
306 / 592

Accessing the Data

4. Accessing the Data

In this chapter we go into some details:

• deep into the (runtime) system

• close to the hardware

Goal:

• estimation and optimization of disk access costs

307 / 592

Accessing the Data

4. Accessing the Data (2)

• disk drives

• database buffer

• physical database organization

• physical algebra

• temporal relations and table functions

• indices

• counting the number of accesses

• disk drive costs

• selectivity estimations

308 / 592

Accessing the Data Disk Drive

Assembly

arm
pivot

arm

assembly

top viewb.

platter

arm head spindle

cylinder

sector track

head

arm

side viewa.

309 / 592

Accessing the Data Disk Drive

Zones

• outer tracks/sectors longer than inner ones

• highest density is fixed

• results in waste in outer sectors

• thus: cylinders organized into zones

310 / 592

Accessing the Data Disk Drive

Zones (2)

• every zone contains a fixed number of consecutive cylinders

• every cylinder in a zone has the same number of sectors per track

• outer zones have more sectors per track than inner zones

• since rotation speed is fixed: higher throughput on outer cylinders

311 / 592

Accessing the Data Disk Drive

Track Skew

Read all sectors of all tracks of some consecutive cylinders:

• read all sectors of one track

• switch to next track: small adjustment of head necessary
called: head switch

• this causes tiny delay

• thus, if all tracks start at the same angular position then we miss the
start of the first sector of the next track

• remedy: track skew

312 / 592

Accessing the Data Disk Drive

Cylinder Skew

Read all sectors of all tracks of some consecutive cylinders:

• read all sectors of all tracks of some cylinder

• switching to the next cylinder causes some delay

• again, we miss the start of the first sector, if the tracks start all start
at the same angular position

• remedy: cylinder skew

313 / 592

Accessing the Data Disk Drive

Addressing Sectors

• physical Address: cylinder number, head (surface) number, sector
number

• logical Address: LBN (logical block number)

314 / 592

Accessing the Data Disk Drive

LBN to Physical Address

Mapping:

Cylinder Track LBN number of sectors per track

0 0 0 573
1 573 573

.
5 2865 573

1 0 3438 573
.

15041 0 35841845 253
.

315 / 592

Accessing the Data Disk Drive

LBN to Physical Address (2)

This ideal view of the mapping is disturbed by bad blocks

• due to the high density, no perfect manufacturing is possible

• as a consequence bad blocks occur (sectors that cannot be used)

• reserve some blocks, tracks, cylinders for remapping bad blocks

Bad blocks may cause hickups during sequential reads

316 / 592

Accessing the Data Disk Drive

Reading/Writing a Block

Host sends
command

Controller
decodes it

Rotational
latency

Data transfer off mechanism

Status message to host

Read service time for disk 1

Read service time for disk 2

Disk 3

Disk 2

Disk 1

SCSI bus

Seek

Data transfer to host

Time

317 / 592

Accessing the Data Disk Drive

Reading/Writing a Block (2)

1. the host sends the SCSI command.

2. the disk controller decodes the command and calculates the physical
address.

3. during the seek the disk drive’s arm is positioned such that the
according head is correctly placed over the cylinder where the
requested block resides. This step consists of several phases.
3.1 the disk controler accelerates the arm.
3.2 for long seeks, the arm moves with maximum velocity (coast).
3.3 the disk controler slows down the arm.
3.4 the disk arm settles for the desired location. The settle times differ for

read and write requests. For reads, an aggressive strategy is used. If,
after all, it turns out that the block could not be read correctly, we can
just discard it. For writing, a more conservative strategy is in order.

4. the disk has to wait until the sector where the requested block resides
comes under the head (rotation latency).

5. the disk reads the sector and transfers data to the host.

6. finally, it sends a status message.

318 / 592

Accessing the Data Disk Drive

Optimizing Round Trip Time

• caching

• read-ahead

• command queuing

319 / 592

Accessing the Data Disk Drive

Seek Time

A good approximation of the seek time where d cylinders have to be
travelled is given by

seektime(d) =

{
c1 + c2

√
d d ≤ c0

c3 + c4d d > c0

where the constants ci are disk specific. The constant c0 indicates the
maximum number cylinders where no coast takes place: seeking over a
distance of more than c0 cylinders results in a phase where the disk arm
moves with maximum velocity.

