase property, rules OS1 - OS2, and lock table LT_8
Example 4.7:
\[s = r_1(x) \ w_2(x) \ r_3(y) \ w_2(y) \ c_2 \ w_3(z) \ c_3 \ r_1(z) \ c_1 \]
Correctness and Properties of O2PL

Theorem 4.5:
Let LT_i denote the locking protocol with ordered sharing according to lock compatibility table LT_i. For each i, $1 \leq i \leq 8$, $\text{Gen}(LT_i) \subseteq \text{CSR}$.
Correctness and Properties of O2PL

Theorem 4.5:
Let LT_i denote the locking protocol with ordered sharing according to lock compatibility table LT_i.
For each i, $1 \leq i \leq 8$, $Gen(LT_i) \subseteq CSR$.

Theorem 4.6:
$Gen(O2PL) \subseteq OCSR$
Theorem 4.5:
Let LT_i denote the locking protocol with ordered sharing according to lock compatibility table LT_i.
For each i, $1 \leq i \leq 8$, $Gen(LT_i) \subseteq CSR$.

Theorem 4.6:
$Gen(O2PL) \subseteq OCSR$

Theorem 4.7:
$OCSR \subseteq Gen(O2PL)$

Corollary 4.1:
$Gen(O2PL) = OCSR$
Chapter 4: Concurrency Control Algorithms

• 4.2 General Scheduler Design
• **4.3 Locking Schedulers**
 • 4.3.1 Introduction
 • 4.3.2 Two-Phase Locking (2PL)
 • 4.3.3 Deadlock Handling
 • 4.3.4 Variants of 2PL
 • 4.3.5 Ordered Sharing of Locks (O2PL)
 • **4.3.6 Altruistic Locking (AL)**
 • 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 • 4.3.8 Geometry of Locking
• 4.4 Non-Locking Schedulers
• 4.5 Hybrid Protocols
• 4.6 Lessons Learned
Altruistic Locking (AL)

Motivation:

Example 4.8: concurrent executions of

\[
\begin{align*}
t_1 &= w_1(a) \ w_1(b) \ w_1(c) \ w_1(d) \ w_1(e) \ w_1(f) \ w_1(g) \\
t_2 &= r_2(a) \ r_2(b) \\
t_3 &= r_3(c) \ r_3(e)
\end{align*}
\]

Observations:
- \(t_2\) and \(t_3\) access subsets of the data items accessed by \(t_1\)
- \(t_1\) knows when it is “finished” with a data item
- \(t_1\) could “pass over” locks on specific data items to transactions that access only data items that \(t_1\) is finished with
 (such transactions are “in the wake” of \(t_1\))

Notation:
\(d_i(x)\) for \(t_i\) donating its lock on \(x\) to other transactions

Example with donation of locks:

\[
\begin{align*}
w_{l_1}(a) & \ w_{l_1}(a) \ d_1(a) \ r_{l_2}(a) \ r_2(a) \ w_{l_1}(b) \ w_1(b) \ d_1(b) \ r_{l_2}(b) \ r_2(b) \ w_{l_1}(c) \ w_1(c) \ldots \\
\ldots \ r_{u_2}(a) & \ r_{u_2}(b) \ldots \ w_{u_1}(a) \ w_{u_1}(b) \ w_{u_1}(c) \ldots
\end{align*}
\]
Additional Locking Rules for AL

AL1: Once t_i has donated a lock on x, it can no longer access x.

AL2: After t_i has donated a lock x, t_i must eventually unlock x.

AL3: t_i and t_j can simultaneously hold conflicting locks only if t_i has donated its lock on x.
Additional Locking Rules for AL

AL1: Once t_i has donated a lock on x, it can no longer access x.

AL2: After t_i has donated a lock x, t_i must eventually unlock x.

AL3: t_i and t_j can simultaneously hold conflicting locks only if t_i has donated its lock on x.

Definition 4.27:

(i) $p_j(x)$ is **in the wake** of t_i ($i \neq j$) in s if $d_i(x) <_s p_j(x) <_s o_i(x)$.

