Query Optimization: Exercise

Session 8

Bernhard Radke

December 11, 2017
Generating Permutations
Generating Permutations

Query Optimization: Exercise

Session 8
December 11, 2017

- Keep current prefix and the rest of relations
- Extend the prefix only if exchanging the last two relations does not result in a cheaper sequence
Transformative Approaches
Explore the search space by directly applying equivalences to the initial join tree [1].
Random Trees with Cross Products
Generate a tree, then generate a permutation: $C(n - 1)$ trees, $n!$ permutations

Pick a random number $b \in [0, C(n - 1)]$, \textit{unrank} b

Pick a random number $p \in [0, n!]$, \textit{unrank} p

Attach the permutation to the leaves of the tree
Unrank(n, r)

Input: the number n of elements to be permuted and the rank r of the permutation to be constructed

Output: a permutation π

for each $0 \leq i < n$

\[\pi[i] = i \]

for each $n \geq i > 0$ descending {

\[\text{swap}(\pi[i - 1], \pi[r \mod i]) \]

\[r = \lfloor r/i \rfloor \]

}

return π;
• every tree is a word in \{ (,), \}
• map such words to the grid, every step up is (, down)
• the number of different paths \(q \) can be computed (see lectures)
• Procedure: start in (0,0), walk up as long as rank is smaller than \(q \). When it is bigger, step down, \(rank = rank - q \)
Next Homework

- unrank permutation/tree
- implement ExhaustiveTransformation2
▶ Slides and exercises: db.in.tum.de/teaching/ws1718/queryopt
▶ Send any questions, comments, solutions to exercises etc. to radke@in.tum.de
▶ Exercise due: 9 AM, December 18