Query Optimization: Exercise
Session 10

Bernhard Radke

January 8, 2018
Homework
Give the permutation with rank 64 of 8 relations.
Give the shape of the random join tree with rank 125 of 8 relations.
Metaheuristics
Metaheuristics

- Iterative Improvement
- Simulated Annealing
- Tabu Search
Genetic Algorithms
Big picture

- Create a “population”, i.e. create p random join trees
- Encode them using ordered list or ordinal number encoding
- Create the next generation
 - Randomly mutate some members (e.g. exchange two relations)
 - Pairs members of the population and create “crossovers”
- Select the best, kill the rest

Details

- Encodings
- Crossovers
Encoding
Ordered lists

- Simple
- Left-deep trees: Straight-forward
- Bushy trees: Label edges in join-graph, encode the processing tree just like the execution engine will evaluate it

Ordinal numbers

- Are slightly more complex
- Manipulate a list of relations (careful: indexes are 1-based)
- Left-deep trees: \(((R_1 \bowtie R_4) \bowtie R_3) \bowtie R_2) \bowtie R_5 \mapsto 13211
- Bushy trees: \((R_3 \bowtie (R_1 \bowtie R_2)) \bowtie (R_4 \bowtie R_5) \mapsto 12\quad 21\quad 23\quad 12\)
Subsequence exchange for ordered list encoding

- Select subsequence in parent 1, e.g. \textit{abcdefgh}
- Reorder subsequence according to the order in parent 2

Subsequence exchange for ordinal number encoding

- Swap two sequences of same length and same offset
- What if we get duplicates?

Subset exchange for ordered list encoding

- Find random subsequence in both parents that have the same length and contain the same relations
- Exchange them to create two children
Combinations
Combinations

- 2PO (II and then SA)
- AB Algorithm (IKKBZ and then II)
- Toured SA (SA for each join sequence produced by GreedyJoinOrdering-3)
- GOO-II (run II on the result of GOO)
- IDP (two variants)
- Slides and exercises: db.in.tum.de/teaching/ws1718/queryopt
- Send any questions, comments, solutions to exercises etc. to radke@in.tum.de
- Exercise due: 9 AM, January 15