Query Optimization

Exercise Session 4

Bernhard Radke

November 28, 2016

MVP

1000 100
R, 0.005 Ry

0.05 0.001
Ry 0.02 Ry

100 500

MVP

1000
R, _ 0.005
0.05
R, _ 0.02
100

100

0.001

R3
500

Query graph to Weighted
Directed Join Graph:

>

>

nodes = joins

physical edges between
"adjacent” joins (share one
relation)

virtual edges - everywhere
else

WDJG is a clique

MVP

1000

R

0.05

100

100

— 0005 p, Vio T T2 w3
0.001

— 002 R3 Vig T >34
500

MVP

Annotations:
[y
[umlv|

» the cost of a node = the
cost of the join Cout

» edge weight w, , =

V12

L

(S

V14

e
-—

e
-— -

V23

)

V34

MVP

1000 100
R, 0005

0.05 0.001

Ry — 0.2 p
100 500

500 5 50
Vie T > ves

»T 05 -
05 |5 012

o 50

Vig T >34
5000 10 1000

Effective spanning tree (informally)

ESP corresponds to an "effective” execution plan (no extra joins).
Three conditions:

1. T is binary

2. For every non-leaf node v;, for every edge v; — v; there is a
common base relation between v; and the subtree with the

root v;

3. For every node v; = R x S with two incoming edges vy — v;
and v; = v;
3.1 Ror S can be present at most in one of the subtrees vy or v;
3.2 unless the subtree v; (or vi) contains both R and S

MVP (informally)

Construct an effective spanning tree in two steps:

Step 1 (Choose an edge to reduce the cost of an expensive

operation)
Start with the most expensive node, find the incoming edge
that can reduce the cost the most. Update the cost of the
node. Add the edge to the ESP, check the conditions. Repeat
until

» no more edges can reduce any cost

> no more join nodes to consider

MVP (informally)

Construct an effective spanning tree in two steps:

Step 1 (Choose an edge to reduce the cost of an expensive

operation)
Start with the most expensive node, find the incoming edge
that can reduce the cost the most. Update the cost of the
node. Add the edge to the ESP, check the conditions. Repeat
until

» no more edges can reduce any cost

> no more join nodes to consider

Step 2 (Find edges causing minimum increase to the result of
joins)
Similar to Step 1, but start with the cheapest node.

MVP - example

We start with a graph without
virtual edges.
Two cost lists:
» for the Step 1:
Q1 = Va4, vas, V12, V23
» for the Step 2: Qo =)

500 5 50
vig T >3
0.5
0.5(|5 0.1 |2
50

—_ >
Via T > v

5000 10 1000

MVP - example

500 . 50
Vig T > v
05
05| |5 01| |2
50
Via T > v34
5000 10 1000

Start with vq4,

MVP - example

500 5 50

_ >
Vi = V23

0.5
0.5] |5 0.1}]2

50

e
Via T > V34

3000 10 1000

Start with vy4, select the edge vio — vag.
After vig is executed, |[R; X Rp| = 500

We replace Rl by Rl X R2 in Vig = Rl X R4Z
Vig = (Rl X Rz) X R4

cost(vi4) = 500 % 100 * 0.05 + 500 = 3000

MVP - example

500 50
Vig V23 V12
05
0.1] |2
50
Via T V34 Via
3000 10 1000

Add edge to EST.

Add new edge viqg — vo3.

Consider vi4, no incoming edge with weight < 1:
Q1 = vaa, v12, V23.

Q2 = vig

MVP - example

500 50
Vig V23 V12
0.5
0.1 |12
50
Vig T >3 Vi4
3000 10 150

Consider vs4, one incoming edge with weight < 1:
Recompute cost: cost(v3a) = 50 % 100 * 0.02 + 50 = 150
Q1 = vi2, v34, V23.

Q= vis

MVP - example

500 50
V12 Vo3 V12
50
Vig T >3 vig
3000 10 150

Remove edges, add to EST.
Q1 = vi2, v3a, Vo3.
Q2 = vig

V23

V34

MVP - example

500 50
V12 V23 V12
50
Via T >3 vig
3000 10 150

vi2: no incoming edge with the weight < 1

Q1 = v34, V03.
@2 = vi2, V14

V23

V34

MVP - example

500 50
V12 V23 V12
50
Via T > V34 Vi4
3000 10 150

Vv34,V23: no incoming edges with the weights > 1

QL =0.
Q2 = v23, Va4, V12, V14
End of Step 1.

V23

V34

MVP - example

500 50
V12 V23 V12
50
Via T > v34 V14
3000 10 150

V23

V34

Step 2: try to increase the cost of the EST as little as possible.
v23: one incoming edge, does not violate the EST conditions. Add

it and stop.

MVP - example

500 50
vi2 V23 vi2 V23
50
Via T > v34 Vi4 V34
10

MVP - example

V12

V14

V23

V3q

V34

V12

See also

C.Lee, C.Shih and Y.Chen. Optimizing large join queries using a
graph-based approach. In IEEE Transactions on Knowledge and
Data Engineering, 2001.

Overview Dynamic Programming Strategy

» generate optimal join trees bottom up
» start from optimal join trees of size one (relations)

» build larger join trees by (re-)using those of smaller sizes

DP: Generating Linear Trees

DPsizeLinear(R)
Input: a set of relations R = {Ry, ..., R,} to be joined
Output:an optimal left-deep (right-deep, zig-zag) join tree
B = an empty DP table 2F — join tree
for each R, ¢ R
B[{Ri}] = Ri
for each 1 < s < n ascending {
foreach SCR,Rie R:|S|=s—1AR &5 {
if —cross products A—S connected to R; continue
p1 = B[S], p> = B[{Ri}]
if p; = € continue
P = CreateJoinTree(p1, p2);
if B[SU{R;}|] =€V C(B[SU{R;}]) > C(P)
B[SU{Ri}]=P
}

}
return B[{Ry, ..., R,}]

DPsize

> iterate over subsets of the set of relations, the size is
increasing

> 51, 5: 5:NS, =0, S is connected to S

DPsize - example

10 10
0.6
0.1 0.2
R Ry

10 10

Bushy vs. Linear trees

» Linear: add one more relation every time, i.e. add R to
optimal T7 to get optimal T =T1 X R

» Bushy: consider all pairs of optimal T; and T, to find optimal

T=T1x T,
20 20
B 0.5 C
0.01 0.01
A D
10

10

DPsub

> lterate over subsets in the integer order

> Before a join tree for S is generated, all the relevant subsets
of S must be available

DPsub: Integer Enumeration

Enumerate {R1, R2, R3, Ra} in Integer order.

NB

The ability to build the DP table is crucial for passing the exam!

Homework: Task 1 (15 points)

» Give an example query qraph with join selectivities for which
the greedy operator ordering (GOO) algorithm does not give
the optimal (with regards to Coyt) join tree. Specify the
optimal join tree.

» For that example perform the IKKBZ-based heuristics

Homework: Task 2 (15 points)

> Using the program from the the last exercise as basis,
construct the query graph for each connected component.

Info

» Exercises due: 9 AM, Dezember 05, 2016

