Query Optimization
Exercise Session 9

Bernhard Radke

January 16, 2017
Genetic Algorithms

Big picture

▸ Create a “population”, i.e. create p random join trees
▸ Encode them using ordered list or ordinal number encoding
▸ Create the next generation
 ▸ Randomly mutate some members (e.g. exchange two relations)
 ▸ Pairs members of the population and create “crossovers”
▸ Select the best, kill the rest

Details

▸ Encodings
▸ Crossovers
Encoding

Ordered lists
- Simple
- Left-deep trees: Straight-forward
- Bushy trees: Label edges in join-graph, encode the processing tree just like the execution engine will evaluate it

Ordinal numbers
- Are slightly more complex
- Manipulate a list of relations (careful: indexes are 1-based)
- Left-deep trees: \(((R_1 \Join R_4) \Join R_3) \Join R_2) \Join R_5\)
- Bushy trees: \((R_3 \Join (R_1 \Join R_2)) \Join (R_4 \Join R_5)\)
Encoding

Ordered lists

- Simple
- Left-deep trees: Straight-forward
- Bushy trees: Label edges in join-graph, encode the processing tree just like the execution engine will evaluate it

Ordinal numbers

- Are slightly more complex
- Manipulate a list of relations (careful: indexes are 1-based)
- Left-deep trees: \(((R_1 \bowtie R_4) \bowtie R_3) \bowtie R_2) \bowtie R_5 \mapsto 13211
- Bushy trees: \((R_3 \bowtie (R_1 \bowtie R_2)) \bowtie (R_4 \bowtie R_5)\)
Ordered lists

- Simple
- Left-deep trees: Straight-forward
- Bushy trees: Label edges in join-graph, encode the processing tree just like the execution engine will evaluate it

Ordinal numbers

- Are slightly more complex
- Manipulate a list of relations (careful: indexes are 1-based)
- Left-deep trees: \(((R_1 \bowtie R_4) \bowtie R_3) \bowtie R_5 \mapsto 13211
- Bushy trees: \((R_3 \bowtie (R_1 \bowtie R_2)) \bowtie (R_4 \bowtie R_5) \mapsto 12 21 23 12

Encoding
Crossover

Subsequence exchange for ordered list encoding
 ▶ Select subsequence in parent 1, e.g. abcdefgh
 ▶ Reorder subsequence according to the order in parent 2

Subsequence exchange for ordinal number encoding
 ▶ Swap two sequences of same length and same offset
 ▶ What if we get duplicates?

Subset exchange for ordered list encoding
 ▶ Find random subsequences in both parents that have the same length and contain the same relations
 ▶ Exchange them to create two children
Submit exercises to radke@in.tum.de