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Join Ordering
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Join Ordering Basics

Queries Considered

Concentrate on join ordering, that is:

• conjunctive queries

• simple predicates

• predicates have the form a1 = a2 where a1 is an attribute and a2 is
either an attribute or a constant

• even ignore constants in some algorithms

We join relations R1, . . . ,Rn, where Ri can be

• a base relation

• a base relation including selections

• a more complex building block or access path

Pretending to have a base relation is ok for now.
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Join Ordering Basics

Query Graph

Queries of this type can be characterized by their query graph:

• the query graph is an undirected graph with R1, . . . ,Rn as nodes

• a predicate of the form a1 = a2, where a1 ∈ Ri and a2 ∈ Rj forms an
edge between Ri and Rj labeled with the predicate

• a predicate of the form a1 = a2, where a1 ∈ Ri and a2 is a constant
forms a self-edge on Ri labeled with the predicate

• most algorithms will not handle self-edges, they have to be pushed
down
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Join Ordering Basics

Sample Query Graph

student attend

lectureprofessor

sno=asno

lno=alno

pno=lpno

pname="Sokrates"
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Join Ordering Basics

Shapes of Query Graphs

chains cycles stars

cliques cyclic tree grid

• real world queries are somewhere in-between

• chain, cycle, star and clique are interesting to study

• they represent certain kind of problems and queries
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Join Ordering Basics

Join Trees

A join tree is a binary tree with

• join operators as inner nodes

• relations as leaf nodes

Algorithms will produce different kinds of join trees

• ordered or unordered

• with cross products or without

The most common case is ordered, without cross products
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Join Ordering Basics

Shape of Join Trees

Commonly used classes of join trees:

• left-deep tree

• right-deep tree

• zigzag tree

• bushy tree

The first three are summarized as linear trees.
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Join Ordering Basics

Join Selectivity

Input:

• cardinalities |Ri |
• selectivities fi ,j : if pi ,j is the join predicate between Ri and Rj , define

fi ,j =
|Ri pi,j Rj |
|Ri × Rj |

Calculate:

• result cardinality:

|Ri pi,j Rj | = fi ,j |Ri ||Rj |

Rational: The selectivity can be computed/estimated easily (ideally).
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Join Ordering Basics

Cardinality of Join Trees

Given a join tree T , the result cardinality |T | can be computed recursively
as

|T | =

{
|Ri | if T is a leaf Ri

(
∏

Ri∈T1,Rj∈T2
fi ,j)|T1||T2| if T = T1 T2

• allows for easy calculation of join cardinality

• requires only base cardinalities and selectivities

• assumes independence of the predicates
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Join Ordering Basics

Sample Statistics

As running example, we use the following statistics:

|R1| = 10

|R2| = 100

|R3| = 1000

f1,2 = 0.1

f2,3 = 0.2

• implies query graph R1 − R2 − R3

• assume fi ,j = 1 for all other combinations
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Join Ordering Basics

A Basic Cost Function

Given a join tree T , the cost function Cout is defined as

Cout(T ) =

{
0 if T is a leaf Ri

|T |+ Cout(T1) + Cout(T2) if T = T1 T2

• sums up the sizes of the (intermediate) results

• rational: larger intermediate results cause more work

• we ignore the costs of single relations as they have to be read anyway
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Join Ordering Basics

Basic Join Specific Cost Functions

For single joins:

Cnlj(e1 e2) = |e1||e2|
Chj(e1 e2) = 1.2|e1|

Csmj(e1 e2) = |e1| log(|e1|) + |e2| log(|e2|)

For sequences of join operators s = s1 . . . sn:

Cnlj(s) =
n∑

i=2

|s1 . . . si−1||si |

Chj(s) =
n∑

i=2

1.2|s1 . . . si−1|

Csmj(s) =
n∑

i=2

|s1 . . . si−1| log(|s1 . . . si−1|) +
n∑

i=2

|si | log(|si |)
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Join Ordering Basics

Remarks on the Basic Cost Functions

• cost functions are simplistic

• algorithms are modelled very simplified (e.g. 1.2, no n-way sort etc.)

• designed for left-deep trees

• Chj and Csmj do not work for cross products (fix: take output
cardinality then, which is Cnl)

• in reality: other parameters than cardinality play a role

• cost functions assume the same join algorithm for the whole join tree
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Join Ordering Basics

Sample Cost Calculations

Cout Cnl Chj Csmj

R1 R2 100 1000 12 697.61
R2 R3 20000 100000 120 10630.26
R1 × R3 10000 10000 10000 10000.00

(R1 R2) R3 20100 101000 132 11327.86
(R2 R3) R1 40000 300000 24120 32595.00
(R1 × R3) R2 30000 1010000 22000 143542.00

• costs differ vastly between join trees

• different cost functions result in different costs

• the cheapest plan is always the same here, but relative order varies

• join trees with cross products are expensive

• join order is essential under all cost functions
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Join Ordering Basics

More Examples

For the query |R1| = 1000, |R2| = 2, |R3| = 2, f1,2 = 0.1, f1,3 = 0.1
we have costs:

Cout

R1 R2 200
R2 × R3 4
R1 R3 200

(R1 R2) R3 240
(R2 × R3) R1 44
(R1 R3) R2 240

• here cross product is best

• but relies on the small sizes of |R2| and |R3|
• attractive if the cardinality of one relation is small
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Join Ordering Basics

More Examples (2)

For the query |R1| = 10, |R2| = 20, |R3| = 20, |R4| = 10, f1,2 = 0.01, f2,3 =
0.5, f3,4 = 0.01
we have costs:

Cout

R1 R2 2
R2 R3 200
R3 R4 2

((R1 R2) R3) R4 24
((R2 × R3) R1) R4 222
(R1 R2) (R3 R4) 6

• covers all join trees due to the symmetry of the query

• the bushy tree is better than all join trees
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Join Ordering Basics

Symmetry and ASI

• cost function Cimpl is called symmetric if
Cimpl(e1

imple2) = Cimpl(e2
imple1)

• for symmetric cost functions commutativity can be ignored

• ASI: adjacent sequence interchange (see IKKBZ algorithm for a
definition)

Our basic cost functions can be classified as:
ASI ¬ASI

symmetric Cout Csmj

¬symmetric Chj -

• more complex cost functions are usually ¬ASI, often also ¬symmetric

• symmetry and especially ASI can be exploited during optimization



87 / 592

Join Ordering Search Space

Classification of Join Ordering Problems

We distinguish four different dimensions:

1. query graph class: chain, cycle, star, and clique

2. join tree structure: left-deep, zig-zag, or bushy trees

3. join construction: with or without cross products

4. cost function: with or without ASI property

In total, 48 different join ordering problems.



88 / 592

Join Ordering Search Space

Reminder: Catalan Numbers

The number of binary trees with n leave nodes is given by C(n − 1), where
C(n) is defined as

C(n) =

{
1 if n = 0∑n−1

k=0 C(k)C(n − k − 1) if n > 0

It can be written in a closed form as

C(n) =
1

n + 1

(
2n

n

)

The Catalan Numbers grown in the order of Θ(4n/n
3
2 )
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Join Ordering Search Space

Number Of Join Trees with Cross Products

left deep n!
right deep n!
zig-zag n!2n−2

bushy n!C(n − 1)

= (2n−2)!
(n−1)!

• rational: number of leaf combinations (n!) × number of unlabeled
trees (varies)

• grows exponentially

• increases even more with a flexible tree structure
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Join Ordering Search Space

Chain Queries, no Cross Products

Let us denote the number of left-deep join trees for a chain query
R1 − . . .− Rn as f (n)

• obviously f (0) = 1, f (1) = 1

• for n > 1, consider adding Rn to all join trees for R1 − . . .− Rn−1

• Rn can be added at any position following Rn−1

• lets denote the position of Rn−1 from the bottom with k ([1, n − 1])

• there are n − k join trees for adding Rn after Rn−1

• one additional tree if k = 1, Rn can also be added before Rn−1

• for Rn−1 to be at k, Rn−k − . . .Rn−2 must be below it. f (k − 1) trees

for n > 1 :

f (n) = 1 +
n−1∑
k=1

f (k − 1) ∗ (n − k)
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Join Ordering Search Space

Chain Queries, no Cross Products (2)

The number of left-deep join trees for chain queries of size n is

f (n) =

{
1 if n < 2

1 +
∑n−1

k=1 f (k − 1) ∗ (n − k) if n ≥ 2

solving the recurrence gives the closed form

f (n) = 2n−1

• generalization to zig-zag as before



92 / 592

Join Ordering Search Space

Chain Queries, no Cross Products (3)

The generalization to bushy trees is not as obvious

• each subtree must contain a subchain to avoid cross products

• thus do not add single relations but subchains

• whole chain must be R1 − . . .− Rn, cut anywhere

• consider commutativity (two possibilities)

This leads to the formula

f (n) =

{
1 if n < 2∑n−1

k=1 2f (k)f (n − k) if n ≥ 2

solving the recurrence gives the closed form

f (n) = 2n−1C(n − 1)
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Join Ordering Search Space

Star Queries, no Cross Products

Consider a star query with R1 at the center and R2, . . . ,Rn as satellites.

• the first join must involve R1

• afterwards all other relations can be added arbitrarily

This leads to the following formulas:

• left-deep: 2 ∗ (n − 1)!

• zig-zag: 2 ∗ (n − 1)! ∗ 2n−2 = (n − 1)! ∗ 2n−1

• bushy: no bushy trees possible (R1 required), same as zig-zag
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Join Ordering Search Space

Clique Queries, no Cross Products

• in a clique query, every relation is connected to each other

• thus no join tree contains cross products

• all join trees are valid join trees, the number is the same as with cross
products
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Join Ordering Search Space

Sample Numbers, without Cross Products

Chain Queries Star Queries
Left-Deep Zig-Zag Bushy Left-Deep Zig-Zag/Bushy

n 2n−1 22n−3 2n−1C(n − 1) 2(n − 1)! 2n−1(n − 1)!

1 1 1 1 1 1
2 2 2 2 2 2
3 4 8 8 4 8
4 8 32 40 12 48
5 16 128 224 48 384
6 32 512 1344 240 3840
7 64 2048 8448 1440 46080
8 128 8192 54912 10080 645120
9 256 32768 366080 80640 10321920

10 512 131072 2489344 725760 18579450
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Join Ordering Search Space

Sample Numbers, with Cross Products

Left-Deep Zig-Zag Bushy
n n! n!2n−2 n!C(n − 1)

1 1 1 1
2 2 2 2
3 6 12 12
4 24 96 120
5 120 960 1680
6 720 11520 30240
7 5040 161280 665280
8 40320 2580480 17297280
9 362880 46448640 518918400

10 3628800 968972800 17643225600
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Join Ordering Search Space

Problem Complexity

query graph join tree cross products cost function complexity

general left-deep no ASI NP-hard
tree/star/chain left-deep no ASI, 1 joint. P
star left-deep no NLJ+SMJ NP-hard

general/tree/star left-deep yes ASI NP-hard
chain left-deep yes - open

general bushy no ASI NP-hard
tree bushy no - open
star bushy no ASI P

chain bushy no any P

general bushy yes ASI NP-hard
tree/star/chain bushy yes ASI NP-hard
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Join Ordering Greedy Heuristics

Greedy Heuristics - First Algorithm

• search space of joins trees is very large

• greedy heuristics produce suitable join trees very fast

• suitable for large queries

For the first algorithm we consider:

• left-deep trees

• no cross products

• relations ordered to some weight function (e.g. cardinality)

Note: the algorithms produces a sequence of relations; it uniquely
identifies the left-deep join tree.
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Join Ordering Greedy Heuristics

Greedy Heuristics - First Algorithm (2)

GreedyJoinOrdering-1(R = {R1, . . . ,Rn},w : R → R)
Input: a set of relations to be joined and weight function
Output:a join order
S = ε
while (|R| > 0) {

m = arg minRi∈R w(Ri )
R = R \ {m}
S = S◦ < m >
}
return S

• disadvantage: fixed weight functions

• already chosen relations do not affect the weight

• e.g. does not support minimizing the intermediate result



100 / 592

Join Ordering Greedy Heuristics

Greedy Heuristics - Second Algorithm

GreedyJoinOrdering-2(R = {R1, . . . ,Rn},w : R,R∗ → R)
Input: a set of relations to be joined and weight function
Output:a join order
S = ε
while (|R| > 0) {

m = arg minRi∈R w(Ri ,S)
R = R \ {m}
S = S◦ < m >
}
return S

• can compute relative weights

• but first relation has a huge effect

• and the fewest information available
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Join Ordering Greedy Heuristics