320 / 592

Accessing the Data Disk Drive

Cost model: initial thoughts

Disk access costs depend on

• the current position of the disk arm and

• the angular position of the platters

Both are not known at query compilation time
Consequence:

• estimating the costs of a single disk access at query compilation time
may result in large estimation error

Better: costs of many accesses
Nonetheless: First Simplistic Cost Model to give a feeling for disk drive
access costs

321 / 592

Accessing the Data Disk Drive

Simplistic Cost Model

We introduce some disk drive parameters for out simplistic cost model:

• average latency time: average time for positioning (seek+rotational
delay)

I use average access time for a single request
I Estimation error can (on the average) be as “low” as 35%

• sustained read/write rate:
I after positioning, rate at which data can be delivered using sequential

read

322 / 592

Accessing the Data Disk Drive

Model 2004

A hypothetical disk (inspired by disks available in 2004) then has the
following parameters:

Model 2004

Parameter Value Abbreviated Name

capacity 180 GB Dcap

average latency time 5 ms Dlat

sustained read rate 100 MB/s Dsrr

sustained write rate 100 MB/s Dswr

The time a disk needs to read and transfer n bytes is then approximated
by Dlat + n/Dsrr.

323 / 592

Accessing the Data Disk Drive

Sequential vs. Random I/O

Database management system developers distinguish between

• sequential I/O and

• random I/O.

In our simplistic cost model:

• for sequential I/O, there is only one positioning at the beginning and
then, we can assume that data is read with the sustained read rate.

• for random I/O, one positioning for every unit of transfer—typically a
page of say 8 KB—is assumed.

324 / 592

Accessing the Data Disk Drive

Simplistic Cost Model

Read 100 MB

• Sequential read: 5 ms + 1 s

• Random read (8K pages): 65 s

325 / 592

Accessing the Data Disk Drive

Simplistic Cost Model (2)

Problems:

• other applications

• other transactions

• other read operations in the same QEP

may request blocks from the same disk and move away the head(s) from
the current position
Further: 100 MB sequential search poses problem to buffer manager

326 / 592

Accessing the Data Disk Drive

Time to Read 100 MB (x: number of 8 KB chunks)

 1

 2

 4

 8

 16

 32

 64

 1 4 16 64 256 1024

327 / 592

Accessing the Data Disk Drive

Time to Read n Random Pages

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 100 200 300 400 500

328 / 592

Accessing the Data Disk Drive

Simplistic Cost Model (3)

100 MB can be stored on 12800 8 KB pages.
In our simplistic cost model, reading 200 pages randomly costs about the
same as reading 100 MB sequentially.
That is, reading 1/64th of 100 MB randomly takes as long as reading the
100 MB sequentially.

329 / 592

Accessing the Data Disk Drive

Simplistic Cost Model (4)

Let us denote by a the positioning time, s the sustained read rate, p the
page size, and d some amount of consecutively stored bytes. Let us
calculate the break even point

n ∗ (a + p/s) = a + d/s

n = (a + d/s)/(a + p/s)

= (as + d)/(as + p)

a and s are disk parameters and, hence, fixed. For a fixed d , the break
even point depends on the page size.
Next Figure: x-axis: is the page size p in multiples of 1 K; y-axis: (d/p)/n
for d = 100 MB.

330 / 592

Accessing the Data Disk Drive

Break Even Point (depending on page size)

 8

 16

 32

 64

 128

 256

 512

 1 2 4 8 16 32 64

331 / 592

Accessing the Data Disk Drive

Two Lessons Learned

• sequential read is much faster than random read

• the runtime system should secure sequential read

The latter point can be generalized:

• the runtime system of a database management system has, as far as
query execution is concerned, two equally important tasks:

I allow for efficient query evaluation plans and
I allow for smooth, simple, and robust cost functions.

