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Wolf Rödiger, Tobias Mühlbauer, Philipp Unterbrunner*,
Angelika Reiser, Alfons Kemper, Thomas Neumann

Technische Universität München, *Snowflake Computing, Inc.

1 / 31



Scale Out

▸ HyPer: High-performance
in-memory transaction and
query processing system

▸ Scale out to process
extremely large inputs

▸ Aiming at clusters with large
main memory capacitylineitem orders
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Running Example (1)

▸ Focus on analytical query
processing in this talk

▸ TPC-H query 12 used as
running example

▸ Runtime dominated by join
orders & lineitem lineitem orders
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Running Example (2)

▸ Relations are equally
distributed across nodes

▸ We make no other
assumptions on data
distribution

▸ Network communication
required as tuples join with
tuples on remote nodes
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lineitem
key shipmode
1 MAIL
1 MAIL
1 MAIL
2 SHIP
2 MAIL
6 SHIP
6 SHIP
6 SHIP

6 MAIL
10 SHIP
11 MAIL
11 MAIL
13 MAIL
13 MAIL

13 MAIL
13 SHIP
17 MAIL
18 MAIL
18 MAIL
19 SHIP
20 SHIP

orders
key priority
1 1-URGENT
2 2-HIGH
3 1-URGENT
4 5-LOW
5 3-MEDIUM
6 1-URGENT
7 2-HIGH
8 1-URGENT

9 1-URGENT
10 2-HIGH
11 3-MEDIUM
12 5-LOW
13 1-URGENT
14 3-MEDIUM
15 1-URGENT

16 3-MEDIUM
17 2-HIGH
18 3-MEDIUM
19 5-LOW
20 1-URGENT
21 2-HIGH
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Scale Out: Network is the Bottleneck

▸ Single node: Performance is
bound algorithmically

▸ Cluster: Network is bottleneck
for query processing

▸ We propose a novel join
algorithm called Neo-Join

▸ Goal:
Increase local processing to
close the performance gap
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Neo-Join: Network-optimized Join

1. Open Shop Scheduling
Efficient network communication

2. Optimal Partition Assignment
Increase local processing

3. Selective Broadcast
Handle value skew
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Open Shop Scheduling
Efficient network communication
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Standard Network Model

▸ Star topology
Nodes are connected to a
central switch

▸ Fully switched
All links can be used
simultaneously

▸ Fully duplex
Nodes can both send and
receive at full speed
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Bandwidth Sharing

node 3

node 2node 1

node 2 node 3

node 1

SWITCH SWITCH

bottleneck

bottleneck

node 3

node 2node 1

node 2 node 3

node 1

SWITCH SWITCH

bottleneck

bottleneck

▸ Simultaneous use of a single link creates a bottleneck

▸ Reduces bandwidth by at least a factor of 2
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Näıve Schedule

node 1 5 5
1 1 1 1 1 4

1 1 1 1 1 4
node 2
node 3

time

node 1 4 5 1
4 4 1
4 4 1

node 2
node 3

maximum straggler

bandwidth sharing

time▸ Node 2 and 3 send to node 1 at the same time

▸ Bandwidth sharing increases network duration significantly
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Open Shop Scheduling (1)

▸ Avoiding bandwidth sharing
translates directly to open
shop scheduling

▸ Network Transfer:
Receivers receive from at
most one sender, senders
send to at most one receiver

▸ Open Shop:
Processors perform one task
at a time, only one task of a
job is processed at a time

Open Shop Network Transfer

task data transfer

processor receiver

job sender

execution time message size
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Open Shop Scheduling (2)

▸ Bipartite graph of senders
and receivers

▸ Edge weights represent
transfer size

▸ Scheduler repeatedly finds
perfect matchings

▸ Each matching specifies one
communication phase

▸ Transfers in a phase will
never share bandwidth

sender

receiver

5 45

node 2 node 3

node 3node 2node 1

node 1
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Optimal Schedule

node 1 5 5
1 1 1 1 1 4

1 1 1 1 1 4
node 2
node 3

time

node 1 4 5 1
4 4 1
4 4 1

node 2
node 3

maximum straggler

bandwidth sharing

time

▸ Open shop schedule achieves minimal network duration

▸ Schedule duration determined by maximum straggler
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Optimal Partition
Assignment

Minimize network duration for distributed joins
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Distributed Join

▸ Tuples may join with tuples
on remote nodes

▸ Repartition and redistribute
both relations for local join

▸ Tuples will join only with the
corresponding partition

▸ Using hash, range, radix, or
other partitioning scheme

▸ In any case: Decide how to
assign partitions to nodes
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Running Example: Hash Partitioning

no
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lineitem
key shipmode
1 MAIL
1 MAIL
1 MAIL
2 SHIP
2 MAIL
6 SHIP
6 SHIP
6 SHIP