Greedy Heuristics - Third Algorithm

GreedyJoinOrdering-3(R = {R1, . . . ,Rn},w : R,R∗ → R)
Input: a set of relations to be joined and weight function
Output:a join order
S = ∅
for each Ri ∈ R {

R ′ = R \ {Ri}
S ′ =< Ri >
while (|R ′| > 0) {

m = arg minRj∈R′ w(Rj ,S
′)

R ′ = R ′ \ {m}
S ′ = S ′◦ < m >
}
S = S ∪ {S ′}
}
return arg minS ′∈S w(S ′[n],S ′[1 : n − 1])

• commonly used: minimize selectivities (MinSel)
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Join Ordering Greedy Heuristics

Greedy Operator Ordering

• the previous greedy algorithms only construct left-deep trees

• Greedy Operator Ordering (GOO) [1] constructs bushy trees

Idea:

• all relations have to be joined somewhere

• but joins can also happen between whole join trees

• we therefore greedily combine join trees (which can be relations)

• combine join trees such that the intermediate result is minimal
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Join Ordering Greedy Heuristics

Greedy Operator Ordering (2)

GOO(R = {R1, . . . ,Rn})
Input: a set of relations to be joined
Output:a join tree
T = R
while |T | > 1 {

(Ti ,Tj) = arg min(Ti∈T ,Tj∈T ),Ti 6=Tj
|Ti Tj |

T = (T \ {Ti}) \ {Tj}
T = T ∪ {Ti Tj}
}
return T0 ∈ T

• constructs the result bottom up

• join trees are combined into larger join trees

• chooses the pair with the minimal intermediate result in each pass
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Join Ordering IKKBZ

IKKBZ

Polynomial algorithm for join ordering (original [2], improved [3])

• produces optimal left-deep trees without cross products

• requires acyclic join graphs

• cost function must have ASI property

• join method must be fixed

Can be used as heuristic if the requirements are violated
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Join Ordering IKKBZ

Overview

• the algorithms considers each relation as first relation to be joined

• it tries to order the other relations by ”benefit” (rank)

• if the ordering violates the query constraints, it constructs compounds

• the compounds guarantee the constraints (locally) and are again
ordered by benefit

• related to a known job-ordering algorithm
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Join Ordering IKKBZ

Cost Function

The IKKBZ algorithm considers only cost functions of the form

C (Ti Rj) = |Ti | ∗ hj(|Rj |)

• each relation Rj can have its own hj

• we denote the set of hj by H, writing CH for the parametrized cost
function

• examples: hj ≡ 1.2 for Chj , hj ≡ id for Cnl

We will often use cardinalities, thus we define ni :

• ni is the cardinality of Ri (n = Ri )

• hi (ni ) is are the costs per input tuple of a join with Ri
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Join Ordering IKKBZ

Precedence Graph

Given a query graph G = (V ,E ) and a starting relation Rk , we construct
the directed precedence graph GP

k = (V P
k ,E

P
k ) rooted in Rk as follows:

1. choose Rk as the root node of GP
k , V P

k = {Rk}
2. while |V P

k | < |V |, choose a Ri ∈ V \ V P
k such that

∃Rj ∈ V P
k : (Rj ,Ri ) ∈ E . Add Ri to V P

k and Rj → Ri to EP
k .

The precedence graph describes the (partial) ordering of joins implied by
the query graph.
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Join Ordering IKKBZ

Sample Precedence Graph

R6

R5

R4R3

R2

R1

R2

R6R5

R4

R3

R1

query graph precedence graph rooted in R1
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Join Ordering IKKBZ

Conformance to a Precedence Graph

A sequence S = v1, . . . , vk of nodes conforms to a precedence graph
G = (V ,E ) if the following conditions are satisfied:

1. ∀i ∈ [2, k]∃j ∈ [1, i [: (vj , vi ) ∈ E

2. 6 ∃i ∈ [1, k], j ∈]i , k] : (vj , vi ) ∈ E

Note: IKKBZ constructs left-deep trees, therefore it is sufficient to
consider sequences.
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Join Ordering IKKBZ

Notations

For non-empty sequences S1 and S2 and a precedence graph G = (V ,E ),
we write S1 → S2 if S1 must occur before S2. More precisely S1 → S2 iff:

1. S1 and S2 conform to G

2. S1 ∩ S2 = ∅
3. ∃vi , vj ∈ V : vi ∈ S1 ∧ vj ∈ S2 ∧ (vi , vj) ∈ E

4. 6 ∃vi , vj ∈ V : vi ∈ S1 ∧ vj ∈ V \ S1 \ S2 ∧ (vi , vj) ∈ E

Further, we write

R1,2,...,k = R1 R2 . . . Rk

n1,2,...,k = |R1,2,...,k |
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Join Ordering IKKBZ

Selectivities

For a given precedence graph, let Ri be a relation and Ri be the set of a
relations from which there exists a path to Ri

• in any conforming join tree which includes Ri , all relations from Ri

must be joined first

• all other relations Rj that might be joined before Ri will have no
connection to Ri , thus fi ,j = 1

Hence, we can define the selectivity of the join with Ri as

si =

{
1 if |Ri | = 0∏

Rj∈Ri
fi ,j if |Ri | > 0

Note: we call the si a selectivities, although they depend on the
precedence graph
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Join Ordering IKKBZ

Cardinalities

If the query graph is a chain (totally ordered), the following conditions
holds:

n1,2,...,k = sk ∗ |Rk | ∗ |R1,2,...,k−1|
= |sk | ∗ nk ∗ n1,2,...,k−1

As a closed form, we can write

n1,2,...,k =
k∏

i=1

sini

as s1 = 1
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Join Ordering IKKBZ

Costs

The costs for a totally ordered precedence graph G can be computed as
follows:

CH(G ) =
n∑

i=2

[n1,2,...,i−1hi (ni )]

=
n∑

i=2

[(
i∏

j=1

sjnj)hi (ni )]

• if we choose hi (ni ) = sini then CH ≡ Cout

• the factor sini determines how much the input relation to be joined
with Ri changes its cardinality after the join has been performed

• if sini is less than one, we call the join decreasing, if it is larger than
one, we call the join increasing
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Join Ordering IKKBZ

Costs (2)

For the algorithm, we prefer a (equivalent) recursive definition of the cost
function:

CH(ε) = 0

CH(Ri ) = 0 if Ri is the root

CH(Ri ) = hi (ni ) else

CH(S1S2) = CH(S1) + T (S1) ∗ CH(S2)

where

T (ε) = 1

T (S) =
∏
Ri∈S

sini
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Join Ordering IKKBZ

ASI Property

Let A and B be two sequences and V and U two non-empty sequences.
We say a cost function C has the adjacent sequence interchange property
(ASI property), if and only if there exists a function T and a rank function
defined as

rank(S) =
T (S)− 1

C (S)

such that the following holds

C (AUVB) ≤ C (AVUB)⇔ rank(U) ≤ rank(V )

if AUVB and AVUB satisfy the precedence constraints imposed by a given
precedence graph.
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Join Ordering IKKBZ

First Lemma

Lemma: The cost function Ch has the ASI-Property.
Proof: The proof can be derived from the definition of CH :

CH(AUVB) = CH(A)

+T (A)CH(U)

+T (A)T (U)CH(V )

+T (A)T (U)T (V )CH(B)

and, hence,

CH(AUVB)− CH(AVUB) = T (A)[CH(V )(T (U)− 1)− CH(U)(T (V )− 1)]

= T (A)CH(U)CH(V )[rank(U)− rank(V )]

The lemma follows.
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Join Ordering IKKBZ

Module

Let M = {A1, . . . ,An} be a set of sequences of nodes in a given
precedence graph. Then, M is called a module, if for all sequences B that
do not overlap with the sequences in M, one of the following conditions
holds:

• B → Ai , ∀Ai ∈ M

• Ai → B, ∀Ai ∈ M

• B 6→ Ai and Ai 6→ B, ∀Ai ∈ M
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Join Ordering IKKBZ

Second Lemma

Lemma: Let C be any cost function with the ASI property and {A,B} a
module. If A→ B and additional rank(B) ≤ rank(A), then we find an
optimal sequence among those in which B directly follows A.
Proof: by contradiction. Every optimal permutation must have the form
UAVBW since A→ B.
Assumption: V 6= ε for all optimal solutions.

• if rank(V ) ≤ rank(A), we can exchange V and A without increasing
the costs.

• if rank(A) ≤ rank(V ), rank(B) ≤ rank(V ) due to the transitivity of
≤. Hence, we can exchange B and V without increasing the costs.

Both exchanges produces legal sequences since {A,B} is a module.
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Join Ordering IKKBZ

Contradictory Sequences and Compound Relations

• if the precedence graph demands A→ B but rank(B) ≤ rank(A), we
speak of contradictory sequences A and B

• second lemma ⇒ no non-empty subsequence can occur between A
and B

• we combine A and B into a new single node replacing A and B

• this nodes represents a compound relation comprising of all relations
in A and B

• its cardinality is computed by multiplying the cardinalities of all
relations in A and B

• its selectivity is the product of all selectivities si of relations Ri

contained in A and B
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Join Ordering IKKBZ

Normalization and Denormalization

• the continued process of building compound relations until no more
contradictory sequences exist is called normalization

• the opposite step, replacing a compound relation by the sequence of
relations it was derived from is called denormalization
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Join Ordering IKKBZ

Algorithm

IKKBZ(G ,CH)
Input: an acyclic query graph G for relations R = {R1, . . . ,Rn},

a cost function CH

Output:the optimal left-deep tree
S = ∅
for each Ri ∈ R {

Gi = the precedence graph derived from G rooted at Ri

Si = IKKBZ-Sub(Gi ,CH)
S = S ∪ {Si}
}
return arg minSi∈S CH(Si )

• considers each relation as starting relation

• constructs the precedence graph and starts the main algorithm
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Join Ordering IKKBZ

Algorithm (2)

IKKBZ-Sub(Gi ,CH)
Input: a precedence graph Gi for relations R = {R1, . . . ,Rn} rooted at Ri ,

a cost function CH

Output:the optimal left-deep tree under Gi

while Gi is not a chain {
r = a subtree of Gi whose subtrees are chains
IKKBZ-Normalize(r)
merge the chains under r according to the rank function (ascending)
}
IKKBZ-Denormalize(Gi )
return Gi

• transforms the precedence graph into a chain

• wherever there are multiple choices, there are serialized according to
the rank

• normalization required to preserve the query graph
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Join Ordering IKKBZ

Algorithm (3)

IKKBZ-Normalize(R)
Input: a subtree R of a precedence graph G = (V ,E )
Output:a normalized subtree
while ∃r , c ∈ T , (r , c) ∈ E : rank(r) > rank(c) {

replace r and c by a compound relation r ′ that represent rc
}
return R

• merges relations that would have been reorder if only considering the
rank

• guarantees that the rank is ascending in each subchain
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Join Ordering IKKBZ

Algorithm (4)

IKKBZ-Denormalize(R)
Input: a precedence graph R containing relations and compound relations
Output:a denormalized precedence graph, containing only relations
while ∃r ∈ R : r is a compound relation {

replace r by the sequence of relations it represents
}
return R

• unpacks the compound relations

• required to get a real join tree as final result
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Join Ordering IKKBZ

Sample Algorithm Execution
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Input: query graph Step 1: precedence graph for R1

the precedence graph includes the ranks
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Join Ordering IKKBZ

Sample Algorithm Execution (2)

5
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50

9

15
5

6

R6,7

49

50

24

25

19

20

R5

R4R2

R1

R3

Step 1: precedence graph for R1 Step 2: normalization

rank(R6) > rank(R7), but R6 → R7
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Sample Algorithm Execution (3)

9

15
5

6

R6,7

49

50

24

25

19

20

R5

R4R2

R1

R3

9

15

5

6
R5

R6,7

49

50

24

25

19

20
R4R2

R1

R3

Step 2: normalization Step 3: merging subchains

rank(R5) < rank(R6,7)
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Sample Algorithm Execution (3)

9

15

5

6
R5

R6,7

49

50

24

25

19

20
R4R2

R1

R3

5

6
R5

199

320
R4,6,7

49

50

24

25

R2

R1

R3

Step 3: merging subchains Step 4: normalization

rank(R4) > rank(R5), but R4 → R5
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Sample Algorithm Execution (4)

5

6
R5

199

320
R4,6,7

49

50

24

25

R2

R1

R3

199

320

5

6

R4,6,7

R5

R3
24

25

49

50
R2

R1

Step 4: normalization Step 5: merging subchains

rank(R4,6,7) < rank(R5) < rank(R3) < rank(R2)
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Sample Algorithm Execution (5)

199

320

5

6

R4,6,7

R5

R3
24

25

49

50
R2

R1

R2

R3

R5

R7

R6

R4

R1

Step 5: merging subchains Step 6: denormalization

Algorithm has to continue for all other root relations.
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Maximum Value Precedence Algorithm

• greedy heuristics can produce poor results

• IKKBZ only support acyclic queries and ASI cost functions

• Maximum Value Precedence (MVP) [4] algorithm is a polynomial
time heuristic with good results

• considers join ordering a graph theoretic problem
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Directed Join Graph

Given a conjunctive query with predicates P.