(ii) t_j is in the wake of t_i if some operation of t_j is in the wake of t_i.

t_j is **completely in the wake** of t_i if all its operations are in the wake of t_i.

(iii) t_j is **indebted** to t_i in s if there are steps $o_i(x)$, $d_i(x)$, $p_j(x)$ s.t.

$p_j(x)$ is in the wake of t_i and ($p_j(x)$ and $o_i(x)$ are in conflict or there is $q_k(x)$ conflicting with both $p_j(x)$ and $o_i(x)$ and $o_i(x) <_s q_k(x) <_s p_j(x)$).
Additional Locking Rules for AL

AL1: Once t_i has donated a lock on x, it can no longer access x.

AL2: After t_i has donated a lock x, t_i must eventually unlock x.

AL3: t_i and t_j can simultaneously hold conflicting locks only if t_i has donated its lock on x.

Definition 4.27:

(i) $p_j(x)$ is **in the wake** of t_i ($i \neq j$) in s if $d_i(x) <_s p_j(x) <_s o_{i}(x)$.

(ii) t_j is in the wake of t_i if some operation of t_j is in the wake of t_i.

(iii) t_j is **completely in the wake** of t_i if all its operations are in the wake of t_i.

AL4: When t_j is indebted to t_i, t_j must remain completely in the wake of t_i.

AL: locking with rules LR1 - LR4, two-phase property, donations, and rules AL1 - AL4.
Example:
\[\text{rl}_1(a) \text{ r}_1(a) \text{ d}_1(a) \text{ wl}_3(a) \text{ w}_3(a) \text{ wu}_3(a) \text{ c}_3 \]
\[\text{rl}_2(a) \text{ r}_2(a) \text{ wl}_2(b) \text{ ru}_2(a) \text{ w}_2(b) \text{ wu}_2(b) \text{ c}_2 \text{ rl}_1(b) \text{ r}_1(b) \text{ ru}_1(a) \text{ ru}_1(b) \text{ c}_1 \]
→ disallowed by AL (even \(\notin \text{CSR} \))

Example corrected using rules AL1 - AL4:
\[\text{rl}_1(a) \text{ r}_1(a) \text{ d}_1(a) \text{ wl}_3(a) \text{ w}_3(a) \text{ wu}_3(a) \text{ c}_3 \]
\[\text{rl}_2(a) \text{ r}_2(a) \text{ rl}_1(b) \text{ r}_1(b) \text{ ru}_1(a) \text{ ru}_1(b) \text{ c}_1 \text{ wl}_2(b) \text{ ru}_2(a) \text{ w}_2(b) \text{ wu}_2(b) \text{ c}_2 \]
→ admitted by AL (\(t_2 \) stays completely in the wake of \(t_1 \))
Correctness and Properties of AL

Theorem 4.8:
\[\text{Gen}(2\text{PL}) \subset \text{Gen}(\text{AL}). \]

Theorem 4.9:
\[\text{Gen}(\text{AL}) \subset \text{CSR} \]

Example:
\[s = r_1(x) \ r_2(z) \ r_3(z) \ w_2(x) \ c_2 \ w_3(y) \ c_3 \ r_1(y) \ r_1(z) \ c_1 \rightarrow \in \text{CSR}, \text{ but } \not\in \text{Gen}(\text{AL}) \]
Chapter 4: Concurrency Control Algorithms

• 4.2 General Scheduler Design

• 4.3 Locking Schedulers
 • 4.3.1 Introduction
 • 4.3.2 Two-Phase Locking (2PL)
 • 4.3.3 Deadlock Handling
 • 4.3.4 Variants of 2PL
 • 4.3.5 Ordered Sharing of Locks (O2PL)
 • 4.3.6 Altruistic Locking (AL)
 • 4.3.7 Non-Two-Phase Locking (WTL, RWTL)
 • 4.3.8 Geometry of Locking