332 / 592

Accessing the Data Disk Drive

Measures to Achieve the Above

Typical measures on the database side are

• carefully chosen physical layout on disk
(e.g. cylinder or track-aligned extents, clustering)

• disk scheduling, multi-page requests

• (asynchronous) prefetching,

• piggy-back scans,

• buffering (e.g. multiple buffers, replacement strategy) and last but
not least

• efficient and robust algorithms for algebraic operators

333 / 592

Accessing the Data Disk Drive

Disk Drive: Parameters

Dcyl total number of cylinders
Dtrack total number of tracks
Dsec total number of sectors
Dtpc number of tracks per cylinder (= number of surfaces)

Dcmd command interpretation time
Drot time for a full rotation
Drdsettle time for settle for read
Dwrsettle time for settle for write
Dhdswitch time for head switch

334 / 592

Accessing the Data Disk Drive

Disk Drive: Parameters (2)

Dzone total number of zones
Dzcyl(i) number of cylinders in zone i
Dzspt(i) number of sectors per track in zone i
Dzspc(i) number of sectors per cylinder in zone i (= DtpcDzspt(i))
Dzscan(i) time to scan a sector in zone i (= Drot/Dzspti)

335 / 592

Accessing the Data Disk Drive

Disk Drive: Parameters (3)

Dseekavg average seek costs
Dclim parameter for seek cost function
Dca parameter for seek cost function
Dcb parameter for seek cost function
Dcc parameter for seek cost function
Dcd parameter for seek cost function

Dfseek(d) cost of a seek of d cylinders

Dfseek(d) =

{
Dca + Dcb

√
d if d ≤ Dclim

Dcc + Dcdd if d > Dclim

Dfrot(s, i) rotation cost for s sectors of zone i (= sDzscan(i))

336 / 592

Accessing the Data Disk Drive

Extraction of Disk Drive Parameters

• documentation: often not sufficient

• mapping: interrogation via SCSI-Mapping command (disk drives lie)

• use benchmarking tools, e.g.:
I Diskbench
I Skippy (Microbenchmark)
I Zoned

337 / 592

Accessing the Data Disk Drive

Seek Curve Measured with Diskbench

 0

 2000

 4000

 6000

 8000

 10000

 12000

-15000 -10000 -5000 0 5000 10000 15000

338 / 592

Accessing the Data Disk Drive

Skippy Benchmark Example

 0

 2000

 4000

 6000

 8000

 10000

 0 200 400 600 800 1000

339 / 592

Accessing the Data Disk Drive

Interpretation of Skippy Results

• x-axis: distance (sectors)

• y-axis: time

• difference topmost/bottommost line: rotational latency

• difference two lowest ‘lines’: head switch time

• difference lowest ‘line’ topmost spots: cylinder switch time

• start lowest ‘line’: minimal time to media

• plus other parameters

340 / 592

Accessing the Data Disk Drive

Upper bound on Seek Time

Theorem (Qyang)

If the disk arm has to travel over a region of C cylinders, it is positioned
on the first of the C cylinders, and has to stop at s − 1 of them, then
sDfseek(C/s) is an upper bound for the seek time.

341 / 592

Accessing the Data Database Buffer

Database Buffer

The database buffer

1. is a finite piece of memory,

2. typically supports a limited number of different page sizes (mostly one
or two),

3. is often fragmented into several buffer pools,

4. each having a replacement strategy (typically enhanced by hints).

Given the page identifier, the buffer frame is found by a hashtable lookup.
Accesses to the hash table and the buffer frame need to be synchronized.
Before accessing a page in the buffer, it must be fixed.
These points account for the fact that the costs of accessing a page in the
buffer are therefore greater than zero.

342 / 592

Accessing the Data Database Buffer

Buffer Accesses

Consider page acceses in a buffer with 2 pages:
page no action

0 read page 0, place it in buffer
1 read page 1, place it in buffer
0 fix page 0 in buffer
2 swap out a page (e.g. 1), read 2, place it in buffer
0 fix page 0 in buffer
3 swap out a page, read 3, place it in buffer

. . .

