Query Optimization
Exercise Session 6

Bernhard Radke

December 12, 2016
Generating Permutations

ConstructPermutationsRec\((P, R, B)\)

Input: a prefix \(P\), remaining relations \(R\), best plan \(B\)

Output: side effects on \(B\)

if \(|R| = 0\) {

 if \(B = \epsilon \lor C(B) > C(P)\) {
 \(B = P\)
 }
}

else {

 for each \(R_i \in R\) {
 if \(C(P \circ < R_i >) \leq C(P[1:|P| - 1] \circ < R_i, P[|P|]>)\) {
 ConstructPermutationsRec\((P \circ < R_i >, R \setminus \{R_i\}, B)\)
 }
 }
}
Generating Permutations

- Keep current prefix and the rest of relations
- Extend the prefix only if exchanging the last two relations does not result in a cheaper sequence
Memoization

- DP: bottom-up construction of the join tree
- Memoization: top-down construction
- Memoize already generated join tree to avoid duplicate work
- Sometimes more efficient
Algorithms: Roadmap

- Deterministic
 - Exact (IKKBZ, DP, Permutations, Memoization,...)
 - Heuristics (GOO, MVP, Query Simplification,...)
- Probabilistic
- Hybrid
Random left-deep trees with cross products

- there are \(n! \) trees (every tree - permutation)
- let’s generate a random number in \([0, n!]\)
- \textit{unranking} - for a generated number construct a tree
- \textit{ranking} - for a tree define it’s number
Generating random permutations

\[\text{for each } k \in [0, n[\text{ descending} \]
\[\text{swap}(\pi[k], \pi[\text{random}(k)])\]

Array \(\pi\) initialized with elements \([0, n[. \)
\(\text{random}(k)\) generates a random number in \([0, k].\)
Unranking

Unrank\((n, r)\)

Input: the number \(n\) of elements to be permuted and the rank \(r\) of the permutation to be constructed

Output: a permutation \(\pi\)

for each \(0 \leq i < n\)

\[\pi[i] = i\]

for each \(n \geq i > 0\) descending \{
 swap\((\pi[i - 1], \pi[r \mod i])\)
 \[r = \lfloor r/i \rfloor\]
\}

return \(\pi\);
Random join trees with cross products

- Generate a tree, then generate a permutation: $C(n - 1)$ trees, $n!$ permutations
- Pick a random number $b \in [0, C(n - 1)]$, unrank b
- Pick a random number $p \in [0, n![$, unrank p
- Attach the permutation to the leaves
Unranking

- every tree is a word in \{ (,) \}
- map such words to the grid, every step up is (, down)
Unranking

- every tree is a word in \{(,)\}
- map such words to the grid, every step up is (, down)
Unranking

- every tree is a word in \{(,)\}
- map such words to the grid, every step up is (, down)
- the number of different paths \(q \) can be computed (see lectures)
- Procedure: start in \((0,0)\), walk up as long as rank is smaller than \(q \). When it is bigger, step down, \(rank = rank - q \)
Example

- Bushy tree number 56, 8 leaves
Random Join Tree Selection
Random Join Tree Selection
Random Join Tree Selection

429
Random Join Tree Selection
Random Join Tree Selection

Diagram of a random join tree with points labeled 429 and 297.
Random Join Tree Selection

Diagram showing a tree structure with numbers at various nodes, including 429, 297, 165, 75, 27, 20.
Random Join Tree Selection

![Random Join Tree Selection Diagram]
Random Join Tree Selection
Random Join Tree Selection
Random Join Tree Selection
Info

- Exercises due: 9 AM, December 19, 2016