• 4.4 Non-Locking Schedulers

• 4.5 Hybrid Protocols

• 4.6 Lessons Learned
(Write-only) Tree Locking

Motivating example:

concurrent executions of transactions with access patterns that comply with organizing data items into a virtual tree

\[t_1 = w_1(a) \ w_1(b) \ w_1(d) \ w_1(e) \ w_1(i) \ w_1(k) \]
\[t_2 = w_2(a) \ w_2(b) \ w_2(c) \ w_2(d) \ w_2(h) \]
(Write-only) Tree Locking

Motivating example:
concurrent executions of transactions with access patterns that comply with organizing data items into a virtual tree

\[t_1 = w_1(a) \, w_1(b) \, w_1(d) \, w_1(e) \, w_1(i) \, w_1(k) \]
\[t_2 = w_2(a) \, w_2(b) \, w_2(c) \, w_2(d) \, w_2(h) \]

Definition (Write-only Tree Locking (WTL)):
Under the write-only tree locking protocol (WTL) lock requests and releases must obey LR1 - LR4 and the following additional rules:

WTL1: A lock on a node \(x \) other than the tree root can be acquired only if the transaction already holds a lock on the parent of \(x \).

WTL2: After a \(wu_i(x) \) no further \(wl_i(x) \) is allowed (on the same \(x \)).

Example:
\[\begin{align*}
wl_1(a) \, w_1(a) \, wl_1(b) \, wu_1(a) \, w_1(b) \, wl_2(a) \, w_2(a) \, wl_1(d) \, w_1(d) \, wu_1(d) \, wl_1(e) \, wu_1(b) \\
w_1(e) \, wl_2(b) \, wu_2(a) \, w_2(b) \end{align*} \ldots \]
Theorem 4.10: \(\text{Gen}(WTL) \subseteq \text{CSR} \).

Theorem 4.11: WTL is deadlock-free.

Lemma 4.6: If \(t_i \) locks \(x \) before \(t_j \) does in schedule \(s \), then for each successor \(v \) of \(x \) that is locked by both \(t_i \) and \(t_j \) the following holds: \(w_l_i(v) <_s w_u_i(v) <_s w_l_j(v) \).

Comment: WTL is applicable even if a transaction's access patterns are not tree-compliant, but then locks must still be obtained along all relevant paths in the tree using the WTL rules.
Read-Write Tree Locking

Problem: t_i locks root before t_j does, but t_j passes t_i within a “read zone”

Example:

$r_{l1}(a) \, r_{l1}(b) \, r_{1}(a) \, r_{1}(b) \, w_{l1}(a) \, w_{1}(a) \, w_{l1}(b) \, u_{l1}(a) \, r_{l2}(a) \, r_{2}(a)$

$w_{1}(b) \, r_{l1}(e) \, u_{l1}(b) \, r_{l2}(b) \, r_{2}(b) \, u_{l2}(a) \, r_{l2}(e) \, r_{l2}(i) \, u_{l2}(b) \, r_{2}(e) \, r_{1}(e)$

$r_{2}(i) \, w_{l2}(i) \, w_{2}(i) \, w_{l2}(k) \, u_{l2}(e) \, u_{l2}(i) \, r_{l1}(i) \, u_{l1}(e) \, r_{1}(i) \, ...$

→ appears to follow TL rules
but \notin CSR

Solution: formalize “read zone” and enforce two-phase property on “read zones”
Locking Rules of RWTL

For transaction t with read set $RS(t)$ and write set $WS(t)$

let $C_1, ..., C_m$ be the connected components of $RS(t)$.

A **pitfall** of t is a set of the form

$C_i \cup \{x \in WS(t) \mid x$ is a child or parent of some $y \in C_i\}$.

Example:

t with $RS(t) = \{f, i, g\}$ and $WS(t) = \{c, l, j, k, o\}$

has pitfalls $pf_1 = \{c, f, i, l, j\}$ and $pf_2 = \{g, c, k\}$.

Definition (read-write tree locking (RWTL)):

Under the **read-write tree locking protocol (RWTL)** lock requests and releases

Must obey LR1 - LR4, WTL1, WTL2, and the two-phase property within each pitfall.
Correctness and Generalization of RWTL

Theorem 4.12:
Gen (RWTL) ⊆ CSR.