• for all join predicates p ∈ P, we denote by R(p) the relations whose
attributes are mentioned in p.

• the directed join graph of the query is a triple G = (V ,Ep,Ev ), where
V is the set of predicates and Ep and Ev are sets of directed edges
defined as follows

• for any nodes u, v ∈ V , if R(u) ∩R(v) 6= ∅ then (u, v) ∈ Ep and
(v , u) ∈ Ep

• if R(u) ∩R(v) = ∅ then (u, v) ∈ Ev and (v , u) ∈ Ev

• edges in Ep are called physical edges, those in Ev virtual edges

Note: all nodes u, v there is an edge (u, v) that is either physical or
virtual. Hence, G is a clique.
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Examples: Spanning Tree and Join Tree

• every spanning tree in the directed join graph leads to a join tree

R4R3R2R1
p1,2 p3,4

p2,3

query graph directed join graph

p1,2 p3,4

p2,3 R4

R3

R2R1

spanning tree I join tree I
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Examples: Spanning Tree and Join Tree (2)

R4R3R2R1
p1,2 p3,4

p2,3

query graph directed join graph

p1,2

p2,3

p3,4 R1 R2R3 R4

spanning tree II join tree II
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Examples: Spanning Tree and Join Tree (3)

R5R1 R2 R3 R4
p4,5

p3,4p2,3

p1,2

query graph directed join graph

p4,5

p3,4p2,3

p1,2

R5

R4R3R3R2 R2R1

spanning tree III join tree III (?)

• spanning tree does not correspond to a (effective) join tree!
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Effective Spanning Trees

It can be shown that a spanning tree T = (V ,E ) is effective, it is satisfies
the following conditions:

1. T is a binary tree

2. for all inner nodes v and nodes u with (u, v) ∈ E :
R(T (u))) ∩R(v) 6= ∅

3. for all nodes v , u1, u2 with u1 6= u2, (u1, v) ∈ E and (u2, v) ∈ E one
of the following conditions holds:

3.1 ((R(T (u1)) ∩R(v)) ∩ (R(T (u2)) ∩R(v))) = ∅ or
3.2 (R(T (u1)) = R(v)) ∨ (R(T (u2)) = R(v))

We denote by T (v) the partial tree rooted at v .
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Adding Weights to the Edges

For two nodes v , u ∈ V we define u u v = R(u) ∩R(v)

• for simplicity, we assume that every predicate involves exactly two
relations

• then for all u, v ∈ V , a u v contains a single relation (or none)

Let v ∈ V be a node with R(v) = {Ri ,Rj}
• we abbreviate Ri vRj by v

Using these notations, we can attach weights to the edges to define the
weighted directed join graph.
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Adding Weights to the Edges (2)

Let G = (V ,Ep,Ev ) be a directed join graph for a conjunctive query with
join predicates P. The weighted directed join graph is derived from G by
attaching a weight to each edge as follows:

• Let (u, v) ∈ Ep be a physical edge. The weight wu,v of (u, v) is
defined as

wu,v =
| u|
|u u v |

• For virtual edges (u, v) ∈ Ev , we define

wu,v = 1

Note that wu,v is not symmetric.
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Remark on Edge Weights

The weights of physical edges are equal to the si used in the
IKKBZ-Algorithm.
Assume R(u) = {R1,R2},R(v) = {R2,R3}. Then

wu,v =
| u|
|u u v |

=
|R1 R2|
|R2|

=
f1,2|R1||R2|
|R2|

= f1,2|R1|

Hence, if the join R1 uR2 is executed before the join R2 vR3, the input
size to the latter join changes by a factor of wu,v
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Adding Weights to the Nodes

• the weight of a node reflects the change in cardinality to be expected
when certain other joins have been executed before

• it depends on a (partial) spanning tree S

Given S , we denote by S
pi,j

the result of the join pi,j if all joins preceding
pi ,j in S have been executed. Then the weight attached to node pi ,j is
defined as

w(pi ,j ,S) =
| S

pi,j
|

|Ri pi,j Rj |

For empty sequences we define w(pi ,j , ε) = |Ri pi,j Rj |.
Similarly, we define the cost of a node pi ,j depending on other joins
preceding it in some given spanning tree S . We denote this by C (pi ,j ,S).

• the actual cost function can be chosen arbitrarily

• if we have several join implementations: take the minimum
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Algorithm Overview

The algorithm builds an effective spanning tree in two phases:

1. it takes those edges with a weight < 1

2. it adds the remaining edges

keeping track of effectiveness during the process.

• rational: weight < 1 is good

• decreases the work for later operators

• should be done early

• increasing intermediate results as late as possible
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MVP Algorithm

MVP(G )
Input: a weighted directed join graph G = (V ,Ep,Ev )
Output:an effective spanning tree
Q1 = a priority queue for nodes, largest w first
Q2 = a priority queue for nodes, smallest w first
insert all nodes in V to Q1

G ′ = (V ′,E ′) with V ′ = V and E ′ = Ep // working graph
S = (VS ,Es) with Vs = V and Es = ∅ // result
MVP-Phase1(G ,G ′,S ,Q1,Q2)
MVP-Phase2(G ,G ′,S ,Q1,Q2)
return S
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MVP Algorithm (2)

MVP-Phase1(G ,G ′,S ,Q1,Q2)
Input: state from MVP
Output:modifies the state
while |Q1| > 0 ∧ |Es | < |V | − 1 {

v = head of Q1

U = {u|(u, v) ∈ E ′ ∧ wu,v < 1 ∧ (V ,ES ∪ {(u, v)}) is acyclic and effective}
if U = ∅ {

Q1 = Q1 \ {v}
Q2 = Q2 ∪ {v}
} else {

u = arg maxu∈U C ( v ,S)− C ( v , (V ,ES ∪ {(u, v)}))
MVPUpdate(G ,G ′, S , (u, v))
recompute w for v and its ancestors
}
}
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MVP Algorithm (3)

MVP-Phase2(G ,G ′,S ,Q1,Q2)
Input: state from MVP
Output:modifies the state
while |Q2| > 0 ∧ |Es | < |V | − 1 {

v = head of Q2

U = {(x , y)|(x , y) ∈ E ′ ∧ (x = v ∨ y = v) ∧ (V ,ES ∪ {(x , y)}) is acyclic
and effective}

(x , y) = arg min(x ,y)∈U C ( v , (V ,ES ∪ {(x , y)}))− C ( v ,S)
MVPUpdate(G ,G ′,S , (x , y))
recompute w for y and its ancestors
}
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MVP Algorithm (4)

MVPUpdate(G ,G ′, S , (u, v))
Input: state from MVP, an edge to be added to S
Output:modifies the state
ES = ES ∪ {(u, v)}
E ′ = E ′ \ {(u, v), (v , u)}
E ′ = E ′ \ {(u,w)|(u,w) ∈ E ′}
E ′ = E ′ ∪ {(v ,w)|(u,w) ∈ Ep, (v ,w) ∈ Ev}
if v has two incoming edges in S {

E ′ = E ′ \ {(w , v)|(w , v) ∈ E ′}
}
if v has one outflowing edge in S {

E ′ = E ′ \ {(v ,w)|(v ,w) ∈ E ′}
}

• checks that S is a tree (one parent, at most two children)

• detects transitive physical edges
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Dynamic Programming

Basic premise:

• optimality principle

• avoid duplicate work

A very generic class of approaches:

• all cost functions (as long as optimality principle holds)

• left-deep/bushy, with/without cross products

• finds the optimal solution

Concrete algorithms can be more specialized of course.
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Optimality Principle

Consider the two joins trees

(((R1 R2) R3) R4) R5

and
(((R3 R1) R2) R4) R5

• if we know that ((R1 R2) R3) is cheaper than ((R3 R1) R2), we
know that the first join is cheaper than the second join

• hence, we could avoid generating the second alternative and still
won’t miss the optimal join tree
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Optimality Principle (2)

More formally, the optimality for join ordering:

Let T be an optimal join tree for relations R1, . . . ,Rn. Then,
every subtree S of T must be an optimal join tree for the
relations contained in it.

• optimal substructure: the optimal solution for a problem can be
constructed from optimal solutions to its subproblems

• not true with physical properties (but can be fixed)
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Overview Dynamic Programming Strategy

• generate optimal join trees bottom up

• start from optimal join trees of size one (relations)

• build larger join trees by (re-)using those of smaller sizes

To keep the algorithms concise, we use a subroutine CreateJoinTree that
joins two trees.
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Creating Join Trees

CreateJoinTree(T1,T2)
Input: two (optimal) join trees T1, T2

for linear trees: assume that T2 is a single relation
Output:an (optimal) join tree for T1 T2

B = ∅
for each impl ∈ { applicable join implementations } {

if ¬right-deep only {
B = B ∪ {T1

implT2}
}
if ¬left-deep only {

B = B ∪ {T2
implT1}

}
}
return arg minT∈B C (T )
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Search Space with Sharing under Optimality Principle

R4R3R2R1

{R3, R4}
{R2, R4}

{R2, R3}
{R1, R2}
{R1, R3}
{R1, R4}

{R2, R3, R4}

{R1, R3, R4}

{R1, R2, R3}

{R1, R2, R4}

{R1, R2, R3, R4}
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Generating Linear Trees

• a (left-deep) linear tree T with |T | > 1 has the form T ′ Ri , with
|T | = |T ′|+ 1

• if T is optimal, T ′ must be optimal too

• basic strategy: find the optimal T by joining all optimal T ′ with
T \ T ′

enumeration order varies between algorithms
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Generating Linear Trees (2)

DPsizeLinear(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal left-deep (right-deep, zig-zag) join tree
B = an empty DP table 2R → join tree
for each Ri ∈ R

B[{Ri}] = Ri

for each 1 < s ≤ n ascending {
for each S ⊂ R,Ri ∈ R : |S | = s − 1 ∧ Ri 6∈ S {

if ¬cross products ∧¬S connected to Ri continue
p1 = B[S ], p2 = B[{Ri}]
if p1 = ε continue
P = CreateJoinTree(p1, p2);
if B[S ∪ {Ri}] = ε ∨ C (B[S ∪ {Ri}]) > C (P)

B[S ∪ {Ri}] = P
}
}
return B[{R1, . . . ,Rn}]
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Order in which Subtrees are generated

The ordering in which subtrees are generated does not matter as long as
the following condition is not violated:

Let S be a subset of {R1, . . . ,Rn}. Then, before a join tree for S
can be generated, the join trees for all relevant subsets of S must
already be available.

