
Query Optimization
Exercise Session 6

Andrey Gubichev

November 24, 2014

1 / 17

DPsub

I Iterate over subsets in the integer order

I Before a join tree for S is generated, all the relevant subsets
of S must be available

2 / 17

DPsub

DPsub(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal bushy join tree
B = an empty DP table 2R → join tree
for each Ri ∈ R

B[{Ri}] = Ri

for each 1 < i ≤ 2n − 1 ascending {
S = {Rj ∈ R|(bi/2j−1cmod 2) = 1}
for each S1 ⊂ S , S2 = S \ S1 {
if ¬cross products ∧¬S1 connected to S2 continue
p1 = B[S1], p2 = B[S2]
if p1 = ε ∨ p2 = ε continue
P = CreateJoinTree(p1, p2);
if B[S] = ε ∨ C (B[S]) > C (P) B[S] = P
}
}
return B[{R1, . . . ,Rn}]

3 / 17

Implementation: DPsize

I dbTable - the vector of lists of Problems, each Problem is
either a relation or a join of Problems

I lookup (hashtable) - mapping the set of the relations to the
best solution and its cost

I initialize dpTable[0] with the list of R1, ..., Rn

I set the size of dpTable to n

4 / 17

Implementation: DPsize

for (i = 1; i < dpTable.size(); i++)

for (j=0; j < i; j++)

for (leftRel in dpTable[j])

for (rightRel in dpTable[i-j-1])

can we join leftRel and rightRel?

check lookup for solution and cost

if the current is cheaper:

dpTable[i].add(leftRel join rightRel)

update lookup

5 / 17

DPccp

I Enumerate over all connected subgraphs

I For each subgraph enumerate all other connected subgraphs
that are disjoint but connected to it

6 / 17

Connected Subgraph Enumeration

R1 R2

R3 R4

R5

7 / 17

Connected Subgraph Enumeration

I Nodes in the query graph are ordered according to a BFS

I Start with the last node, all the nodes with smaller ID are
forbidden

I At every step: compute neighborhood, get forbidden nodes,
enumerate subsets of non-forbidden nodes N

I Recursive calls for subsets of N

8 / 17

Connected Subgraph Enumeration

EnumerateCsg(G)
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi);

}

EnumerateCsgRec(G , S , X)
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

9 / 17

Connected Subgraph Enumeration

R1 R2

R3 R4

R5

10 / 17

Enumerating Complementary Subgraphs

EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

I EnumerateCsg+EnumerateCmp produce all ccp

I resulting algorithm DPccp considers exactly #ccp pairs

I which is the lower bound for all DP enumeration algorithms

11 / 17

Graph simplification

Sometimes the graph is too big, let’s simplify it.

I GOO: choose the joins greedily (very hard, depends on all
other joins)

I Simplification: choose the joins that must be avoided (we can
start with ’obvious’ decisions)

12 / 17

Graph simplification: Example

R1

1000

R2

100

R4

100

R3

500

0.005

0.001

0.02

0.05

I benefit(X on R1,X on R2) =
C((XonR1)onR2)
C((XonR2)onR1)

I R3 on R2 before R3 on R4.
Remove R4 − R3

I R4 on (R2 on R3) before
R4 on R1. Remove R1 − R4

I no more choices

|R1 on R4| = 5000, |R1 on R2| = 500, |R2 on R3| = 50,
|R3 on R4| = 1000

13 / 17

More insights

I Guido Moerkotte, Thomas Neumann. Analysis of Two
Existing and One New Dynamic Programming Algorithm. In
VLDB’06

I Guido Moerkotte, Thomas Neumann. Dynamic Programming
Strikes Back. In SIGMOD’08

I Thomas Neumann. Query Simplification: Graceful
Degradation for Join-Order Optimization. In SIGMOD’09

14 / 17

Homework

I 3 problems (See website)

I You will need to revisit some lecture slides for it

15 / 17

Next programming task

I Due December 8

I Dynamic Programming (DPsize)

I We will compare the speed of different submissions :)

16 / 17

Info

I Exercises due: 9 AM, December 1, 2014

17 / 17