RWTL can be generalized for a DAG organization of data items into a DAG locking protocol with the following additional rule: \(t_i \) is allowed to lock data item x only if holds locks on a majority of the predecessors of x.
Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
- 4.4 Non-Locking Schedulers
 - 4.4.1 Timestamp Ordering
 - 4.4.2 Serialization-Graph Testing
 - 4.4.3 Optimistic Protocols
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned
(Basic) Timestamp Ordering

Timestamp ordering rule (TO rule):
Each transaction \(t_i \) is assigned a unique timestamp \(ts(t_i) \)
(e.g., the time of \(t_i \)'s beginning).
If \(p_i(x) \) and \(q_j(x) \) are in conflict, then the following must hold:
\[
p_i(x) <_s q_j(x) \text{ iff } ts(t_i) < ts(t_j)
\]
for every schedule \(s \).

Theorem 4.15:
\(\text{Gen (TO) } \subseteq \text{CSR} \).

Basic timestamp ordering protocol (BTO):
- For each data item \(x \) maintain \(\text{max-r} (x) = \max \{ ts(t_j) \mid r_j(x) \text{ has been scheduled} \} \)
 and \(\text{max-w} (x) = \max \{ ts(t_j) \mid w_j(x) \text{ has been scheduled} \} \).
- Operation \(p_i(x) \) is compared to \(\text{max-q} (x) \) for each conflicting \(q \):
 - if \(ts(t_i) < \text{max-q} (x) \) for some \(q \) then abort \(t_i \)
 - else schedule \(p_i(x) \) for execution and set \(\text{max-p} (x) \) to \(ts(t_i) \)
s = r_1(x) w_2(x) r_3(y) w_2(y) c_2 w_3(z) c_3 r_1(z) c_1

r_1(x) w_2(x) r_3(y) a_2 w_3(z) c_3 a_1
Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
- **4.4 Non-Locking Schedulers**
 - 4.4.1 Timestamp Ordering
 - **4.4.2 Serialization-Graph Testing**
 - 4.4.3 Optimistic Protocols
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned
Serialization Graph Testing (SGT)

SGT protocol:

• For $p_i(x)$ create a new node in the graph if it is the first operation of t_i
• Insert edges (t_j, t_i) for each $q_j(x) <_{s} p_i(x)$ that is in conflict with $p_i(x)$ ($i \neq j$).
• If the graph has become cyclic then abort t_i (and remove it from the graph) else schedule $p_i(x)$ for execution.
Serialization Graph Testing (SGT)

SGT protocol:
- For $p_i(x)$ create a new node in the graph if it is the first operation of t_i
- Insert edges (t_j, t_i) for each $q_j(x) <_s p_i(x)$ that is in conflict with $p_i(x)$ ($i \neq j$).
- If the graph has become cyclic then abort t_i (and remove it from the graph) else schedule $p_i(x)$ for execution.

Theorem 4.16:
$Gen(SGT) = CSR.$
Serialization Graph Testing (SGT)

SGT protocol:
- For $p_i(x)$ create a new node in the graph if it is the first operation of t_i.
- Insert edges (t_j, t_i) for each $q_j(x) <_s p_i(x)$ that is in conflict with $p_i(x)$ ($i \neq j$).
- If the graph has become cyclic then abort t_i (and remove it from the graph) else schedule $p_i(x)$ for execution.

Theorem 4.16:
Gen (SGT) = CSR.

Node deletion rule:
A node t_i in the graph (and its incident edges) can be removed when t_i is terminated and is a source node (i.e., has no incoming edges).