• relevant means that they are valid subproblems by the algorithm

• usually this means connected (no cross products)
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Join Ordering Dynamic Programming

Generation in Integer Order

000 {}
001 {R1}
010 {R2}
011 {R1,R2}
100 {R3}
101 {R1,R3}
110 {R2,R3}
111 {R1,R2,R3}

• can be done very efficiently

• set representation is just a number
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Generating Linear Trees (3)

DPsubLinear(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal left-deep (right-deep, zig-zag) join tree
B = an empty DP table 2R → join tree
for each Ri ∈ R

B[{Ri}] = Ri

for each 1 < i ≤ 2n − 1 ascending {
S = {Rj ∈ R|(bi/2j−1cmod 2) = 1}
for each Rj ∈ S {

if ¬cross products ∧¬S \ {Rj} connected to Rj continue
p1 = B[S \ {Rj}], p2 = B[{Rj}]
if p1 = ε continue
P = CreateJoinTree(p1, p2);
if B[S ] = ε ∨ C (B[S ]) > C (P) B[S ] = P
}
}
return B[{R1, . . . ,Rn}]
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Generating Bushy Trees

• a bushy tree T with |T | > 1 has the form T1 T2, with
|T | = |T1|+ |T2|

• if T is optimal, both T1 and T2 must be optimal too

• basic strategy: find the optimal T by joining all pairs of optimal T1

and T2
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Generating Bushy Trees (2)

DPsize(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal bushy join tree
B = an empty DP table 2R → join tree
for each Ri ∈ R

B[{Ri}] = Ri

for each 1 < s ≤ n ascending {
for each S1,S2 ⊂ R : |S1|+ |S2| = s {

if (¬cross products ∧¬S1 connected to S2) ∨ (S1 ∩ S2 6= ∅) continue
p1 = B[S1], p2 = B[S2]
if p1 = ε ∨ p2 = ε continue
P = CreateJoinTree(p1, p2);
if B[S1 ∪ S2] = ε ∨ C (B[S1 ∪ S2]) > C (P)

B[S1 ∪ S2] = P
}
}
return B[{R1, . . . ,Rn}]
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Generating Bushy Trees (3)

DPsub(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal bushy join tree
B = an empty DP table 2R → join tree
for each Ri ∈ R

B[{Ri}] = Ri

for each 1 < i ≤ 2n − 1 ascending {
S = {Rj ∈ R|(bi/2j−1cmod 2) = 1}
for each S1 ⊂ S ,S2 = S \ S1 {

if ¬cross products ∧¬S1 connected to S2 continue
p1 = B[S1], p2 = B[S2]
if p1 = ε ∨ p2 = ε continue
P = CreateJoinTree(p1, p2);
if B[S ] = ε ∨ C (B[S ]) > C (P) B[S ] = P
}
}
return B[{R1, . . . ,Rn}]
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Efficient Subset Generation

If we use integers as set representation, we can enumerate all subsets of S
as follows:

S1 = S&(−S)
do {

S2 = S − S1

// Do something with S1 and S2

S1 = S&(S1 − S)
} while (S1! = S)

• enumerates all subsets except ∅ and S itself

• very fast
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Remarks

• DPsize/DPsizeLinear does not really test for p1 = ε

• it keeps a list of plans for a given size

• candidates can be found very fast

• ensures polynomial time in some cases (we will look at it again)

• DPsub/DPsubLinear is faster if the problem is not polynomial, though
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Memoization

• top-down formulation of dynamic programming

• recursive generation of join trees

• memoize already generated join trees to avoid duplicate work

• easier code

• sometimes more efficient (more knowledge, allows for pruning)

• but usually slower than dynamic programming



163 / 592

Join Ordering Dynamic Programming

Memoization (2)

Memoization(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal bushy join tree
B = an empty DP table 2R → join tree
for each Ri ∈ R

B[{Ri}] = Ri

MemoizationRec(B,R)
return B[{R1, . . . ,Rn}]

• initializes the DP table and triggers the recursive search

• main work done during recursion
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Memoization (3)

MemoizationRec(B,S)
Input: a DP table B and a set of relations S to be joined
Output:an optimal bushy join tree for the subproblem
if B[S ] = ε {

for each S1 ⊂ S ,S2 = S \ S1

p1 =MemoizationRec(B,S1), p2 =MemoizationRec(B, S2)
P=CreateJoinTree(p1, p2)
if B[S ] = ε ∨ C (B[S ]) > C (P) B[S ] = P
}
}
return B[S ]

• checks for connectedness omitted
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Dynamic Programming - Connected Subgraphs

• DP a very versatile strategy

• common usage scenario: bushy, no cross produts

• DPsize and DPsub support it, of course, but not optimal

• enumeration order does not consider the query graph

• many pairs have to be pruned due to conectedness

• especially bad for DPsub

Solution: consider the query graph structure during DP enumeration [5]
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Asymptotic Search Space

DPsize:

• organize DP by the size of the join tree

• problem: only few DP slots, many pairs considered

good algorithm for chains, very bad for cliques:
chains cycles stars cliques

pairs O(n4) O(n4) O(4n) O(4n)

DPsub:

• organize DP by the set of relations involved

• problem: always 2n DP slots, fixed enumeration

good algorithm for cliques, but adapts badly:
chains cycles stars cliques

pairs O(2n) O(n2n) O(3n) O(3n)
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Observation

DPsize and DPsub generate many pairs that are pruned anyway
(connectedness, overlap).

Typical pruned pairs (chain with 4 relations):

not connected not disjoint invalid subproblems

last example ⇒ every join partner must be a connected subgraph:

. . .
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Graph Theoretic Approach

• reformulation as graph theoretic problem:

• enumerate all connected subgraphs of the query graph

• for each subgraph enumerate all other connected subgraphs that are
disjoint but connected to it

• each connected subgraph - complement pair (ccp) can be joined

• enumerate them suitable for DP ⇒ DP algorithm

algorithm adapts naturally to the graph structure:
chains cycles stars cliques

pairs O(n3) O(n3) O(n2n) O(3n)
Lohman et al: #ccp is a lower bound for all DP enumeration algorithms
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DP Algorithm using Connected Subgraphs
If we can efficiently enumerate all connected subgraphs/connected
complement pairs, the resulting DP algorithm is:

DPccp(R)
Input: a connected query graph with relations R = {R0, . . . ,Rn−1}
Output:an optimal bushy join tree
B = an empty DP table 2R → join tree
for ∀Ri ∈ R

B[{Ri}] = Ri

for ∀ csg-cmp-pairs (S1, S2), S = S1 ∪ S2 {
p1 = B[S1], p2 = B[S2]
P = CreateJoinTree(p1, p2);
if B[S ] = ε ∨ C (B[S ]) > C (P)

B[S ] = P
}
return B[{R0, . . . ,Rn−1}]

The main problem is enumerating the pairs.
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Effect on Search Space

Absolute number of generated pairs

Chain Star
n DPccp DPsub DPsize DPccp DPsub DPsize
2 1 2 1 1 2 1
5 20 84 73 32 130 110

10 165 3,962 1,135 2,304 38,342 57,888
15 560 130,798 5,628 114,688 9,533,170 57,305,929
20 1,330 4,193,840 17,545 4,980,736 2,323,474,358 59,892,991,338

Cycle Clique
n DPccp DPsub DPsize DPccp DPsub DPsize
2 1 2 1 1 2 1
5 40 140 120 90 180 280

10 405 11,062 2,225 28,501 57,002 306,991
15 1,470 523,836 11,760 7,141,686 14,283,372 307,173,877
20 3,610 22,019,294 37,900 1,742,343,625 3,484,687,250 309,338,182,241
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Enumerating Connected Subgraphs

• two steps: enumerate all connected subgraphs, enumerate disjoint but
connected subgraphs for a given one ⇒ pairs

• enumerate all pairs, enumerate no duplicates, enumerate for DP

• if (a, b) is enumerated, do not enumerate (b, a)

• requires total ordering of connected subgraphs

• preparation: label nodes breadth-first from 0 to n − 1

Preliminaries, given query graph G = (V ,E ):

V = {v0, . . . , vn−1}
N (V ′) = {v ′|v ∈ V ′ ∧ (v , v ′) ∈ E}
Bi = {vj |j ≤ i}
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

R0

R2

R4

R1 R3
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Join Ordering Dynamic Programming - Connected Subgraphs

Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Choose all nodes as enumeration
start node once

R0

R2

R4

R1 R3
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Join Ordering Dynamic Programming - Connected Subgraphs

Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

First emit only the node itself as
subgraph

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Then enlarge the subgraph
recursively

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Prohibit nodes with smaller
labels. Thus the set of valid
nodes increases over time

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

In each recursion, find all
neighboring nodes that are not
prohibited

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Add all combinations to the
subgraph and emit the new
subgraph

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Add all combinations to the
subgraph and emit the new
subgraph

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Add all combinations to the
subgraph and emit the new
subgraph

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

Then, add all combinations to
the subgraph and increase
recursively

R0

R2

R4

R1 R3
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Enumerating Connected Subgraphs (2)

EnumerateCsg(G )
for all i ∈ [n − 1, . . . , 0] descending {

emit {vi};
EnumerateCsgRec(G , {vi}, Bi );

}

EnumerateCsgRec(G , S , X )
N = N (S) \ X ;
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

emit (S ∪ S ′);
}
for all S ′ ⊆ N, S ′ 6= ∅, enumerate subsets first {

EnumerateCsgRec(G , (S ∪ S ′), (X ∪ N));
}

The neighborhood is prohibited
during recursion, preventing
duplicates

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

Prohibit all nodes that will be start
nodes later on and the primary
subgraph

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

Find all neighboring nodes that
are not prohibited

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

Consider each of the nodes

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

Choose the node as complemen-
tary subgraph and emit it

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

Recursively increase the subgraph
re-using EnumerateCsgRec

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

Again prohibit nodes with a
smaller label to prevent duplicates

R0

R2

R4

R1 R3
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Enumerating Complementary Subgraphs
EnumerateCmp(G ,S1)
X = Bmin(S1) ∪ S1;
N = N (S1) \ X ;
for all (vi ∈ N by descending i) {

emit {vi};
EnumerateCsgRec(G , {vi}, X ∪ (Bi ∩ N));

}

• EnumerateCsg+EnumerateCmp produce all ccp

• resulting algorithm DPccp considers exactly #ccp pairs

• which is the lower bound for all DP enumeration algorithms
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Remarks

• DPsize is good for chains, DPsub for cliques

• implementation of DPccp is more involved

• each enumeration step must be fast (ideally O(1), at most O(n),
where n is the number of relations)

• but benefits are huge

• DPccg adopts to query graph structure

• considers minimal number of pairs

• especially for ”in-between queries” (e.g. stars) much faster
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Beyond (Regular) Query Graphs

Some queries are more complex

select *
from R1 r1, R2 r2, R3 r3,

R4 r4, R5 r5, R6 r6

where r1.a=r2.a and r2.b=r3.c and
r4.d=r5.d and r5.e=r6.e and

abs(r1.f + r3.f )
= abs(r4.g + r6.g)

R1 R4

R2 R5

R3 R6

• does not induce a graph but a hyper-graph

• graph based DP algorithm not directly applicable

• generic DP algorithms work, but not as efficient
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Handling Hypergraphs

A hypergraph is a pair H = (V ,E ) such that

1. V is a non-empty set of nodes and

2. E is a set of hyperedges, where a hyperedge is an unordered pair
(u, v) of non-empty subsets of V (u ⊂ V and v ⊂ V ) with the
additional condition that u ∩ v = ∅.

Nodes in V are totally ordered via an (arbitrary) relation ≺.

• enumeration is performed by decreasing ≺
• ≺ orders the search space (DP order, duplicates)
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Handling Hypergraphs (2)

In principle same approach as for regular graphs:

• start with one node

• expand recursively by following
edges

Problem:

• hyperedges are n:m edges

• where to expand to from
{R1,R2,R3}?

• must still guarantee DP order

R1 R4

R2 R5

R3 R6
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Handling Hypergraphs - Neighborhood

When computing the neighborhood, choose representatives:

• a hyperedge ”leads” to the least node
(regarding ≺)

• therefore N({R1,R2,R3}) = {R4}
• ensures DP order (and prevents

duplicates)

But:

• leads to (temporarily) disconnected
graphs

• {R1,R2,R3,R4} is not connected

• must expand further until R6 reached

R1 R4

R2 R5

R3 R6

Requires checks for connectedness

• can exploit the DP table for cheap tests

• if it is connected, a DP entry must exist
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Non-Inner Joins
Some queries use non-inner joins:

• either explicitly (OUTER JOIN etc.) or implicitly (unnesting etc.)

• are not freely reorderable

A.x=C .y

B.x=A.y

A B

C

6≡

B.x=A.y

A.x=C .y

A C

B

Must be taken into account during join ordering.



180 / 592

Join Ordering Dynamic Programming - Connected Subgraphs

Non-Inner Joins - Reordering Constraints

Examine pair-wise reorderings of operators

• for all ◦1, ◦2, check if (R ◦1 S) ◦2 T ≡ R ◦1 (S ◦2 T )

• assume syntax constraints are satisfied

Gives a big compatibility matrix

...

+ + - + + + ...
- + - - - - ...
- + + - - - ...
- - - - - - ...
- - - - - - ...
- - - - - - ...

...
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Non-Inner Joins - TESs

Extract reordering constraints from operator tree in two steps:

1. build the syntactic eligibility set (SES) for each operator
I set of relations that has to be in the input

SES

b=d {B,D}

a=c D {A,C}

a=b C {A,B}
A B
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Non-Inner Joins - TESs

Extract reordering constraints from operator tree in two steps:

1. build the syntactic eligibility set (SES) for each operator

2. bottom up traversal, build the total eligibility set (TES)
I initialize TES with SES
I check for conflicts with other operators (can be in subtrees!)
I if conflict, add other TES to own TES

SES TES

b=d {B,D} {A,B,D}

a=c D {A,C} {A,B,C}

a=b C {A,B} {A,B}
A B

TESs capture reordering restrictions by requiring relations, which imply
operators.
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Non-Inner Joins - Using TESs

Add the TES to the join edge

• operator ”requires” certain relations, so encode it like this

• constructs hyperedges (n:m)

• eliminates invalid reorderings from the search space

Original query graph from previous example: C A B D

After adding TESs to the edges:
A

C D
B
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Simplifying the Query Graph

The graph-based DP algorithm considers the minimal number of join-pairs

• we therefore cannot expect to get a better runtime for exact solutions

• many problems can be solved exactly, but not all

• depends on the structure of the query graph

• chains are simple, others, e.g., stars, are hard

• how to cope with these queries?

