NoSQL

Thomas Neumann



|
What are NoSQL databases?

hard to say
more a theme than a well defined thing

Usually some or all of the following:

no SQL interface

no relational model / no schema

no joins, emphasize on key/value pairs
scale out to many machines

weak or no consistency guarantees



Why not relational databases?

Some commonly stated reasons:
e RDBMS are hard to use

do not scale to "web-scale”

e relational model is too restrictive
NoSQL is faster, scales better

Some of this is true (as we will see), but most likely will not affect you!



N
[llustrational Web Video

MongoDB is web scale
http://www.xtranormal.com/watch /6995033



The Performance Argument

Voter benchmark: People call to vote for American Idol
e at most 12 votes are counted per caller-id

e very simple transaction model

On a 8 core Intel Xeon X5570 with 64GB main memory:
e MongoDB: ca. 10,000 transactions per second

e relational main-memory database: ca. 1,000,000 transactions per
second

Do not blindly follow a hype, do the math!



Sucess stories from the net

Why we chose MongoDB [...] Very easy to install. [...] Very easy
replication

[...] We cut down the names to 2-3 characters. This is a little more
confusing in the code but the disk storage savings are worth it [...] a
massive saving.

[...] Was it the right move? Yes. MongoDB has been an excellent
choice [...] MongoDB is going to be very cool!

MongoDB works fine, but the same query is 25 times faster in
PostgreSQL

[...] MongoDB will win once | have 26 machines



|
Technical Arguments in favor of NoSQL

CAP-Theorem: In a distributed system you can only have two of the
following
e Consistency
» all nodes see the same data at the same time
e Availability
» node failures do not prevent survivors from continuing to operate
e Partition Tolerance
> he system continues to operate despite arbitrary message loss

Basis for the claim the RDBMS are not "web-scale”



-
Scalability

How to scale to thousands of nodes?

traditional RDBMS usually scale to less than 100 node

transaction semantic requires a lot of coordination

two phase commit is expensive

O(n?) network connections

does not scale to thousands of nodes

Partitioning helps, but usually requires human interaction.



|
Key/Value - Stores

Life would be much simpler if we only stored key/value pairs
e only (or mostly) point-access
e transactions operate on a single item

e allows for simple partitioning

by spreading keys over nodes we distribute the data

usually scales perfectly

Life is much simpler if you only care about individual values...



N
Distributed Hash Tables

Basis for many distributed storage schemes:
e spread a hash table over a large number of nodes
e nodes can enter and leave (more or less) at will
e nodes know only a few other nodes

e offers scalable distributed storage

Many algorithms exists: Chord, Pastry, P-Grid, etc.
e usual idea: hash nodes into hash domain

e nodes responsible to for hash values near to them



Distributed Hash Tables - Chord

Both items and nodes are hashed into ring structure

Finger tables similar to skip lists

Finger table

N8 +1 |[N14

N8 +2 [N14

N8 +4 [N14

N8 +8 [N21

N8 +16 |N32

N8 +32 |N42




Expressiveness

DHTs are one giant Key—Value table

only three operations: lookup, insert, delete
e each operations is limited to a single data item

e range queries not supported efficiently

This is a severe limitation. Scalability is obtained by eliminating functionality



What about Consistency?
We want our database to be consistent
e as long as transactions operate on single items (note: strong
restriction) life is relatively simple
e one node is responsible for the data item
e as long as all changes are atomic or idempotent everything is fine

But: nodes will be replicated for availability

e ensuring consistency adds the same costs as in standard distributed
RDBMSs

e most systems aim at "eventual consistency”

e after waiting long enough (without updates in between), all replicas
will have the same value

This is usually unacceptable if the data is valuable (e.g., involves money)!



N
What about Multi-ltem Transactions?

Short answer: not supported

Long answer: not supported very well
e one can ignore the issue and run multi single-level transactions
e completely messes up consistency
e some systems offer explicit locking
e some problems as in distributed RDBMSs



|
How to Query the Data

Data is spread over thousands of nodes
e point query are supported by DHTs
e range queries are not

e aggregation queries are very important

Requires some very heavy machinery inside the NoSQL database

e query response time usually multiple seconds, even minutes

not really suited for interactive queries

data will change during query execution

usually queries inconsistent data



|
Map/Reduce

Programming paradigm that allows for easy parallelization. Sequence of two
operations:
1. Map: (kl, V1) — /iSt(kz, V2)

» constructs key-value pairs from input pair
» can be computed in parallel, no interaction

2. Reduce: (ko, list(vo) — list(ks, v3)
» reduces all kp pairs into one (or more) value
» different kps can be parallelized

Simple, scalable scheme, but involves massive movement of data



Map/Reduce - Canonical Example

Word count is the classical example:

1. map(documentld,document)
for each word w in document
emit (w,1)
2. reduce(word,counts)
count=0
for each c in counts
count+ = ¢
emit(word,count)

Computes the frequency of each word



|
Map/Reduce - Database Queries

Can also be used to query distributed key/value stores:

1. map(customerld,customerData)
emit (customerld,customerData.amount)

2. reduce(customerld,revenues)
sum =0
for each r in revenues
sum+ =r
emit(customerld,r)
3. reduce(customerld,revenue)
if revenue > 10000
emit (customerld, revenue)

e executed across all nodes

e very heavy operation



-
Systems

There is a huge number of NoSQL systems around
e BigTable
» key/value store used inside Google, row/column/time dimensions, slicing
e Casandra
» key/value store with tunable consistency
e MongoDB
» document centric, JavaScript driven, relatively rich queries
e CouchDB
» document centric, JavaScript driven, MVCC
e Dynamo, Project Voldemort, Hbase, ...

Unfortunately all incompatible, all different in some aspects



-
Who needs this ultra-scalability?

Going fully "web-scale” makes sense in a few cases:
e the data amount is huge
> petabytes of data
e consistency is not important
» click streams, not payment data
e access is mostly single-item
» more complicated queries are expensive

But: very few companies have these characteristics



The real reason why (some) people use NoSQL: Money

A 1TB main-memory machine costs ca. 60K

most people do not have large amounts of data anyway

or if they have, the data is not that important

enterprise database systems are expensive

NoSQL products tend to be free or cheap

startups do not have money

But is this really an argument for NoSQL?



Conclusion

NoSQL is a fuzzy term, but usually

stores non-relational data

aims at scalability to thousands of nodes
e sacrifices consistency

e support mainly simple queries efficiently

Mainly makes sense if
e data is really huge

e and not very valuable

Otherwise, use a RDBMS!



