Locality-Sensitive Operators for
Parallel Main-Memory Database Clusters

Wolf Rodiger, Tobias Miihlbauer, Philipp Unterbrunner*,
Angelika Reiser, Alfons Kemper, Thomas Neumann

Technische Universitat Miinchen, *Snowflake Computing, Inc.

31

Scale Out

» HyPer: High-performance
in-memory transaction and
query processing system

» Scale out to process
extremely large inputs

» Aiming at clusters with large
main memory capacity

node 1

SWITCH

/31

Running Example (1)

» Focus on analytical query
processing in this talk

» TPC-H query 12 used as
running example

» Runtime dominated by join
orders x lineitem

sort

group

lineitem orders

Running Example (2)

» Relations are equally
distributed across nodes

» We make no other
assumptions on data
distribution

» Network communication
required as tuples join with
tuples on remote nodes

orders

key

® NG EWN =

priority
1-URGENT
2-HIGH
1-URGENT
5-LOW
3-MEDIUM
1-URGENT
2-HIGH
1-URGENT

1-URGENT
2-HIGH
3-MEDIUM
5-LOW

3-MEDIUM
2-HIGH
3-MEDIUM
5-LOW
1-URGENT
2-HIGH

lineitem
key shipmode

/31

Scale Out: Network is the Bottleneck

» Single node: Performance is
bound algorithmically

» Cluster: Network is bottleneck
for query processing

» We propose a novel join
algorithm called Neo-Join

» Goal:

Increase local processing to
close the performance gap

join performance [M tuples/s]

distributed local

5/31

Neo-Join: Network-optimized Join

1. Open Shop Scheduling
Efficient network communication

2. Optimal Partition Assignment
Increase local processing

3. Selective Broadcast
Handle value skew

Open Shop Scheduling

Efficient network communication

/31

Standard Network Model

» Star topology
Nodes are connected to a
central switch

» Fully switched
All links can be used
simultaneously

» Fully duplex

Nodes can both send and
receive at full speed

SWITCH

/31

Bandwidth Sharing

E! E 5 bottleneck

SWITCH SWITCH

$ bottleneck
node 2 node 3

» Simultaneous use of a single link creates a bottleneck
» Reduces bandwidth by at least a factor of 2

Naive Schedule

@ node 1
@ node 2
. node 3

time

bandwidth sharing

» Node 2 and 3 send to node 1 at the same time

» Bandwidth sharing increases network duration significantly

10/31

Open Shop Scheduling (1)

» Avoiding bandwidth sharing
translates directly to open
shop scheduling

» Network Transfer:
Receivers receive from at
most one sender, senders
send to at most one receiver

» Open Shop:

Processors perform one task
at a time, only one task of a
job is processed at a time

Open Shop Network Transfer
task data transfer
processor receiver

job sender

execution time

message size

11/31

Open Shop Scheduling (2)

» Bipartite graph of senders
and receivers sender

» Edge weights represent

. node 1 node 2
transfer size

» Scheduler repeatedly finds
perfect matchings

» Each matching specifies one

communication phase node 1 Jl node 2

}

» Transfers in a phase will receiver

never share bandwidth

12/31

Optimal Schedule

@node! AR N time
@node2 | 0 AN KB —_>
. node 3 4 4 1

maximum straggler

» Open shop schedule achieves minimal network duration

» Schedule duration determined by maximum straggler

13/31

Optimal Partition
Assignment

Minimize network duration for distributed joins

14 /31

Distributed Join

» Tuples may join with tuples
on remote nodes

» Repartition and redistribute
both relations for local join

» Tuples will join only with the
corresponding partition

L Illl"> %%%E
%%% ‘%%

fragmented redistributed

» Using hash, range, radix, or
other partitioning scheme

> In any case: Decide how to
assign partitions to nodes

15/31

Running Example: Hash Partitioning

lineitem
key shipmode

orders
key

priority
1 1-URGENT
2 2-HIGH
3 1-URGENT
4 5L0OW
5 3-MEDIUM
6 1-URGENT
7 2-HIGH
8 1-URGENT

node 1

1-URGENT
10 2-HIGH

11 3-MEDIUM
12 5L0W

13 1-URGENT
14 3-MEDIUM
1-URGENT

node 2

3-MEDIUM
17 2-HIGH
18 3-MEDIUM
19 5L0W
20 1-URGENT
2-HIGH

X+2 mod 3

16 /31

Assign Partitions to Nodes (1)

Option 1: Minimize network traffic

» Assign partition to node that
owns its largest part

» Only the small fragments of a
partition sent over the network

» Schedule with minimal network
traffic may have high duration

hash partitioning (x mod 3)

®ny
on
“ns
P4 P2 Ps
open shop schedule
®n;
©n: NNTINNS
wns T

traffic: 26 time: 26

17/31

Assign Partitions to Nodes (2)