Greedy heuristics would work, but results are much worse than DP
solutions.
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Simplifying the Query Graph - General Idea

If the problem is too complex to solve exactly, simplify the query graph
until it gets tractable.

• the query graph describes all join possibilities

• by modifying the query graph we can rule out some possibilities

• this reduces the search space and the optimization time

• we prefer modifications that are ”safe”

• uses greedy steps only for the ”easy” problems, then use DP

Note: ”simplifying” means simpler for the optimizer.
For a human the query graph tends to get strange.
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Simplifying a Star Query

graph
R0 R1

R3 R2

R0 R1

R3 R2

R0 R1

R0 R1

joins R0 R2

{R0,R1} R2

R0 R3

R0 R3

original

1st step

graph

R0 R1

R3 R2

R0 R1

R3 R2

R0 R1 R0 R1

joins {R0,R1} R2 {R0,R1} R2

{R0,R1} R3 {R0,R1,R2} R3

2nd step 3rd step

search
space
size

6

We decide to order before (introduces hyperedge)
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Simplifying a Star Query

graph
R0 R1

R3 R2

R0 R1

R3 R2

R0 R1 R0 R1

joins R0 R2 {R0,R1} R2

R0 R3 R0 R3

original 1st step

graph

R0 R1

R3 R2

R0 R1

R3 R2

R0 R1 R0 R1

joins {R0,R1} R2 {R0,R1} R2

{R0,R1} R3 {R0,R1,R2} R3

2nd step 3rd step

search
space
size

6 6
3

We decide to order R0 R1 before R0 R2 (introduces hyperedge)
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Simplifying a Star Query

graph
R0 R1

R3 R2

R0 R1

R3 R2

R0 R1 R0 R1

joins R0 R2 {R0,R1} R2

R0 R3 R0 R3

original 1st step

graph

R0 R1

R3 R2

R0 R1

R3 R2

R0 R1

R0 R1

joins {R0,R1} R2

{R0,R1} R2

{R0,R1} R3

{R0,R1,R2} R3

2nd step

3rd step

search
space
size

6 6
6 3
2

We decide to order R0 R1 before R0 R3 (introduces hyperedge)
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Simplifying a Star Query

graph
R0 R1

R3 R2

R0 R1

R3 R2

R0 R1 R0 R1

joins R0 R2 {R0,R1} R2

R0 R3 R0 R3

original 1st step

graph

R0 R1

R3 R2

R0 R1

R3 R2

R0 R1 R0 R1

joins {R0,R1} R2 {R0,R1} R2

{R0,R1} R3 {R0,R1,R2} R3

2nd step 3rd step

search
space
size

6 6
6 3
6 2
1

We decide to order {R0,R1} R2 before R0 R3 (introduces hyperedge)
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Performing A Simplification Step

Given a query graph G = (V ,E )

1. examine all joins 1, 2 ∈ E that are neighboring
I neighboring ≈ have a relation in common (see [6])

2. make sure that 2 could be ordered before 1

I checks for contradictions, requires a fast cycle checker

3. compute the orderingBenefit( 1, 2)
I this is the heuristical part, different benefit heuristics could be used

4. retain the SL
1 1SR

1 ,S
L
2 2SR

2 with the maximal orderingBenefit
I maintain priority queues to speed up repeated simplification

5. return G ′ = (V ,E \ { 1} ∪ {(SL
1 ∪ SL

2 ∪ SR
2 ) 1SR

1 })

The resulting query graph is more restrictive, i.e., simpler.

(there are more cases due to different possible ways of neighboring)
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Estimating the Ordering Benefit

We want to prefer orderings that are almost certainly a good idea.
Therefore one approach is to maximize

orderingBenefit(X 1R1,X 2R2) =
C ((X 1R1) 2R2)

C ((X 2R2) 1R1)

If we cannot compute C due to missing information, use Cout .
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Adjusting the Problem Complexity

How much should we simplify?

• until optimization fits into resource constraints (memory or time)

How do we know when to stop simplifying?

• count the number of connected subgraphs of the query graph

• directly determines memory, indirectly optimization time

• stop counting when the limit is reached

Counting is fast, but not instantaneous

• counting 10,000 subgraphs in a query with 100 relations took ≈ 5ms

• we cannot do this after every simplification

Exact limit depends on hardware, a reasonable choice is 10,000 connected
subgraphs.
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Full Optimization Algorithm

Given a Query Graph G = (V ,E ) and a complexity budget b

1. compute a list Ḡ of query graphs
I repeatedly call the simplification step, stop when no change

2. perform binary search over Ḡ , find Gb

I for the current element G ′, c =#connected subgraphs in G ′ (count at
most b + 1)

I if c > b increase, otherwise decrease

3. return DPhyp(Gb)

Simplifies as much as needed to meet the constraints, than uses DP.

(the algorithm does not materialize Ḡ explicitly, see [6])



190 / 592

Join Ordering Simplifying the Query Graph

Time/Quality Trade-off - Grid with 20 Relations
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• as expected plan quality degrades at some point

• but optimization times drops off much earlier
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Time/Quality Trade-off - Star with 20 Relations
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• same optimization time behavior, but plan quality remains perfect
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Generating Permutations

The algorithms so far have some drawbacks:

• greedy heuristics only heuristics

• will probably not find the optimal solution

• DP algorithms optimal, but very heavy weight

• especially memory consumption is high

• find a solution only after the complete search

Sometimes we want a more light-weight algorithm:

• low memory consumption

• stop if time runs out

• still find the optimal solution if possible
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Generating Permutations (2)

We can achieve this when only considering left-deep trees:

• left-deep trees are permutations of the relations to be joined

• permutations can be generated directly

• generating all permutations is too expensive

• but some permutations can be ignored:
Consider the join sequence R1R2R3R4. If we know that R1R3R2 is
cheaper than R1R2R3, we do not have to consider R1R2R3R4.

Idea: successively add a relation. An extended sequence is only explored if
exchanging the last two relations does not result in a cheaper sequence.
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Recursive Search

ConstructPermutations(R)
Input: a set of relations R = {R1, . . . ,Rn} to be joined
Output:an optimal left-deep join tree
B = ε
P = ε
for each Ri ∈ R {

ConstructPermutationsRec(P◦ < Ri >,R \ {Ri},B)
} return B

• algorithm considers a prefix P and the rest R

• keeps track of the best tree found so far B

• increases the prefix recursively
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Recursive Search (2)

ConstructPermutationsRec(P,R,B)
Input: a prefix P, remaining relations R, best plan B
Output:side effects on B
if |R| = 0 {

if B = ε ∨ C (B) > C (P) {
B = P
}
} else {

for each Ri ∈ R {
if C (P◦ < Ri >) ≤ C (P[1 : |P| − 1]◦ < Ri ,P[|P|] >) {

ConstructPermutationsRec(P◦ < Ri >,R \ {Ri},B)
}
}
}
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Remarks

Good:

• linear memory

• immediately produces plan alternatives

• anytime algorithm

• finds the optimal plan eventually

Bad:

• worst-case runtime if ties occur

• worst-case runtime if no ties occur is an open problem

Often fast, can be stopped anytime, but may perform poorly.
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Transformative Approaches

Main idea: [7]

• use equivalences directly (associativity, commutativity)

• would make integrating new equivalences easy

Problems:

• how to navigate the search space

• equivalences have no order

• how to guarantee finding the optimal solution

• how to avoid exhaustive search
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Rule Set

R1 R2  R2 R1 Commutativity
(R1 R2) R3  R1 (R2 R3) Right Associativity
R1 (R2 R3)  (R1 R2) R3 Left Associativity
(R1 R2) R3  (R1 R3) R2 Left Join Exchange
R1 (R2 R3)  R2 (R1 R3) Right Join Exchange

Two more rules are often used to transform left-deep trees:

• swap exchanges two arbitrary relations in a left-deep tree

• 3Cycle performs a cyclic rotation of three arbitrary relations in a
left-deep tree.

To try another join method, another rule called join method exchange is
introduced.
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Rule Set RS-0

• commutativity

• left-associativity

• right-associativity
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Basic Algorithm

ExhaustiveTransformation({R1, . . . ,Rn})
Input: a set of relations
Output: an optimal join tree
Let T be an arbitrary join tree for all relations
Done = ∅ // contains all trees processed
ToDo = {T} // contains all trees to be processed
while |ToDo| > 0 {

T = an arbitrary tree in ToDo
ToDo = ToDo \T ;
Done = Done ∪ {T};
Trees = ApplyTransformations(T );
for each T ∈ Trees {

if T 6∈ ToDo ∪ Done
ToDo = ToDo ∪ {T}

}
}
return arg minT∈Done C (T )
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Basic Algorithm (2)

ApplyTransformations(T )
Input: join tree
Output: all trees derivable by associativity and commutativity
Trees = ∅
Subtrees = all subtrees of T rooted at inner nodes
for each S ∈ Subtrees {

if S is of the form S1 S2

Trees = Trees ∪{S2 S1}
if S is of the form (S1 S2) S3

Trees = Trees ∪{S1 (S2 S3)}
if S is of the form S1 (S2 S3)

Trees = Trees ∪{(S1 S2) S3}
}
return Trees;



202 / 592

Join Ordering Transformative Approaches

Remarks

• if no cross products are to be considered, extend if conditions for
associativity rules.

• problem 1: explores the whole search space

• problem 2: generates join trees more than once

• problem 3: sharing of subtrees is non-trivial
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Search Space
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Introducing the Memo Structure

A memoization strategy is used to keep the runtime reasonable:

• for any subset of relations, dynamic programming remembers the best
join tree.

• this does not quite suffice for the transformation-based approach.

• instead, we have to keep all join trees generated so far including those
differing in the order of the arguments of a join operator.

• however, subtrees can be shared.

• this is done by keeping pointers into the data structure (see next
slide).
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Memo Structure Example

{R1,R2,R3} {R1,R2} R3,R3 {R1,R2},
{R1,R3} R2,R2 {R1,R3},
{R2,R3} R1,R1 {R2,R3}

{R2,R3} {R2} {R3}, {R3} {R2}
{R1,R3} {R1} {R3}, {R3} {R1}
{R1,R2} {R1} {R2}, {R2} {R1}
{R3} R3

{R2} R2

{R1} R1

• in Memo Structure: arguments are pointers to classes

• Algorithm: ExploreClass expands a class

• Algorithm: ApplyTransformation2 expands a member of a class
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Memoizing Algorithm

ExhaustiveTransformation2(Query Graph G )
Input: a query specification for relations {R1, . . . ,Rn}.
Output: an optimal join tree
initialize MEMO structure
ExploreClass({R1, . . . ,Rn})
return arg minT∈class {R1,...,Rn} C (T )

• stored an arbitrary join tree in the memo structure

• explores alternatives recursively
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Memoizing Algorithm (2)

ExploreClass(C)
Input: a class C ⊆ {R1, . . . ,Rn}
Output: none, but has side-effect on MEMO-structure
while not all join trees in C have been explored {

choose an unexplored join tree T in C
ApplyTransformation2(T )
mark T as explored

}

• considers all alternatives within one class

• transformations themselves are done in ApplyTransformation2
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Memoizing Algorithm (3)

ApplyTransformations2(T )
Input: a join tree of a class C
Output: none, but has side-effect on MEMO-structure
ExploreClass(left-child(T ))
ExploreClass(right-child(T ));
for each transformation T and class member of child classes {

for each T ′ resulting from applying T to T {
if T ′ not in MEMO structure {

add T ′ to class C of MEMO structure
}

}
}

• first explores subtrees
• then applies all known transformations to the tree
• stores new trees in the memo structure
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Remarks

• Applying ExhaustiveTransformation2 with a rule set consisting of
Commutativity and Left and Right Associativity generates
4n − 3n+1 + 2n+2 − n − 2 duplicates

• Contrast this with the number of join trees contained in a completely
filled MEMO structure: 3n − 2n+1 + n + 1

• Solve the problem of duplicate generation by disabling applied rules.
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Rule Set RS-1

T1: Commutativity C1 0C2  C2 1C1

Disable all transformations T1, T2, and T3 for 1.

T2: Right Associativity (C1 0C2) 1C3  C1 2(C2 3C3)
Disable transformations T2 and T3 for 2 and enable all
rules for 3.