• replacement strategy is imporant

• unfixes omitted

343 / 592

Accessing the Data Database Buffer

Replacement Strategies

Some popular replacement strategies:

• random

• fifo

• lru

• Q2

lru is very popular

344 / 592

Accessing the Data Database Buffer

Replacement Strategies - random

• when a new page slot is needed, remove a random other page from
the buffer

• easy to implements, needs no additional memory

• but does not take the access patterns into account

• primarily used as base line

• suitable for analytic results

345 / 592

Accessing the Data Database Buffer

Replacement Strategies - fifo

• first in - first out

• remove the page that was place in the buffer first

• easy to implement, needs no/few additional memory

• but does not adapt very well do access patterns

• increasing buffer size may hurt it

Fifo Anomaly:

• access pattern: 3 2 1 0 3 2 4 3 2 1 0 4

• buffer sizes: 3 vs. 4

346 / 592

Accessing the Data Database Buffer

Replacement Strategies - lru

• least recently used

• remove the page that has not been accessed for longest time

• requires a priority queue/linked list

• adapt to access patterns, popular pages stay in memory

• but slow to remove pages

very popular replacement strategy

347 / 592

Accessing the Data Database Buffer

Replacement Strategies - 2Q

• two queues

• a fifo queue and a lru queue

• place pages first in fifo, if they are accessed again place them in lru

• gets rid of pages that are accessed only once fast

• superior to lru, example of a ”real” replacement strategy

348 / 592

Accessing the Data Database Buffer

Replacement Strategies - Effect on the Cost Model

• replacement affects the costs

• cost model needs predictions, though

• very hard to do in general

Typical approaches:

• ignore buffer effects

• assume random replacement

• make use of known access characteristics

349 / 592

Accessing the Data Physical Database Organization

Physical Database Organization

The database organizes the physical storage in multiple layers:

1. partition: sequence of pages (consecutive on disk)

2. extent: subsequence of a partition

3. segment (file): logical sequence of pages (implemented e.g. as set of
extents)

4. record: sequence of bytes stored on a page

Note:

• partition/extent/page/record are physical structures

• a segment is a logical structure

350 / 592

Accessing the Data Physical Database Organization

Physical Storage of Relations

Mapping of a relation’s tuples onto records stored on pages in segments:

Partition

Segment

Page

contains

consists of

Record

stores

Partition

Segment

Page

contains

consists of

Record

stores

Relation

Fragment

fragmented

contains

Tuplerepresented

mapped

1

N

1

1

M

N

1

N

N 1

M

N

N

N

351 / 592

Accessing the Data Physical Database Organization

Access to Database Items

• database item: something stored in DB

• database item can be set (bag, sequence) of items

• access to a database item then produces stream of smaller database
items

• the operation that does so is called scan

352 / 592

Accessing the Data Physical Database Organization

Scan Example

Using a relation scan rscan, the query

select *
from Student

can be answered by rscan(Student)

(segments? extents?): Assumption:

• segment scans and each relation stored in one segment

• segment and relation name identical

Then fscan(Student) and Student denote scans of all tuples in a
relation

353 / 592

Accessing the Data Physical Database Organization

Model of a Segment

• for our cost model, we need a model of segments.

• we assume an extent-based segment implementation.

• every segment then is a sequence of extents.

• every extent can be described by a pair (Fj , Lj) containing its first and
last cylinder.
(For simplicity, we assume that extents span whole cylinders.)

• an extent may cross a zone boundary.

• hence: split extents to align them with zone boundaries.

• segment can be described by a sequence of triples (Fi , Li , zi) ordered
on Fi where zi is the zone number in which the extent lies.

354 / 592

Accessing the Data Physical Database Organization

Model of a Segment

Sext number of extents in the segment
Scfirst(i) first cylinder in extent i (Fi)
Sclast(i) last cylinder in extent i (Li)
Szone(i) zone of extent i (zi)
Scpe(i) number of cylinders in extent i (= Sclast(i)− Scfirst(i) + 1)
Ssec total number of sectors in the segment

(=
∑Sext

i=1 Scpe(i)Dzspc(Szone(i)))

355 / 592

Accessing the Data Physical Database Organization

Slotted Page

827

273 827

1

273 2

• page is organized into areas (slots)

• slots point to data chunks

• slots may point to other pages

356 / 592

Accessing the Data Physical Database Organization

Tuple Identifier (TID)

TID is conjunction of

• page identifier (e.g. partition/segment no, page no)