Example:
$r_1(x) \quad w_2(x) \quad w_2(y) \quad c_2 \quad r_1(y) \quad c_1$
removing node t_2 at the time of c_2
would make it impossible to detect the cycle.
Chapter 4: Concurrency Control Algorithms

• 4.2 General Scheduler Design
• 4.3 Locking Schedulers
• 4.4 Non-Locking Schedulers
 • 4.4.1 Timestamp Ordering
 • 4.4.2 Serialization-Graph Testing
• 4.4.3 Optimistic Protocols
• 4.5 Hybrid Protocols
• 4.6 Lessons Learned
Optimistic Protocols

Motivation: conflicts are infrequent

Approach:
divide each transaction t into three phases:

- **read phase:**
 execute transaction with writes into **private workspace**

- **validation phase (certifier):**
 upon t's commit request
 test if schedule remains CSR if t is committed now
 based on t's read set $RS(t)$ and write set $WS(t)$

- **write phase:**
 upon successful validation
 transfer the workspace contents into the database
 (deferred writes)
 otherwise abort t (i.e., discard workspace)*
Backward-oriented Optimistic CC (BOCC)

Execute a transaction's validation and write phase together as a **critical section**: while \(t_i \) being in the **val-write phase**, no other \(t_k \) can enter its val-write phase.

BOCC validation of \(t_j \):

compare \(t_j \) to all previously committed \(t_i \)

accept \(t_j \) if one of the following holds

- \(t_i \) has ended before \(t_j \) has started, or
- \(RS(t_j) \cap WS(t_i) = \emptyset \) and \(t_i \) has validated before \(t_j \)
Backward-oriented Optimistic CC (BOCC)

Execute a transaction's validation and write phase together as a **critical section**: while \(t_i \) being in the **val-write phase**, no other \(t_k \) can enter its val-write phase

BOCC validation of \(t_j \):
compare \(t_j \) to all previously committed \(t_i \)
accept \(t_j \) if one of the following holds
- \(t_i \) has ended before \(t_j \) has started, or
- \(RS(t_j) \cap WS(t_i) = \emptyset \) and \(t_i \) has validated before \(t_j \)

Theorem 4.46:
\(\text{Gen (BOCC)} \subset \text{CSR} \).

Proof:
Assume that \(G(s) \) is acyclic. Adding a newly validated transaction can insert only edges into the new node, but no outgoing edges (i.e., the new node is last in the serialization order).
BOCC Example

read phase

- t_1: $r_1(x)$, $r_1(y)$, val.

write phase

- $w_1(x)$

- t_2: $r_2(y)$, $r_2(z)$, val. $w_2(z)$

t_3: $r_3(x)$, $r_3(y)$, val.

- **abort**

t_4: $r_4(x)$, val. $w_4(x)$
Forward-oriented Optimistic CC (FOCC)

Execute a transaction's val-write phase as a **strong critical section**: while \(t_i \) being in the **val-write phase**, no other \(t_k \) can perform any steps.

FOCC validation of \(t_j \):
compare \(t_j \) to all concurrently active \(t_i \) (which must be in their read phase)
accept \(t_j \) if \(WS(t_j) \cap RS^*(t_i) = \emptyset \) where \(RS^*(t_i) \) is the current read set of \(t_i \)
Forward-oriented Optimistic CC (FOCC)

Execute a transaction's val-write phase as a **strong critical section**: while \(t_i \) being in the val-write phase, no other \(t_k \) can perform any steps.

FOCC validation of \(t_j \):
compare \(t_j \) to all concurrently active \(t_i \) (which must be in their read phase)
accept \(t_j \) if \(WS(t_j) \cap RS^*(t_i) = \emptyset \) where \(RS^*(t_i) \) is the current read set of \(t_i \)

Remarks:
• FOCC is much more flexible than BOCC: upon unsuccessful validation of \(t_j \) it has three options:
 • abort \(t_j \)
 • abort one of the active \(t_i \) for which \(RS^*(t_i) \) and \(WS(t_j) \) intersect
 • wait and retry the validation of \(t_j \) later (after the commit of the intersecting \(t_i \))
• Read-only transactions do not need to validate at all.
Correctness of FOCC

Theorem 4.18:
Gen (FOCC) ⊂ CSR.