T3: Left associativity C1 0(C2 1C3)  (C1 2C2) 3C3

Disable transformations T2 and T3 for 3 and enable all
rules for 2.
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Example for chain R1 − R2 − R3 − R4
Class Initialization Transformation Step

{R1,R2,R3,R4} {R1,R2} 111{R3,R4} {R3,R4} 000{R1,R2} 3
R1 100{R2,R3,R4} 4
{R1,R2,R3} 100R4 5
{R2,R3,R4} 000R1 8
R4 000{R1,R2,R3} 10

{R2,R3,R4} R2 111{R3,R4} 4
{R3,R4} 000R2 6
{R2,R3} 100R4 6
R4 000{R2,R3} 7

{R1,R3,R4}
{R1,R2,R4}
{R1,R2,R3} {R1,R2} 111R3 5

R3 000{R1,R2} 9
R1 100{R2,R3} 9
{R2,R3} 000R1 9

{R3,R4} R3 111R4 R4 000R3 2
{R2,R4}
{R2,R3}
{R1,R4}
{R1,R3}
{R1,R2} R1 111R2 R2 000R1 1
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Rule Set RS-2

Bushy Trees: Rule set for clique queries and if cross products are allowed:

T1: Commutativity C1 0C2  C2 1C1

Disable all transformations T1, T2, T3, and T4 for 1.

T2: Right Associativity (C1 0C2) 1C3  C1 2(C2 3C3)
Disable transformations T2, T3, and T4 for 2.

T3: Left Associativity C1 0(C2 1C3)  (C1 2C2) 3C3

Disable transformations T2, T3 and T4 for 3.

T4: Exchange (C1 0C2) 1(C3 2C4)  (C1 3C3) 4(C2 5C4)
Disable all transformations T1, T2, T3, and T4 for 4.

If we initialize the MEMO structure with left-deep trees, we can strip down
the above rule set to Commutativity and Left Associativity. Reason: from
a left-deep join tree we can generate all bushy trees with only these two
rules
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Rule Set RS-3

Left-deep trees:

T1 Commutativity R1 0R2  R2 1R1

Here, the Ri are restricted to classes with exactly one
relation. T1 is disabled for 1.

T2 Right Join Exchange (C1 0C2) 1C3  (C1 2C3) 3C2

Disable T2 for 3.
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Generating Random Join Trees

Generating a random join tree is quite useful:

• allows for cost sampling

• randomized optimization procedures

• basis for Simulated Annealing, Iterative Improvement etc.

• easy with cross products, difficult without

• we consider with cross products first

Main problems:

• generating all join trees (potentially)

• creating all with the same probability
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Ranking/Unranking

Let S be a set with n elements.

• a bijective mapping f : S → [0, n[ is called ranking

• a bijective mapping f : [0, n[→ S is called unranking

Given an unranking function, we can generate random elements in S by
generating a random number in [0, n[ and unranking this number.
Challenge: making unranking fast.
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Random Permutations

Every permutation corresponds to a left-deep join tree possibly with cross
products.
Standard algorithm to generate random permutations is the starting point
for the algorithm:

for each k ∈ [0, n[ descending
swap(π[k], π[random(k)])

Array π initialized with elements [0, n[.
random(k) generates a random number in [0, k].
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Random Permutations

• Assume the random elements produced by the algorithm are
rn−1, . . . , r0 where 0 ≤ ri ≤ i .

• Thus, there are exactly n(n − 1)(n − 2) . . . 1 = n! such sequences and
there is a one to one correspondance between these sequences and
the set of all permutations.

• Unrank r ∈ [0, n![ by turning it into a unique sequence of values
rn−1, . . . , r0.
Note that after executing the swap with rn−1 every value in [0, n[ is
possible at position π[n − 1].
Further, π[n − 1] is never touched again.

• Hence, we can unrank r as follows. We first set rn−1 = r mod n and
perform the swap. Then, we define r ′ = br/nc and iteratively unrank
r ′ to construct a permutation of n − 1 elements.
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Generating Random Permutations

Unrank(n, r)
Input: the number n of elements to be permuted

and the rank r of the permutation to be constructed
Output:a permutation π
for each 0 ≤ i < n
π[i ] = i

for each n ≥ i > 0 descending {
swap(π[i − 1], π[r mod i ])
r = br/ic
}
return π;
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Generating Random Bushy Trees with Cross Products

Steps of the algorithm:

1. Generate a random number b in [0,C (n)[.

2. Unrank b to obtain a bushy tree with n − 1 inner nodes.

3. Generate a random number p in [0, n![.

4. Unrank p to obtain a permutation.

5. Attach the relations in order p from left to right as leaf nodes to the
binary tree obtained in Step 2.

The only step that we have still to discuss is Step 2.
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Tree Encoding

• Preordertraversal:
I Inner node: ’(’
I Leaf Node: ’)’

Skip last leaf node.

• Replace ’(’ by 1 and ’)’ by 0

• Just take positions of 1s.

Example: all trees with four inner nodes:

• The ranks are in [0, 14[
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Tree Ranking Example

( ( ( ( ) ) ) )

11110000

1, 2, 3, 4

0

( ( ) ( ( ) ) )

11011000

1, 2, 4, 5

43

( ( ( ) ) ) ( )

11100010

1, 2, 3, 7

2

( ( ( ) ) ( ) )

11100100

1, 2, 3, 6

( ( ) ( ) ( ) )

11010100

1, 2, 4, 6

5 6

( ( ) ( ) ) ( )

11010010

1, 2, 4, 7

7

( ( ) ) ( ( ) )

11001100

1, 2, 5, 6

8

( ( ) ) ( ) ( )

11001010

1, 2, 5, 7

( ) ( ( ( ) ) )

10111000

1, 3, 4, 5

9

( ) ( ( ) ( ) )

10110100

1, 3, 4, 6

10 11

( ) ( ( ) ) ( )

10110010

1, 3, 4, 7

( ) ( ) ( ( ) )

10101100

1, 3, 5, 6

12

( ) ( ) ( ) ( )

10101010

1, 3, 5, 7

13

1

11101000

1, 2, 3, 5

( ( ( )( ) ) )
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Unranking Binary Trees
We establish a bijection between Dyck words and paths in a grid:

1

2

3

4

87654321

1

14

9

4

1

13

5 2

[0,0]

[1,4[

[9,14[

[4,9[

Every path from (0, 0) to (2n, 0) uniquely corresponds to a Dyck word.
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Counting Paths

The number of different paths from (0, 0) to (i , j) can be computed by

p(i , j) =
j + 1

i + 1

(
i + 1

1
2 (i + j) + 1

)
These numbers are the Ballot numbers.
The number of paths from (i , j) to (2n, 0) can thus be computed as:

q(i , j) = p(2n − i , j)

Note the special case q(0, 0) = p(2n, 0) = C (n).
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Unranking Outline

• We open a parenthesis (go from (i , j) to (i + 1, j + 1)) as long as the
number of paths from that point does no longer exceed our rank r .

• If it does, we close a parenthesis (go from (i , j) to (i + 1, j − 1)).

• Assume, that we went upwards to (i , j) and then had to go down to
(i + 1, j − 1).
We subtract the number of paths from (i + 1, j + 1) from our rank r
and proceed iteratively from (i + 1, j − 1) by going up as long as
possible and going down again.

• Remembering the number of parenthesis opened and closed along our
way results in the required encoding.
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Generating Bushy Trees

UnrankTree(n, r)
Input: a number of inner nodes n and a rank r ∈ [0,C (n)[
Output:encoding of the inner leafes of a tree
open = 1, close = 0
pos = 1, encoding = < 1 >
while |encoding| < n {

k = q(open+close,open-close)
if k ≤ r {

r = r − k , close=close+1
} else {

encoding=encoding◦ < pos >, open=open+1
}
pos=pos+1
}
return encoding
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Generating Random Trees Without Cross Products

Tree queries only!

• query graph: G = (V ,E ), |V | = n, G must be a tree.

• level: root has level 0, children thereof 1, etc.

• TG : join trees for G

[8]
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Partitioning TG

T v(k)
G ⊆ TG : subset of join trees where the leaf node (i.e. relation) v

occurs at level k .
Observations:

• n = 1: |TG | = |T v(0)
G | = 1

• n > 1: |T v(0)
G | = 0 (top is a join and no relation)

• The maximum level that can occur in any join tree is n − 1.

Hence: |T v(k)
G | = 0 if k ≥ n.

• TG = ∪nk=0T
v(k)
G

• T v(i)
G ∩ T v(j)

G = ∅ for i 6= j

• Thus: |TG | =
∑n

k=0 |T
v(k)
G |
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The Specification

• The algorithm will generate an unordered tree with n leaf nodes.

• If we wish to have a random ordered tree, we have to pick one of the
2n−1 possibilities to order the (n − 1) joins within the tree.
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The Procedure

1. List merges (notation, specification, counting, unranking)

2. Join tree construction: leaf-insertion and tree-merging

3. Standard Decomposition Graph (SDG): describes all valid join trees

4. Counting

5. Unranking algorithm
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List Merge

• Lists: Prolog-Notation: < a|t >
• Property P on elements

• A list l ′ is the projection of a list L on P, if L′ contains all elements of
L satisfying the property P.
Thereby, the order is retained.

• A list L is a merge of two disjoint lists L1 and L2, if L contains all
elements from L1 and L2 and both are projections of L.
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Example

(R, S, [1, 1, 0])

R2

R1

v

S1

S2

(R, S, [2, 0, 0])

v

S2

R2

S1

R1

S2

S1

(R, S, [0, 2, 0])

R2

R1

v

R S

v

S1

v

R1

R2 S2
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List Merge: Specification

A merge of a list L1 with a list L2 whose respective lengths are l1 and l2
can be described by an array α = [α0, . . . , αl2 ] of non-negative integers
whose sum is equal to l1, i.e.

∑l2
i=0 αi = |l1|.

• We obtain the merged list L by first taking α0 elements from L1.

• Then, an element from L2 follows. Then follow α1 elements from L1

and the next element of L2 and so on.

• Finally follow the last αl2 elements of L1.
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List Merge: Counting

Non-negative integer decomposition:

• What is the number of decompositions of a non-negative integer n
into k non-negative integers αi with

∑k
i=1 αk = n.

Answer:
(n+k−1

k−1

)
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List Merge: Counting (2)

Since we have to decompose l1 into l2 + 1 non-negative integers, the
number of possible merges is M(l1, l2) =

(l1+l2
l2

)
.

The observation M(l1, l2) = M(l1 − 1, l2) + M(l1, l2 − 1) allows us to
construct an array of size n ∗ n in O(n2) that materializes the values for M.
This array will allow us to rank list merges in O(l1 + l2).
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List Merge: Unranking: General Idea

The idea for establishing a bijection between [1,M(l1, l2)] and the possible
αs is a general one and used for all subsequent algorithms of this section.
Assume we want to rank the elements of some set S and S = ∪ni=0Si is
partitioned into disjoint Si .

1. If we want to rank x ∈ Sk , we first find the local rank of x ∈ Sk .

2. The rank of x is then
∑k−1

i=0 |Si |+ local-rank(x ,Sk).

3. To unrank some number r ∈ [1,N], we first find k such that
k = minj r ≤

∑j
i=0 |Si |.

4. We proceed by unranking with the new local rank r ′ = r −
∑k−1

i=0 |Si |
within Sk .
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List Merge: Unranking

We partition the set of all possible merges into subsets.

• Each subset is determined by α0.
For example, the set of possible merges of two lists L1 and L2 with
length l1 = l2 = 4 is partitioned into subsets with α0 = j for
0 ≤ j ≤ 4.

• In each partition, we have M(l1 − j , l2 − 1) elements.

• To unrank a number r ∈ [1,M(l1, l2)] we first determine the partition
by computing k = minj r ≤

∑j
i=0 M(j , l2 − 1).

Then, α0 = l1 − k .

• With the new rank r ′ = r −
∑k

i=0 M(j , l2 − 1), we start iterating all
over.
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Example

k α0 (k, l2 − 1) M(k , l2 − 1) rank intervals

0 4 (0, 3) 1 [1, 1]
1 3 (1, 3) 4 [2, 5]
2 2 (2, 3) 10 [6, 15]
3 1 (3, 3) 20 [16, 35]
4 0 (4, 3) 35 [36, 70]
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Decomposition

UnrankDecomposition(r , l1, l2)
Input: a rank r , two list sizes l1 and l2
Output:encoding of the inner leafes of a tree
alpha = <>, k = 0
while l1 > 0 ∧ l2 > 0 {

m = M(k, l2 − 1)
if r ≤ m {

alpha=alphae◦ < l1 − k >
l1 = k , k = 0, l2 = l2 − 1
} else {

r = r −m, k = k + 1
}
}
return alpha◦ < l1 > ◦©|alpha|+1≤i<l2 < 0 >
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Anchored List Representation of Join Trees

Definition Let T be a join tree and v be a leaf of T . The anchored list
representation L of T is constructed as follows:

• If T consists of the single leaf node v , then L =<>.