• slot number

TID sometimes called Row Identifier (RID)

357 / 592

Accessing the Data Physical Database Organization

Record Layout

Different layouts possible:

size size size

offset offsetoffset

fixed-length variable-length variable-length variable-length

fixed-length variable-lengthvariable-length

strings

codes data

fixed-length variable-length

encoding for dictionary-based compression

length and offset encoding

358 / 592

Accessing the Data Physical Database Organization

Record Layout (2)

Record layout is a compromise:

• space consumption vs. CPU

• data model specific properties: e.g. generalization

• versioning / easy schema migration

• record layout typically not trivial

• accessing an attribute value has non-zero cost

359 / 592

Accessing the Data Physical Algebra

Physical Algebra

• building blocks for query execution

• implements the algorithms for query execution

• very generic, reusable components

• describes the general execution approach

• annotated with predicates etc. for query specific parts

360 / 592

Accessing the Data Physical Algebra

Iterator Concept

The general interface of each operator is:

• open

• next

• close

All physical algebraic operators are implemented as iterators.

• produce a stream of data items (tuples)

Implementations vary slightly for performance tuning (concept the same):

• first/next instead of next

• blocks of tuples instead of single tuples

361 / 592

Accessing the Data Physical Algebra

Iterator Example

scanscan

σ

Γσ

Note: all details (subscripts, implementations etc.) are omitted here

362 / 592

Accessing the Data Physical Algebra

Pipelining

Pipelining is fundamental for the physical algebra:

• physical operators are iterators over the data

• they produce a stream of single tuples

• tuple stream if passed through other operators

• pipelining operators just pass the data through, they only filter or
augment

• data is not copied or materialized

• very efficient processing

pipeline breakers disrupt this pipeline and materialize data:

• very expensive, can cause superfluous work

• sometimes cannot be avoided, though

363 / 592

Accessing the Data Physical Algebra

Simple Scan

• a rscan operation is rarely supported.

• instead: scans on segments (files).

• since a (data) segment is sometimes called file, the correct plan for
the above query is often denoted by fscan(Student).

Several assumptions must hold:

• the Student relation is not fragmented, it is stored in a single
segment,

• the name of this segment is the same as the relation name, and

• no tuples from other relations are stored in this segment.

Until otherwise stated, we assume that these assumptions hold.
Instead of fscan(Student), we could then simply use Student to denote
leaf nodes in a query execution plan.

364 / 592

Accessing the Data Physical Algebra

Attributes/Variables and their Binding

select *
from Student

can be expressed as Student[s] instead of Student.
Result type: set of tuples with a single attribute s.
s is assumed to bind a pointer

• to the physical record in the buffer holding the current tuple or

• a pointer to the slot pointing to the record holding the current tuple

365 / 592

Accessing the Data Physical Algebra

Building Block

• scan

• a leaf of a query execution plan

Leaf can be complex.
But: Plan generator does not try to reorder within building blocks
Nonetheless:

• building block organized around a single database item

If more than a single database item is involved: access path

366 / 592

Accessing the Data Physical Algebra

Scan and Attribute Access

Strictly speaking, the plan

σage>30(Student[s])

is incorrect (age is not bound!)
We have a choice:

• implicit attribute access

• make attribute accesses explicit

367 / 592

Accessing the Data Physical Algebra

Scan and Attribute Access (2)

Explicit attribute access:

σs.age>30(Student[s])

Advantage: makes attribute access costs explicit

368 / 592

Accessing the Data Physical Algebra

Scan and Attribute Access (3)

Consider:
σs.age>30∧s.age<40(Student[s])

Problem: accesses age twice

369 / 592

Accessing the Data Physical Algebra

Scan and Attribute Access (4)

Map operator:

χa1:e1,...,an:en(e) := {t ◦ [a1 : c1, . . . , an : cn]|t ∈ e, ci = ei (t) ∀ (1 ≤ i ≤ n)}

370 / 592

Accessing the Data Physical Algebra

Loading Attributes

The above problem can now be solved by

σage>30∧age<40(χage:s.age(Student[s])).

In general, it is beneficial to load attributes as late as possible. The latest
point at which all attributes must be read from the page is typically just
before a pipeline breaker.