Proof:
Assume that G(s) has been acyclic and that validating \(t_j \) would create a cycle. So \(t_j \) would have to have an outgoing edge to an already committed \(t_k \). However, for all previously committed \(t_k \) the following holds:

- If \(t_k \) was committed before \(t_j \) started, then no edge \((t_j, t_k) \) is possible.
- If \(t_j \) was in its read phase when \(t_k \) validated, then WS(\(t_k \)) must be disjoint with RS*(\(t_j \)) and all later reads of \(t_j \) and all writes of \(t_j \) must follow \(t_k \) (because of the strong critical section); so neither a wr nor a ww/rw edge \((t_j, t_k) \) is possible.
FOCC Example

read phase

\[r_1(x) \quad r_1(y) \quad \text{val.} \quad w_1(x) \]

write phase

\[r_2(y) \quad r_2(z) \quad \text{val.} \quad w_2(z) \]

\[r_3(z) \quad \text{abort} \]

\[r_4(x) \quad r_4(y) \quad \text{val.} \quad w_4(y) \]

\[r_5(x) \quad r_5(y) \]
Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
- 4.4 Non-Locking Schedulers
- **4.5 Hybrid Protocols**
- 4.6 Lessons Learned
Hybrid Protocols

Idea: Combine different protocols, each handling different types of conflicts (rw/wr vs. ww) or data partitions

Caveat: The combination must guarantee that the union of the underlying “local” conflict graphs is acyclic.
Hybrid Protocols

Idea: Combine different protocols, each handling different types of conflicts (rw/wr vs. ww) or data partitions

Caveat: The combination must guarantee that the union of the underlying “local” conflict graphs is acyclic.

Example 4.15:
use SS2PL for rw/wr synchronization and TO or TWR for ww with TWR (Thomas’ write rule) as follows:
 for \(w_j(x) \): if \(ts(t_j) > \text{max-w}(x) \) then execute \(w_j(x) \) else do nothing

\[
s_1 = w_1(x) \ r_2(y) \ w_2(x) \ w_2(y) \ c_2 \ w_1(y) \ c_1
\]

\[
s_2 = w_1(x) \ r_2(y) \ w_2(x) \ w_2(y) \ c_2 \ r_1(y) \ w_1(y) \ c_1
\]

both accepted by SS2PL/TWR with \(ts(t_1) < ts(t_2) \), but \(s_2 \) is not CSR
Hybrid Protocols

Idea: Combine different protocols, each handling different types of conflicts (rw/wr vs. ww) or data partitions

Caveat: The combination must guarantee that the union of the underlying “local” conflict graphs is acyclic.

Example 4.15:
use SS2PL for rw/wr synchronization and TO or TWR for ww
with TWR (Thomas’ write rule) as follows:
for \(w_j(x) \): if \(ts(t_j) > \max -w(x) \) then execute \(w_j(x) \) else do nothing

\[
\begin{align*}
s_1 = w_1(x) \ r_2(y) \ w_2(x) \ w_2(y) \ c_2 \ w_1(y) \ c_1 \\
s_2 = w_1(x) \ r_2(y) \ w_2(x) \ w_2(y) \ c_2 \ r_1(y) \ w_1(y) \ c_1
\end{align*}
\]

both accepted by SS2PL/TWR with \(ts(t_1) < ts(t_2) \), but \(s_2 \) is not CSR

Problem with \(s_2 \): needs synch among the two “local” serialization orders

Solution: assign timestamps such that the serialization orders of SS2PL and TWR are in line
\[\rightarrow ts(i) < ts(j) \iff c_i < c_j \]
Chapter 4: Concurrency Control Algorithms

- 4.2 General Scheduler Design
- 4.3 Locking Schedulers
- 4.4 Non-Locking Schedulers
- 4.5 Hybrid Protocols
- 4.6 Lessons Learned
Lessons Learned

• S2PL is the most versatile and robust protocol and widely used in practice

• Knowledge about specifically restricted access patterns facilitates non-two-phase locking protocols (e.g., TL, AL)

• O2PL and SGT are more powerful but have more overhead

• FOCC can be attractive for specific workloads

• Hybrid protocols are conceivable but non-trivial