Option 2: Minimize response time:

» Query response time is time
from request to result

» Query response time dominated
by network duration

» To minimize network duration,
minimize maximum straggler

hash partitioning (x mod 3)
ony
on

open shop schedule
®n I
on: WLE 0
¢ n: I
traffic: 28 time: 10

18/31

Minimize Maximum Straggler

» Formalized as mixed-integer
linear program

» Objective function minimizes

maximum straggler minimize w, subject to

-1
» Shown to be NP-hard wszhi‘,-(l—xU) 0<i<n
(see paper for proof sketch) '
» In practice fast enough wz Z (lm . OE;#C th) 0<i<n
using CPLEX or Gurobi
(< 0.5% overhead for 32 1= Z% Tij 0<j<p

nodes, 200 M tuples each)

» Partition assignment can
optimize any partitioning

19/31

Running Example: Locality

node 1

node 2

orders
key priority
1-URGENT
2-HIGH

1-URGENT
5-LOW

3-MEDIUM
1-URGENT
2-HIGH

1-URGENT

©® N O A WM =

1-URGENT
10 2-HIGH

11 3-MEDIUM
12 51L0W

13 1-URGENT
14 3-MEDIUM
1-URGENT

3-MEDIUM
17 2-HIGH
18 3-MEDIUM
19 5-LOW
20 1-URGENT
2-HIGH

lineitem
key shipmode

20/31

Locality

» Running example exhibits
time-of-creation clustering

» Radix repartitioning on most
significant bits retains locality

» Partition assignment can
exploit locality

» Significantly reduces query
response time

radix partitioning (MSB)
on
on

open shop schedule
®n
on 1)
on: @
traffic: 5 time: 3

21/31

Selective Broadcast

Handle value skew

22/31

Running Example: Skew

node 1

node 2

orders

key

A SRR

]

©

priority
1-URGENT
2-HIGH
1-URGENT
1-URGENT

1-URGENT
2-HIGH
3-MEDIUM

3-MEDIUM
2-HIGH
3-MEDIUM

lineitem

shipmode

X+2 mod 3

23/

31

Skew

Value skew can lead to some
very large partitions

Assignment of these partitions
increases network duration

One may try to balance skewed
partitions by partitioning the
input into more partitions

High skew is still a problem

hash partitioning (mod 3)

“ns 2 1
|
P+ P2 Ps3

open shop schedule
ony
on: gu
ons B e

traffic: 21 time: 14

24 /31

Broadcast

» Alternative data
redistribution scheme

» Replicate the smaller
relation between all nodes

» Larger relation remains
fragmented across nodes

broadcast O

local join

25/31

Selective Broadcast

Decide per partition whether
to assign or broadcast

Broadcast partitions with
large relation size difference
Assign the other partitions
taking locality into account
Role reversal possible:

Broadcast different partitions
by different relations

hash partitioning (mod 3)

L_

O Li O2 L2 O3 Ls

open shop schedule

on;
.nzn
©ns (13 |

traffic: 14 time: 6

26 /31

Evaluation

27/31

Locality

. o Neo-Join Hadoop Hive
» Vary locality from 0 % DBMS-X MySQL Cluster
(uniform distribution) to 160 M
100 % (range partitioning) 3
» Neo-Join improves join § 120M
performance from 29 M to g
156 M tuples/s (> 500 %) € soM
(e)
» 3 nodes (Core i7, 4 cores, E 40 M
3.4 GHz, 32 GB RAM), =

600 M tuples (64 bit key, oM
. 0% 25% 50% 75% 100 %
64 bit payload)

locality

28 /31

Skew

v

Zipfian distribution models
realistic data skew

Using more partitions
alleviates the problem
Selective broadcast actually
improves performance for
skewed inputs

4 nodes, 400 M tuples

partitions

Zipf factor s

0.00 0.25 0.50 0.75 1.00

16
512
16 (SB)

27s 24s 23s 29s
23s 23s 23s 23s
24s 24s 23s 20s

44s
33s
10s

29 /31

TPC-H Results (scale factor 100)

[hash M broadcast | Neo-Join

» Results for three selected
TPC-H queries

» Broadcast outperforms
hash for large relation size
differences

» Neo-Join always performs
better due to selective
broadcast and locality

execution time [s]

- N W~ 00O N

o

» 4 nodes, scale factor 100 Q12 Qi4 Q19
TPC-H queries

30/31

Summary

Motivation:
» Network is the bottleneck for distributed query processing

» Increase local processing to close the performance gap

Contributions:
» Open Shop Scheduling avoids bandwidth sharing

» Optimal Partition Assignment minimizes query response
time and can exploit locality in the data distribution

» Selective Broadcast combines repartitioning and broadcast
to improve the performance for skewed inputs

31/31