371 / 592

Accessing the Data Physical Algebra

Loading Attributes (2)

select name
from Student
where age > 30

The plan
Πn(χn:s.name(σa>30(χa:s.age(Student[s]))))

is better than

Πn(σa > 30(χn:s.name,a:s.age(Student[s])))

372 / 592

Accessing the Data Physical Algebra

Loading Attributes (3)

Alternative to this selective successive attribute access:

• scan has list of attributes to be projected (accessed, copied)

• predicate is applied before processing the projection list

373 / 592

Accessing the Data Physical Algebra

Loading Attributes (4)

predicate evaluable on disk representation is called SARGable (search
argument)

• boolean expression in simple predicates of the form Aθc

If a predicate can be used for an index lookup: index SARGable
Other predicates: residual predicates

374 / 592

Accessing the Data Physical Algebra

Loading Attributes (5)

R[v ; p] equivalent to σp(R[v]) but cheaper to evaluate
Remark

• if p is conjunct, order by (fi − 1)/ci

Example:
Student[s; age > 30, name like ‘%m%′]

375 / 592

Accessing the Data Physical Algebra

Loading Attributes and Pipeline Breakers

• attribute access not only for scans

• likewise all operators that materialize to disk

• most pipeline breakers

• projection and selection should always be integrated into pipeline
breakers

• not that important for pipelining operators

• attribute access must happen before breaking the pipeline

Exception:

• RID join/semijoin techniques

376 / 592

Accessing the Data Physical Algebra

Physical Operator - Selection

• consumes a tuple stream

• checks predicate on each tuple

• produces matching tuples

Characteristics:

• pipelining operator

• consumes no memory, causes no IO

377 / 592

Accessing the Data Physical Algebra

Physical Operator - Nested Loop Join

• consumes two tuple streams

• for each tuple from one stream (trad: the left) consumes the whole
other stream

• checks predicate on each pair

• produces matching tuples

Characteristics:

• pipelining operator

• consumes no memory, causes no IO (at least not directly)

378 / 592

Accessing the Data Physical Algebra

Physical Operator - Blockwise Nested Loop Join

• consumes two tuple streams

• reads one stream (left) blockwise into memory, consumes the whole
other stream for each block

• checks predicate on each pair of tuples

• produces matching tuples

Characteristics:

• pipeline breaker on the left stream

• consumes memory for the blocks, causes no IO (unusual for a pipeline
breaker)

Variants (with hashing etc.) behave basically the same

379 / 592

Accessing the Data Physical Algebra

Physical Operator - Sort Merge Join

We only consider the case that the input is already sorted (see Sort) and
1 : n or 1 : 1.

• consumes two tuple streams

• skips uniformly through both streams

• checks predicate on each pair (implicitly)

• produces matching tuples

Characteristics:

• pipelining operator

• consumes no memory, causes no IO

380 / 592

Accessing the Data Physical Algebra

Physical Operator - Grace Hash Join

• consumes two tuple streams

• reads one stream and splits it into partitions on disk

• the same of the other stream

• joins the partitions, produces matching tuples

Characteristics:

• full pipeline breaker

• consumes memory for one partition, writes/reads whole data at least
once

IO behavior can be predicted relatively easily

381 / 592

Accessing the Data Physical Algebra

Physical Operator - Hybrid Hash Join

• consumes two tuple streams

• reads one stream and splits it into partitions on disk. Tries to keep
some partitions in memory

• reads the other stream, also splits it into partitions on disk, but
already joins with partitions still in memory

• joins partitions on disk, produces matching tuples

Characteristics:

• (typically) full pipeline breaker. Might keep the pipeline for the
second stream

• consumes memory for partitioning (size variable), might write/reads
whole data

Behavior difficult to predict, might cause no IO, might write everything

382 / 592

Accessing the Data Physical Algebra

Physical Operator - Sort

• consumes one input stream

• creates sorted runs, spools runs to disk, merges the runs

• produces sorted output stream

Characteristics:

• pipeline breaker

• consumes memory for one run, reads/write data log n times

Exact behavior depends on implementation, e.g. HeapSort might produce
one run, while QuickSort produces fixed number of runs