• If T = (Tl T2) and without loss of generality v occurs in T2, then
L =< T1|L2 > where L2 is the anchored list representation of T2.

We then write T = (L, v).

Observation If T = (L, v) ∈ TG then T ∈ T v(k)
G ≺� |L| = k
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Leaf-Insertion: Example

w w

(T, 2)

T1

T2

v

T1

T2

v

(T, 1)

T1

T2

w

T

w

v

T1

T2

(T, 3)
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Leaf-Insertion

Definition Let G = (V ,E ) be a query graph, T a join tree of G . v ∈ V
be such that G ′ = G |V \{v} is connected, (v ,w) ∈ E , 1 ≤ k < n, and

T = (< T1, . . . ,Tk−1, v ,Tk+1, . . . ,Tn >,w)

T ′ = (< T1, . . . ,Tk−1,Tk+1, . . . ,Tn >,w).

Then we call (T ′, k) an insertion pair on v and say that T is decomposed
into (or constructed from) the pair (T ′, k) on v .

Observation: Leaf-insertion defines a bijective mapping between T v(k)
G

and insertion pairs (T ′, k) on v , where T ′ is an element of the disjoint

union ∪n−2
i=k−1T

w(i)
G ′ .
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Tree-Merging: Example

(R, S, [1, 1, 0])

R2

R1

v

S1

S2

(R, S, [2, 0, 0])

v

S2

R2

S1

R1

S2

S1

(R, S, [0, 2, 0])

R2

R1

v

R S

v

S1

v

R1

R2 S2
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Tree-Merging

Two trees R = (LR ,w) and S = (LS ,w) on a common leaf w are merged
by merging their anchored list representations.
Definition. Let G = (V ,E ) be a query graph, w ∈ V , T = (L,w) a join
tree of G , V1,V2 ⊆ V such that G1 = G |V1 and G2 = G |V2 are connected,
V1 ∪ V2 = V , and V1 ∩ V2 = {w}. For i = 1, 2:

• Define the property Pi to be “every leaf of the subtree is in Vi”,

• Let Li be the projection of L on Pi .

• Ti = (Li ,w).

Let α be the integer decomposition such that L is the result of merging L1

and L2 on α. Then, we call (T1,T2, α) a merge triplet. We say that T is
decomposed into (constructed from) (T1,T2, α) on V1 and V2.
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Observation

Tree-Merging defines a bijective mapping between T w(k)
G and merge

triplets (T1,T2, α), where T1 ∈ T w(i)
G1

, T2 ∈ T w(k−i)
G2

, and α specifies a
merge of two lists of sizes i and k − i . Further, the number of these
merges (i.e. the number of possibilities for α) is

(i+(k−i)
k−i

)
=
(k
i

)
.
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Standard Decomposition Graph (SDG)

A standard decomposition graph of a query graph describes the possible
constructions of join trees.
It is not unique (for n > 1) but anyone can be used to construct all
possible unordered join trees.
For each of our two operations it has one kind of inner nodes:

• A unary node labeled +v stands for leaf-insertion of v .

• A binary node labeled ∗w stands for tree-merging its subtrees whose
only common leaf is w .
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Constructing a Standard Decomposition Graph

The standard decomposition graph of a query graph G = (V ,E ) is
constructed in three steps:

1. pick an arbitrary node r ∈ V as its root node

2. transform G into a tree G ′ by directing all edges away from r ;

3. call QG2SDG(G ′, r)
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Constructing a Standard Decomposition Graph (2)

QG2SDG(G ′, r)
Input: a query tree G ′ = (V ,E ) and its root r
Output:a standard query decomposition tree of G ′

Let {w1, . . . ,wn} be the children of v
switch n {

case 0: label v with ”v”
case 1:

label v as ”+v”
QG2SDG(G ′,w1)

otherwise:
label v as ”∗v”
create new nodes l , r with label +v

E = E \ {(v ,wi )|1 ≤ i ≤ n}
E = E ∪ {(v , l), (v , r), (l ,w1)} ∪ {(r ,wi )|2 ≤ i ≤ n}
QG2SDG(G ′, l), QG2SDG(G ′, r)

}
return G ′
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Constructing a Standard Decomposition Graph (3)

a b c d

e

e

c

b d

a

a

d

[0, 1]

+b

+c

+e

∗c

+c

[1]

[0, 1, 1]

[0, 1]

[1]

[0, 5, 5, 5, 3]

[0, 0, 2, 3]
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Counting

For efficient access to the number of join trees in some partition T v(k)
G in

the unranking algorithm, we materialize these numbers.
This is done in the count array.
The semantics of a count array [c0, c1, . . . , cn] of a node u with label ◦v
(◦ ∈ {+, ∗}) of the SDG is that

• u can construct ci different trees in which leaf v is at level i .

Then, the total number of trees for a query can be computed by summing
up all the ci in the count array of the root node of the decomposition tree.
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Counting (2)

To compute the count and an additional summand adornment of a node
labeled +v , we use the following lemma:
Lemma. Let G = (V ,E ) be a query graph with n nodes, v ∈ V such that
G ′ = G |V \v is connected, (v ,w) ∈ E , and 1 ≤ k < n. Then

|T v(k)
G | =

∑
i≥k−1

|T w(i)
G ′ |
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Counting (3)

The sets T w(i)
G ′ used in the summands of the former Lemma directly

correspond to subsets T v(k),i
G (k − 1 ≤ i ≤ n − 2) defined such that

T ∈ T v(k),i
G if

1. T ∈ T v(k)
G ,

2. the insertion pair on v of T is (T ′, k), and

3. T ′ ∈ T w(i)
G ′ .

Further, |T v(k),i
G | = |T w(i)

G ′ |. For efficiency, we materialize the summands in
an array of arrays summands.
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Counting (4)

To compute the count and summand adornment of a node labeled ∗v , we
use the following lemma.
Lemma. Let G = (V ,E ) be a query graph, w ∈ V , T = (L,w) a join
tree of G , V1,V2 ⊆ V such that G1 = G |V1 and G2 = G |V2 are connected,
V1 ∪ V2 = V , and V1 ∩ V2 = {v}. Then

|T v(k)
G | =

∑
i

(
k

i

)
|T v(i)

G1
| |T v(k−i)

G2
|
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Counting (5)

The sets T w(i)
G ′ used in the summands of the previous Lemma directly

correspond to subsets T v(k),i
G (0 ≤ i ≤ k) defined such that T ∈ T v(k),i

G if

1. T ∈ T v(k)
G ,

2. the merge triplet on V1 and V2 of T is (T1,T2, α), and

3. T1 ∈ T v(i)
G1

.

Further, |T v(k),i
G | =

(k
i

)
|T v(i)

G1
| |T v(k−i)

G2
|.
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Counting (6)

Observation: Assume a node v whose count array is [c1, . . . , cm] and
whose summands is s = [s0, . . . , sn] with si = [s i0, . . . , s

i
m], then

ci =
m∑
j=0

s ij

holds.
The following algorithm has worst-case complexity O(n3).
Looking at the count array of the root node of the following SDG, we see
that the total number of join trees for our example query graph is 18.
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SDG example

a b c d

e

e

c

b d

a

a

d

[0, 1]

+b

+c

+e

∗c

+c

[1]

[0, 1, 1]

[0, 1]

[1]

[0, 5, 5, 5, 3]

[0, 0, 2, 3]
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Annotating the SDG

Adorn(v)
Input: a node v of the SDG
Output:v and nodes below are adorned by count and summands
Let {w1, . . . ,wn} be the children of v
switch (n) {

case 0: count(v) = [1] // no summands for v
case 1:

Adorn(w1)
assume count(w1) = [c1

0 , . . . , c
1
m1

];
count(v) = [0, c1, . . . , cm1+1] where ck =

∑m1
i=k−1 c1

i

summands(v) = [s0, . . . , sm1+1] where sk = [sk0 , . . . , s
k
m1+1] and

ski =

{
c1
i if 0 < k and k − 1 ≤ i

0 else
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Annotating the SDG (2)

case 2:
Adorn(w1)
Adorn(w2)
assume count(w1) = [c1

0 , . . . , c
1
m1

]
assume count(w2) = [c2

0 , . . . , c
2
m2

]
count(v) = [c0, . . . , cm1+m2 ] where

ck =
∑m1

i=0

(k
i

)
c1
i c2

k−i ; // c2
i = 0 for i 6∈ {0, . . . ,m2}

summands(v) = [s0, . . . , sm1+m2 ] where sk = [sk0 , . . . , s
k
m1

] and

ski =

{ (k
i

)
c1
i c2

k−i if 0 ≤ k − i ≤ m2

0 else
}
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Unranking: top-level procedure

The algorithm UnrankLocalTreeNoCross called by UnrankTreeNoCross

adorns the standard decomposition graph with insert-at and
merge-using annotations. These can then be used to extract the join
tree.

UnrankTreeNoCross(r,v)
Input: a rank r and the root v of the SDG
Output:adorned SDG
let count(v) = [x0, . . . , xm]

k = minj r ≤
∑j

i=0 xi
r ′ = r −

∑k−1
i=0 xi

UnrankLocalTreeNoCross(v , r ′, k)
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Unranking: Example

The following table shows the intervals associated with the partitions

T e(k)
G for our standard decomposition graph:

Partition Interval

T e(1)
G [1, 5]

T e(2)
G [6, 10]

T e(3)
G [11, 15]

T e(4)
G [16, 18]
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Unranking: the last utility function

The unranking procedure makes use of unranking decompositions and
unranking triples. For the latter and a given X ,Y ,Z , we need to assign
each member in

{(x , y , z)|1 ≤ x ≤ X , 1 ≤ y ≤ Y , 1 ≤ z ≤ Z}

a unique number in [1,XYZ ] and base an unranking algorithm on this
assignment. We call the function UnrankTriplet(r ,X ,Y ,Z ). r is a rank
and X , Y , and Z are the upper bounds for the numbers in the triplets.
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Unranking Without Cross Products

UnrankingTreeNoCrossLocal(v , r , k)
Input: an SDG node v , a rank r , a number k identifying a partition
Output:adornments of the SDG as a side-effect
Let {w1, . . . ,wn} be the children of v
switch n {

case 0:
// no additional adornment for v
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Unranking Without Cross Products (2)

case 1:
let count(v) = [c0, . . . , cn]
let summands(v) = [s0, . . . , sn]

k1 = minj r ≤
∑j

i=0 ski
r1 = r −

∑k1−1
i=0 ski

insert-at(v) = k
UnrankingTreeNoCrossLocal(w1, r1, k1)
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Unranking Without Cross Products (3)

case 2:
let count(v) = [c0, . . . , cn]
let summands(v) = [s0, . . . , sn]
let count(w1) = [c1

0 , . . . , c
1
n1

]
let count(w2) = [c2

0 , . . . , c
2
n2

]

k1 = minj r ≤
∑j

i=0 ski
q = r −

∑k1−1
i=0 ski

k2 = k − k1

(r1, r2, a) = UnrankTriplet(q, c1
k1
, c2

k2
,
(k
i

)
)

α = UnrankDecomposition(a)
merge-using(v) = α
UnrankingTreeNoCrossLocal(w1, r1, k1)
UnrankingTreeNoCrossLocal(w2, r2, k2)

}
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Quick Pick

• problem: build (pseudo-)random join trees fast

• unranking without cross products is quite involved

• idea: randomly select an edge in the query graph

• extend join tree by selected edge

No longer uniformly distributed, but very fast
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Quick Pick (2)

QuickPick(Query Graph G )
Input: a query graph G = ({R1, . . . ,Rn},E )
Output:a bushy join tree
E ′ = E ;
Trees = {R1, . . . ,Rn};
while |Trees| > 1 {

choose a random e ∈ E ′

E ′ = E ′ \ {e}
if e connects two relations in different subtrees T1,T2 ∈ Trees

Trees = Trees\{T1,T2}∪CreateJoinTree(T1,T2)
}
return T ∈Trees

• repeated multiple times to find a good tree
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Metaheuristics

• provide a very general optimization strategy

• applicable for many different problems

• work well even for very large problems

• but are often considered a ”brute-force” method

We consider the metaheuristics formulated for the join ordering problem.
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Iterative Improvement

• Start with random join tree

• Select rule that improves join tree

• Stop when no further improvement possible
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Iterative Improvement (2)

IterativeImprovementBase(Query Graph G )
Input: a query graph G = ({R1, . . . ,Rn},E )
Output:a join tree
do {

JoinTree = random tree
JoinTree = IterativeImprovement(JoinTree)
if cost(JoinTree) < cost(BestTree) {