6 MAIL
10 SHIP
11 MAIL
11 MAIL
13 MAIL
13 MAIL

13 MAIL
13 SHIP
17 MAIL
18 MAIL
18 MAIL
19 SHIP
20 SHIP

orders
key priority
1 1-URGENT
2 2-HIGH
3 1-URGENT
4 5-LOW
5 3-MEDIUM
6 1-URGENT
7 2-HIGH
8 1-URGENT

9 1-URGENT
10 2-HIGH
11 3-MEDIUM
12 5-LOW
13 1-URGENT
14 3-MEDIUM
15 1-URGENT

16 3-MEDIUM
17 2-HIGH
18 3-MEDIUM
19 5-LOW
20 1-URGENT
21 2-HIGH 445
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Assign Partitions to Nodes (1)

Option 1: Minimize network traffic

▸ Assign partition to node that
owns its largest part

▸ Only the small fragments of a
partition sent over the network

▸ Schedule with minimal network
traffic may have high duration
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Assign Partitions to Nodes (2)

Option 2: Minimize response time:

▸ Query response time is time
from request to result

▸ Query response time dominated
by network duration

▸ To minimize network duration,
minimize maximum straggler
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Minimize Maximum Straggler

▸ Formalized as mixed-integer
linear program

▸ Objective function minimizes
maximum straggler

▸ Shown to be NP-hard
(see paper for proof sketch)

▸ In practice fast enough
using CPLEX or Gurobi
(< 0.5 % overhead for 32
nodes, 200 M tuples each)

▸ Partition assignment can
optimize any partitioning
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(a) Create histograms according to the last three bits of the join key
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(b) Compute an optimal partition as-
signment based on the histograms
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(c) Resulting send/receive costs deter-
mine the network phase duration

Fig. 4. Example for the optimal partition assignment which aims at a minimal
network phase duration with three nodes and eight (23) radix partitions

maximum stragglers with a cost of 12 as depicted in Fig. 4(c).
For a perfect hash partitioning one would expect that every
node has to send 1�n-th of its tuples to every other node (≈
21) and also receive 1�n-th of the tuples from every other
node (also ≈ 21). In this simplified example, radix partitioning
reduced the duration of the network phase by almost a factor
of two compared to hash partitioning.

B. Optimal Partition Assignment (Phase 2)

The previous section described how to repartition the input
relations so that tuples with the same join key fall into the same
partition. In general, the new partitions are fragmented across
the nodes. Therefore, all fragments of one specific partition
have to be transferred to the same node for joining. This
section describes how to determine an assignment of partitions
to nodes that minimizes the network phase duration.

We define the receive cost of a node as the number of
tuples it receives from other nodes for the partitions that were
assigned to it. Similarly, its send cost is defined as the number
of tuples it has to send to other nodes. Section III-C4 shows
that the minimum network phase duration is determined by the
node with the maximum send/receive cost. The assignment is
therefore optimized to minimize this maximum cost.

A naı̈ve approach would assign a partition to the node that
owns its largest fragment. However, this is not optimal in
general. Consider the assignment for the running example in
Fig. 4(b). Partition 7 is assigned to node 1 even though node 0

owns its largest fragment. While the assignment of partition 7
to node 0 reduces the send cost of node 0 by 4 tuples, it also
increases its receive cost to a total of 13 tuples. As a result, the
network phase duration increases from 12 to 13 (cf. Fig. 4(c)).

1) Mixed Integer Linear Programming: We phrase the par-
tition assignment problem as a mixed integer linear program
(MILP). As a result, one can use an integer programming
solver to solve it. The linear program computes a configuration
of the decision variables xij ∈ {0,1}. These decision variables
define the assignment of the p partitions to the n nodes: xij = 1
determines that partition j is assigned to node i, while xij = 0
specifies that partition j is not assigned to node i.

Each partition has to be assigned to exactly one node:
n−1�
i=0 xij = 1 for 0 ≤ j < p (1)

The linear program should minimize the duration of the
network phase, which is equal to the maximum send or receive
cost over all nodes. We denote the send cost of node i as si

and its receive cost as ri. The objective function is therefore:

min max
0≤i<n{si, ri} (2)

Using the decision variables xij and the size of partition j
at node i—denoted with hij—we can express the amount of
data each node has to send (si) and receive (ri):

si = p−1�
j=0 hij ⋅ (1 − xij) for 0 ≤ i < n (3)

ri = p−1�
j=0
��xij

n−1�
k=0,i≠k hkj

�� for 0 ≤ i < n (4)

Equation 3 computes the send cost of node i as the size
of all local fragments of partitions that are not assigned to
it. Likewise, equation 4 adds the size of remote fragments of
partitions that were assigned to node i to the receive cost.

