Introduction

Dr. Angelika Reiser
Chair for Database Systems (I3)
www-db.in.tum.de

TU München / Garching

reiser@in.tum.de
Lecture

- Web page of the lecture: see TUMonline
 www-db.in.tum.de/teaching/ws1718/DBSandere

- IN4714:
 - Part of the module Geodatabases (BV470015)
 - Duration: 2V SWS
 - Credits: 2 ECTS
Schedule

• 2 hours weekly
• Wednesdays, 4.45 – 6.15 p.m.
• Exam (closed book): Date not yet fixed
• BV470015: 60 minutes
• IN4714: 40 minutes
• Minimum number of points: 50%
Teaching

- Questions during class are very welcome
- Reading material for preparation
- Beforehand distributed / embedded exercises
- Discussion of problems / solutions on the whiteboard

→ interactive class !!
Overview

• Database Design
 • E/R-Modeling
 • UML-Modeling
• Relational Data Model
• Relational Query Language SQL
• Data Integrity
Overview (cont.)

- Physical Data Organization
 - B-Trees
 - Hashing
- Query Execution
- Transaction Management
- (Main Memory Databases, NoSQL Databases, Data Warehouses, ...)

→ Preparation for Geodatabases,
Andreas Donaubauer, starting December 2017
Material used

Slides of Prof. Kemper:

www-db.in.tum.de/teaching/bookDBMSeinf

and Prof. Neumann:

www-db.in.tum.de/teaching/ws1415/grundlagen

(both in German)

Thanks 😊 - Errors are on me 😘
Literature (in German)

Alfons Kemper und André Eickler
Datenbanksysteme: Eine Einführung
10. Auflage (2015)
(older Editions are also ok)
Oldenbourg Verlag, München
(~ 50 Euros)

www-db.in.tum.de/teaching/bookDBMSeinf
Alfons Kemper und Martin Wimmer
Übungsbuch Datenbanksysteme
3. Auflage (2011)
(older Editions are also ok)
Oldenbourg Verlag, München
(~ 35 Euros)
Additional Material

www-db.in.tum.de/teaching/bookDBMSeinf

- Slides
- Videos of lectures
- Data to build own databases
- SQL-Interface
- Programming examples for
 - IBM DB2
 - Oracle
 - MS SQL Server
Literature (in English)

A. Silberschatz, H. F. Korth und S. Sudarshan
 codex.cs.yale.edu/avi/db-book/db6/slide-dir/

R. Elmasri, S.B. Navathe
 Fundamentals of Database Systems, 6th edition, Addison-Wesley, 2010. (also available in German)

R. Ramakrishnan, J. Gehrke
 http://pages.cs.wisc.edu/~dbbook/
Literature (cont.), MOOCS

J.D. Ullmann, J. Widom
infolab.stanford.edu/~ullman/fcdb.html

MOOCS

• Self paced mini courses, Stanford
class.stanford.edu/courses/DB/2014/SelfPaced/about

• Datenmanagement mit SQL, HPI
open.hpi.de/courses/sql (in German)
MOOCS (cont.), Lectures online

- Informationssysteme/ Einführung in Datenbanksysteme, Uni Saarland infosys.uni-saarland.de/datenbankenlernen/ (partly in German)

- Lecture online
 ETHZ, D. Kossmann, spring 2014: http://www.video.ethz.ch/lectures/d-infk.html English slides
Terms

• What is a database system (DBS)?

 System to store and manage data

• Why not use a traditional file system?

 Reliability and scalability only achievable with high effort
Examples

Traditional application areas:

• business data
• accounting
• administration

...

Nowadays a lot broader:

• scientific / medical data
• data mining
• geographical information systems
• web search

...
Examples (cont.)

Databases are the back of many applications:
• web search with Google, Yahoo, ...
• inquiries to Amazon, EBay, ...
• posts in Facebook, Twitter, …

Many varieties (DBS/Information Retrieval, centralized/decentralized, replicated, etc.)

Databases are used whenever
• data is very precious (→ reliability)
• amount of data is very big (→ scalability)
Examples (cont.)

The big commercial database systems:

- Oracle
- IBM DB2
- Microsoft SQL Server

Some open source database systems:

- PostgreSQL
- MySQL
- MonetDB

Many more, some very specialized (XML, object oriented, data streams, …)
Why use a database system?

- Avoid redundancy and inconsistency
- Rich (declarative) access to the data
- Security and privacy issues
- Synchronize concurrent data access
- Avoid loss of data
- Recovery after system failures
- Efficiency and scalability

→ Concentrate on your business logic
Abstract layers of a database system

View 1 → Logical Layer
View 2 → Logical Layer
... → Logical Layer
View 3 → Logical Layer

Physical Layer
Abstract layers of a database system (cont.)

View:
describes how a user / program sees the data

Logical layer:
describes how the data is structured

Physical layer:
describes how the data is stored
Abstract layers of a database system (cont.)

DBS decouples applications from the structure and storage of the data:

- **Logical data independency**
 (simple) changes at the logical layer have no influence on the applications

- **Physical data independency**
 changes at the physical layer have no influence on the applications

Implemented in almost all modern database systems
Properties of database systems

Data integrity (consistency)

- Data processing within an application has constraints

→ DBS obeys defined rules and protects automatically from:
 - User errors
 - Programming errors
Properties of DBSs (cont.)

Declarative query language

- User determines *which* data should be retrieved . . .
 . . . and *not how*

→ Less error-prone (when querying the data / developing applications)
→ No knowledge about the interior layers of the DBS necessary
Properties of DBSs (cont.)

Sophisticated access rights

• Every user can get different rights on the database

→ DBS provides a variety of access control mechanisms to enable security and privacy
Properties of DBSs (cont.)

Multi user concurrency

• If you allow several users at a time to update the data without any control you run into big problems

→ DBS allows concurrent access and avoids side effects
Properties of DBSs (cont.)

Error handling

• DBS can restore its state consistently in case of a system failure

→ Therefore log files are held and managed by the DBS
Properties of DBSs (cont.)

Efficiency and scalability

- DBSs are designed for efficiently handling very large data volumes and a very high number of users

→ In DBSs techniques for scaling with ever higher data volumes are integrated

typically: 100 GB (Gigabyte) – transactional Daten (even express versions)
up to EB (Exabyte) maximum data size
Properties of DBSs (résumé)

- Data integrity
- Declarative query language
- Access rights
- Concurrency control
- Error handling
- Efficiency and scalability
Architecture & Components of a Database System

- Layered architecture
 - User Interface
 - DBMS
 - External Storage
User Interface

- „Naive“ User
 - Application
- Expert User
 - Ad-hoc Query
- App-Developer
 - Compiler
- DB-admin
 - Management tools

DBMS

- DML-Compiler
 - Query Optimizer
 - Runtime
- DDL-Compiler
 - Schema

TA Management
Recovery

Storage Manager

- Logs
- Indexes
- DB
- Catalogue

External Storage
Next: Data Modeling

„Mini World“

Manual Modeling

Conceptual Schema
(ER-Schema)