BestTree = JoinTree
}
} while (time limit not exceeded)
return BestTree
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Iterative Improvement (3)

IterativeImprovement(JoinTree)
Input: a join tree
Output: improved join tree
do {

JoinTree’ = randomly apply a transformation from the rule set to the JoinTree
if (cost(JoinTree’) < cost(JoinTree)) {

JoinTree = JoinTree’
}
} while local minimum not reached
return JoinTree

• problem: local minimum detection
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Simulated Annealing

• II: stuck in local minimum

• SA: allow moves that result in more expensive join trees

• lower the threshold for worsening
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Simulated Annealing (2)

SimulatedAnnealing(Query Graph G )
Input: a query graph G = ({R1, . . . ,Rn},E )
Output:a join tree
BestTreeSoFar = random tree
Tree = BestTreeSoFar
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Simulated Annealing (3)

do {
do {

Tree’ = apply random transformation to Tree
if (cost(Tree’) < cost(Tree)) {

Tree = Tree’
} else {

with probability e−(cost(Tree′)−cost(Tree))/temperature

Tree = Tree’
}
if (cost(Tree) < cost(BestTreeSoFar)) {

BestTreeSoFar = Tree’
}
} while equilibrium not reached
reduce temperature
} while not frozen
return BestTreeSoFar
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Simulated Annealing (4)

Advantages:

• can escape from local minimum

• produces better results than II

Problems:

• parameter tuning

• initial temperature

• when and how to decrease the temperature
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Tabu Search

• Select cheapest reachable neighbor (even if it is more expensive)

• Maintain tabu set to avoid running into circles
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Tabu Search (2)

TabuSearch(Query Graph)
Input: a query graph G = ({R1, . . . ,Rn},E )
Output:a join tree
Tree = random join tree
BestTreeSoFar = Tree
TabuSet = ∅
do {

Neighbors = all trees generated by applying a transformation to Tree
Tree = cheapest in Neighbors \ TabuSet
if cost(Tree) < cost(BestTreeSoFar)

BestTreeSoFar = Tree
if (|TabuSet| > limit) remove oldest tree from TabuSet
TabuSet = TabuSet∪{Tree}
}
return BestTreeSoFar
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Genetic Algorithms

• Join trees seen as population

• Successor generations generated by crossover and mutation

• Only the fittest survive

Problem: Encoding

• Chromosome ←→ string

• Gene ←→ character
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Encoding

We distinguish ordered list and ordinal number encodings.
Both encodings are used for left-deep and bushy trees.
In all cases we assume that the relations R1, . . . ,Rn are to be joined and
use the index i to denote Ri .
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Ordered List Encoding

1. left-deep trees
A left-deep join tree is encoded by a permutation of 1, . . . , n. For
instance, (((R1 R4) R2) R3) is encoded as “1423”.

2. bushy trees
A bushy join-tree without cartesian products is encoded as an ordered
list of the edges in the join graph. Therefore, we number the edges in
the join graph. Then, the join tree is encoded in a bottom-up,
left-to-right manner.

✶ ✶

✶

R2R1

R3 R5R4

✶
R21

2

4
R4R5

R1

3

R3

1243
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Ordinal Number Encoding

In both cases, we start with the list L =< R1, . . . ,Rn >.

• left-deep trees
Within L we find the index of first relation to be joined. If this
relation be Ri then the first character in the chromosome string is i .
We eliminate Ri from L. For every subsequent relation joined, we
again determine its index in L, remove it from L and append the index
to the chromosome string.
For instance, starting with < R1,R2,R3,R4 >, the left-deep join tree
(((R1 R4) R2) R3) is encoded as “1311”.



280 / 592

Join Ordering Metaheuristics

Ordinal Number Encoding (2)

• bushy trees
We encode a bushy join tree in a bottom-up, left-to-right manner.
Let Ri Rj be the first join in the join tree under this ordering. Then
we look up their positions in L and add them to the encoding. Then
we eliminate Ri and Rj from L and push Ri ,j to the front of it. We
then proceed for the other joins by again selecting the next join which
now can be between relations and or subtrees. We determine their
position within L, add these positions to the encoding, remove them
from L, and insert a composite relation into L such that the new
composite relation directly follows those already present.
For instance, starting with the list < R1,R2,R3,R4 >, the bushy join
tree ((R1 R2) (R3 R4)) is encoded as “12 23 12”.
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Crossover

1. Subsequence exchange

2. Subset exchange
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Crossover: Subsequence exchange

The subsequence exchange for the ordered list encoding:

• Assume two individuals with chromosomes u1v1w1 and u2v2w2.

• From these we generate u1v ′1w1 and u2v ′2w2 where v ′i is a
permutation of the relations in vi such that the order of their
appearence is the same as in u3−iv3−iw3−i .

Subsequence exchange for ordinal number encoding:

• We require that the vi are of equal length (|v1| = |v2|) and occur at
the same offset (|u1| = |u2|).

• We then simply swap the vi .

• That is, we generate u1v2w1 and u2v1w2.
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Crossover: Subset exchange

The subset exchange is defined only for the ordered list encoding.
Within the two chromosomes, we find two subsequences of equal length
comprising the same set of relations. These sequences are then simply
exchanged.
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Mutation

A mutation randomly alters a character in the encoding.
If duplicates may not occur— as in the ordered list encoding—swapping
two characters is a perfect mutation.
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Selection

• The probability of survival is determined by its rank in the population.

• We calculate the costs of the join trees encoded for each member in
the population.

• Then, we sort the population according to their associated costs and
assign probabilities to each individual such that the best solution in
the population has the highest probability to survive and so on.

• After probabilities have been assigned, we randomly select members
of the population taking into account these probabilities.

• That is, the higher the probability of a member the higher its chance
to survive.



286 / 592

Join Ordering Metaheuristics

The Algorithm

1. Create a random population of a given size (say 128).

2. Apply crossover and mutation with a given rate.
For example such that 65% of all members of a population participate
in crossover, and 5% of all members of a population are subject to
random mutation.

3. Apply selection until we again have a population of the given size.

4. Stop after no improvement within the population was seen for a fixed
number of iterations (say 30).
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Combinations

• metaheuristics are often not used in isolation

• they can be used to improve existing heurstics

• or heuristics can be used to speed up metaheuristics
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Two Phase Optimization

1. For a number of randomly generated initial trees, Iterative
Improvement is used to find a local minima.

2. Then Simulated Annealing is started to find a better plan in the
neighborhood of the local minima.
The initial temperature of Simulated Annealing can be lower as is its
original variants.
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AB Algorithm

1. If the query graph is cyclic, a spanning tree is selected.

2. Assign join methods randomly

3. Apply IKKBZ

4. Apply iterative improvement
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Toured Simulated Annealing

The basic idea is that simulated annealing is called n times with different
initial join trees, if n is the number of relations to be joined.

• Each join sequence in the set S produced by GreedyJoinOrdering-3

is used to start an independent run of simulated annealing.

As a result, the starting temperature can be descreased to 0.1 times the
cost of the initial plan.
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GOO-II

Append an iterative improvement step to GOO
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Iterative Dynamic Programming

• Two variants: IDP-1, IDP-2 [9]

• Here: Only IDP-1 base version

Idea:

• create join trees with up to k relations

• replace cheapest one by a compound relation

• start all over again
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Iterative Dynamic Programming (2)

IDP-1({R1, . . . ,Rn}, k)
Input: a set of relations to be joined, maximum block size k
Output:a join tree
for each 1 ≤ i ≤ n {

BestTree({Ri}) = Ri ;
}
ToDo = {R1, . . . ,Rn}
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Iterative Dynamic Programming (3)

while |ToDo| > 1 {
k = min(k , |ToDo|)
for each 2 ≤ i < k ascending

for all S ⊆ ToDo, |S | = i do
for all O ⊂ S do

BestTree(S) = CreateJoinTree(BestTree(S \ O), BestTree(O));
find V ⊂ ToDo, |V | = k with

cost(BestTree(V )) = min{cost(BestTree(W )) | W ⊂ ToDo, |W | = k}
generate new symbol T
BestTree({T}) = BestTree(V )
ToDo = (ToDo \ V ) ∪ {T}
for each O ⊂ V do delete(BestTree(O))
}
return BestTree({R1, . . . ,Rn})
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Iterative Dynamic Programming (4)

• compromise between runtime and optimality

• combines greedy heuristics with dynamic programming

• scales well to large problems

• finds the optimal solution for smaller problems

• approach can be used for different DP strategies
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Order Preserving Joins

• some query languages operatore on lists instead of sets/bags

• order of tuples matters

• examples: XPath/XQuery

• alternatives: either add sort operators or use order preserving
operators

Here, we define order preserving operators, list → list

• let L be a list

• L[1] is the first entry in L

• L[2 : |L|] are the remaining entries
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Order Preserving Selection

We define the order preserving selection σL as follows:

σLp(e) :=


ε if e = ε
< e[1] > ◦σLp(e[2 : |e|]) if p(e[1])
σLp(e[2 : |e|]) otherwise

• filters like a normal selection

• preserves the relative ordering (guaranteed)
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Order Preserving Cross Product

We define the order preserving cross product ×L as follows:

e1 ×L e2 :=

{
ε if e1 = ε

(e[1]×̂L
e2) ◦ (e1[2 : |e1]×L e2) otherwise

using the tuple/list product defined as:

t×̂L
e :=

{
ε if e = ε

< t ◦ e[1] > ◦(t×̂L
e[2 : |e|]) otherwise

• preserves the order of e1

• order of e2 is preserved for each e1 group
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Order Preserving Join

The definition of the order preserving join is analogous to the non-order
preserving case:

e1
L
pe2 := σLp(e1 ×L e2)

• preserves order of e1, order of e2 relative to e1
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Equivalences

σLp1
(σLp2

(e)) ≡ σLp2
(σLp1

(e))
σLp1

(e1
L
p2

e2) ≡ σLp1
(e1) L

p2
e2) if F(p1) ⊆ A(e1)

σLp2
(e1

L
p2

e2) ≡ e1
L
p2
σLp1

(e2) if F(p1) ⊆ A(e2)
e1

L
p1

(e2
L
p2

e3) ≡ (e1
L
p1

e2) L
p2

e3) if F(pi ) ⊆ A(ei ) ∪ A(ei+1)

• swap selections

• push selections down

• associativity
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Commutativity

Consider the relations R1 =< [a : 1], [a : 2] > and R2 =< [b : 1], [b : 2] >.
Then

R1
L
trueR2 = < [a : 1, b : 1], [a : 1, b : 2], [a : 2, b : 1], [a : 2, b : 2] >

R2
L
trueR1 = < [a : 1, b : 1], [a : 2, b : 1], [a : 1, b : 2], [a : 2, b : 2] >

• the order preserving join is not commutative
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Algorithm

• similar to matrix multiplication

• in addition: selection push down

• DP table is a n × n array (or rather 4 arrays)

• algorithm fills arrays p, s, c , t:
I p: applicable predicates
I s: statistics (cardinality, perhaps more)
I c : costs
I t: split position for larger plans

• plan is extracted from the arrays afterwards
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Algorithm (2)

OrderPreservingJoins(R = {R1, . . . ,Rn},P)
Input: a set of relations to be joined and a set of predicates
Output:fills p, s, c, t
for each 1 ≤ i ≤ n {

p[i , i ] =predicates from P applicable to Ri

P = P \ p[i , i ]
s[i , i ] =statistics for σp[i ,i ](Ri )
c[i , i ] =costs for σp[i ,i ](Ri )
}
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Algorithm (3)

for each 2 ≤ l ≤ n ascending {
for each 1 ≤ i ≤ n − l + 1 {

j = i + l − 1
p[i , j ]=predicates from P applicable to Ri , . . . ,Rj

P = P \ p[i , j ]
s[i , j ]=statistics derived from s[i , j − 1] and s[j , j ] including p[i , j ]
c[i , j ]=∞
for each i ≤ k < j {

q = c[i , k] + c[k + 1, j ]+costs for s[i , k] and s[k + 1, j ] and p[i , j ]
if q < c[i , j ] {

c[i,j]=q
t[i,j]=k
}
}
}
}
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Algorithm (4)

ExtractPlan(R = {R1, . . . ,Rn},t,p)
Input: a set of relations, arrays t and p
Output:a bushy join tree
return ExtractPlanRec(R,t,p,1,n)

ExtractPlanRec(R = {R1, . . . ,Rn},t,p,i ,j)
if i < j {

T1 =ExtractPlanRec(R,t,p,i ,t[i , j ])
T2 =ExtractPlanRec(R,t,p,t[i , j ] + 1, j)
return T1

L
p[i ,j]T2

} else {
return σp[i ,j]Ri

}


