Data Processing on Modern Hardware

Viktor Leis
What This Course is About

• make programs faster on modern multi-core CPUs using
 ▶ data-parallel instructions (SIMD)
 ▶ efficient synchronization of data structures
 ▶ parallelization of algorithms

• many of the techniques and examples presented in this course are used in modern database systems, but are also applicable more generally whenever performance is important

• not part of this course:
 ▶ number crunching with floating point numbers
 ▶ distributed systems
 ▶ GPU
 ▶ FPGA
 ▶ ...
Programming Assignments

- this course is about skills, not just about abstract knowledge
- unless you do the assignments, this course is fairly pointless
- you will get a grade for the assignments \(h \), which improves the grade of the exam \(e \):
 \[
 \min(e, 0.6e + 0.4h)
 \]
- (more information later)
Hardware Trends

- in the past, single-threaded performance doubled every 18-22 months
- now single-threaded performance is stagnating (single digit percentage growth)
- number of transistors is still growing quickly ("Moore’s law")
- as a result, chips offer more and more parallelism (in particular on servers)
- to benefit from this parallelism, the software must generally be rewritten ("the free lunch is over")
- software is becoming “a producer of performance” instead of a “consumer of performance” (Mark Hill)
Single Instruction, Multiple Data (SIMD) Width

- 1997: MMX 64-bit (Pentium 1)
- 1999: SSE 128-bit (Pentium 3)
- 2011: AVX 256-bit float (Sandy Bridge)
- 2013: AVX2 256-bit int (Haswell)
- 2017: AVX-512 512 bit (Skylake Server)
Number of Cores

The graph shows the number of cores in different processor technologies over the years. It includes processor families such as NetBurst, Core, Nehalem, Sandy Bridge EP, Ivy Bridge EP, Haswell EP, Broadwell EP, Broadwell EX, Skylake SP, Core (Kentsfield), Core (Lynnfield), Nehalem (Beckton), Nehalem (Westmere EX), and Ivy Bridge EX.
Memory Bandwidth

- NetBurst (Foster)
- NetBurst (Paxville)
- Core (Kentsfield)
- Core (Lynnfield)
- Nehalem (Beckton)
- Nehalem (Westmere EX)
- Sandy Bridge EP
- Ivy Bridge EP
- Ivy Bridge EX
- Sandy Bridge EP
- Broadwell EP
- Broadwell EX
- Haswell EP
- Skylake SP

![Graph showing the increase in DRAM bandwidth over years with different processor models marked.](image-url)
Memory Bandwidth Per Core
Outlook: Dark Silicon

- heat dissipation is becoming a major problem
- modern CPUs already have close to 10 billion transistors\(^1\)
- it is already impossible to power all available transistors at the same time
- SIMD code already runs at lower frequencies than sequential code
- one possible solution: more cores, but at low frequency (e.g., Intel’s Many Integrated Core architecture: Xeon Phi)
- another possible solution: many specialized, heterogeneous cores and function units

\(^1\)The Intel 8008, released in 1972, has 3500 transistors.
Hardware Specialization

- special purpose instructions (e.g., AES encryption, video decoding)
- Graphics Processing Unit (GPU)
- Accelerated Processing Unit (APU, by AMD)
- Oracle Sparc T7, Data Analytics Accelerators (DAX): decompression
- Oracle RAPID (research project)
- Google Tensor Processing Unit (TPU)
- Field-Programmable Gate Array (FPGA): “software-defined hardware”
- Application-Specific Integrated Circuit (ASIC), e.g., for bitcoin mining
- historical: Gamma database machine, Lisp machine
Skylake Server

- server variant of Intel Skylake microarchitecture, up to 28 cores
- available since August 2017
- our model: Intel Core i9-7900X (10 cores, 3.3–4.3GHz)
Skylake Server Pipeline

Skylake Server Pipeline Diagram
Skylake Server Caches and Memory

<table>
<thead>
<tr>
<th></th>
<th>L1</th>
<th>L2</th>
<th>L3</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>per core</td>
<td>per core</td>
<td>shared</td>
</tr>
<tr>
<td>size per core [KB]</td>
<td>32</td>
<td>1024</td>
<td>1408</td>
</tr>
<tr>
<td>latency [cycles]</td>
<td>4-6</td>
<td>14</td>
<td>50-70</td>
</tr>
<tr>
<td>max bandwidth [bytes/cycle]</td>
<td>192</td>
<td>64</td>
<td>16</td>
</tr>
<tr>
<td>sustained bandwidth [bytes/cycle]</td>
<td>133</td>
<td>52</td>
<td>15</td>
</tr>
<tr>
<td>associativity</td>
<td>8</td>
<td>16</td>
<td>-</td>
</tr>
</tbody>
</table>

- cache line size: 64 byte
- Skylake SP (up to 28 cores): 6 channels DDR4 2400
 (nominal bandwidth: 6 * 2400 MHz * 8 byte = 112 GB/s)
- Skylake X (up to 18 cores): 4 channels DDR4 2100
 (nominal bandwidth: 4 * 2100 MHz * 8 byte = 66 GB/s)
Simultaneous Multithreading (SMT) aka Hyperthreading

- goal: improve utilization of execution units
- each core is exposed as 2, 4, or 8 hardware threads
- threads running on the same core share most resources (e.g., L1 cache, execution units)
- fully transparent to software and OS (looks like “real” cores)
- allows hiding latencies (from cache misses, expensive instructions, etc.)
- one cannot expect linear speed up from this, but often gives moderate performance boost at very little hardware cost
- Intel: 2-way Hyperthreading
Low-Level Concepts/Terminology to Know

- pipelining, out-of-order execution, issue width
- branch prediction
- x86 uses little endian byte order