MILPs require a linear objective, which minimizing a max-
imum is not. Fortunately, we can rephrase the objective and
instead minimize a new variable w. Additional constraints take
care that w assumes the maximum over the send/receive costs:

(OPT-ASSIGN)

minimize w, subject to

w ≥ p−1�
j=0 hij(1 − xij) 0 ≤ i < n

w ≥ p−1�
j=0
��xij

n−1�
k=0,i≠k hkj

�� 0 ≤ i < n

1 = n−1�
i=0 xij 0 ≤ j < p

One can obtain an optimal solution for a specific partition
assignment problem (OPT-ASSIGN) by passing the mixed
integer linear program to an optimizer such as Microsoft
Gurobi3 or IBM CPLEX4. These solvers can be linked as a
library to create and solve linear programs via API calls.

3http://www.gurobi.com
4http://ibm.com/software/integration/optimization/cplex
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Running Example: Locality
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P2 P3P1

lineitem
key shipmode
1 MAIL
1 MAIL
1 MAIL
2 SHIP
2 MAIL
6 SHIP
6 SHIP
6 SHIP

6 MAIL
10 SHIP
11 MAIL
11 MAIL
13 MAIL
13 MAIL

13 MAIL
13 SHIP
17 MAIL
18 MAIL
18 MAIL
19 SHIP
20 SHIP

orders
key priority
1 1-URGENT
2 2-HIGH
3 1-URGENT
4 5-LOW
5 3-MEDIUM
6 1-URGENT
7 2-HIGH
8 1-URGENT

9 1-URGENT
10 2-HIGH
11 3-MEDIUM
12 5-LOW
13 1-URGENT
14 3-MEDIUM
15 1-URGENT

16 3-MEDIUM
17 2-HIGH
18 3-MEDIUM
19 5-LOW
20 1-URGENT
21 2-HIGH

radix

radix

radix

15

11

112

1 1

1
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Locality

▸ Running example exhibits
time-of-creation clustering

▸ Radix repartitioning on most
significant bits retains locality

▸ Partition assignment can
exploit locality

▸ Significantly reduces query
response time
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Selective Broadcast
Handle value skew
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Running Example: Skew
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8 MAIL
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10 MAIL
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key priority

1 1-URGENT
2 2-HIGH
3 1-URGENT
4 1-URGENT

5 1-URGENT
6 2-HIGH
7 3-MEDIUM

8 3-MEDIUM
9 2-HIGH
10 3-MEDIUM
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Skew

▸ Value skew can lead to some
very large partitions

▸ Assignment of these partitions
increases network duration

▸ One may try to balance skewed
partitions by partitioning the
input into more partitions

▸ High skew is still a problem
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Broadcast

▸ Alternative data
redistribution scheme

▸ Replicate the smaller
relation between all nodes

▸ Larger relation remains
fragmented across nodes

broadcast O local join

O L

O

O L

O

⨝

⨝

⨝
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Selective Broadcast

▸ Decide per partition whether
to assign or broadcast

▸ Broadcast partitions with
large relation size difference

▸ Assign the other partitions
taking locality into account

▸ Role reversal possible:
Broadcast different partitions
by different relations
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Evaluation
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Locality

▸ Vary locality from 0 %
(uniform distribution) to
100 % (range partitioning)

▸ Neo-Join improves join
performance from 29 M to
156 M tuples/s (> 500 %)

▸ 3 nodes (Core i7, 4 cores,
3.4 GHz, 32 GB RAM),
600 M tuples (64 bit key,
64 bit payload)
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Skew

▸ Zipfian distribution models
realistic data skew

▸ Using more partitions
alleviates the problem

▸ Selective broadcast actually
improves performance for
skewed inputs

▸ 4 nodes, 400 M tuples

Zipf factor s

partitions 0.00 0.25 0.50 0.75 1.00

16 27 s 24 s 23 s 29  s 44  s

512 23 s 23 s 23 s 23 s 33  s

16 (SB) 24 s 24 s 23 s 20  s 10  s
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TPC-H Results (scale factor 100)

▸ Results for three selected
TPC-H queries

▸ Broadcast outperforms
hash for large relation size
differences

▸ Neo-Join always performs
better due to selective
broadcast and locality

▸ 4 nodes, scale factor 100
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Summary

Motivation:
▸ Network is the bottleneck for distributed query processing

▸ Increase local processing to close the performance gap

Contributions:
▸ Open Shop Scheduling avoids bandwidth sharing

▸ Optimal Partition Assignment minimizes query response
time and can exploit locality in the data distribution

▸ Selective Broadcast combines repartitioning and broadcast
to improve the performance for skewed inputs
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