383 / 592

Accessing the Data Physical Algebra

Physical Operator - Sort Based Group By

We assume that the input is already sorted

• consumes one input stream

• aggregates the input directly

• produces an output tuple whenever the group by attribute changes

Characteristics:

• pipeline breaker (nearly pipelining, though)

• consumes memory for one tuple, causes no IO

Sometimes interleaved with sort (early aggregation)

384 / 592

Accessing the Data Physical Algebra

Physical Operator - Hash Bases Group By

• consumes one input stream

• reads the stream, splits into partitions, writes partitions to disk (if
needed)

• aggregates partitions, produces output tuples

Characteristics:

• pipeline breaker

• consumes memory for buffering (variable), might read/write the
whole data

• two possibilities, similar to Grace Hash vs. Hybrid Hash

Variants with early aggregation etc.

385 / 592

Accessing the Data Physical Algebra

Physical Operators - Others

Only mainstream operators included, some are missing:

• projection usually implicit

• duplicate elimination is a special kind of aggregation

• dependent join (nested loop, can be done somewhat differently)

• outer join/semi join/anti join etc. roughly similar to normal joins

• specialized operators for query languages: staircase join, twig join etc.

• their characteristics have to be known to the query optimizer

386 / 592

Accessing the Data Temporal Relations and Table Functions

Temporal Relations

The query optimizer might introduce temporal relations:

• a ”relations” just for the query

• allows for reusing intermediate results

• related: temporary views

• more efficient nested loop join

• materializes a subquery

Creating a temporary relation is an expensive operation therefore

• should be decided by the query optimizer

• but often done as rewrite

• typically breaks optimization in parts

387 / 592

Accessing the Data Temporal Relations and Table Functions

Temporal Relations (2)

select e.name, d.name
from Emp e, Dept d
where e.age > 30 and e.age < 40 and e.dno = d.dno

can be evaluated by

Dept[d] nl
e.dno=d .dnoσe.age>30∧e.age<40(Emp[d]).

Better:

Dept[d] nl
e.dno=d .dnotemp(σe.age>30∧e.age<40(Emp[d])).

Or:

1. Rtmp = σe.age>30∧e.age<40(Emp[d]);

2. Dept[d] nl
e.dno=d .dnoRtmp[e]

388 / 592

Accessing the Data Temporal Relations and Table Functions

Table Functions

A table function is a function that returns a relation.
Example query:

select *
from TABLE(Primes(1,100)) as p

Translation:
Primes(1, 100)[p]

Looks the same as regular scan, but is of course computed differently.

389 / 592

Accessing the Data Temporal Relations and Table Functions

Table Functions (2)

Special birthdays of Anton:

select *
from Friends f,

TABLE(Primes(
CURRENT YEAR, EXTRACT(YEAR FROM f.birthday) + 100)) as p

where f.name = ‘Anton’

Note: The result of the table function depends on our friend Anton.
Translation: uses d-join

390 / 592

Accessing the Data Temporal Relations and Table Functions

Table Functions (3)

Definition d-join:

R S = {r ◦ s|r ∈ R, s ∈ S(t)}.

Translation of the above query:

χb:XTRY (f .birthday)+100(σf .name=′′Anton′′(Friends[f])) Primes(c, b)[p]

where we assume that some global entity c holds the value of
CURRENT YEAR.

391 / 592

Accessing the Data Temporal Relations and Table Functions

Table Functions (4)

The same for all friends:

select *
from Friends f,

TABLE(Primes(
CURRENT YEAR, EXTRACT(YEAR FROM f.birthday) + 100)) as p

Better:

select *
from Friends f,

TABLE(Primes(
CURRENT YEAR, (select max(birthday) from Friends) + 100)) as p

where p.prime ≤ EXTRACT(YEAR FROM f.birthday) + 100

At the algebraic level: this optimization requires some knowledge

392 / 592

Accessing the Data Indices

Indices

We consider B-Trees only

• key attributes: a1, . . . , an

• data attributes: d1, . . . , dm

• Often: one special data attribute holding the TID of a tuple

Some notions:

• simple/complex key

• unique/non-unique index

• index-only relation (no TIDs available!)

• clustered/non-clustered index

393 / 592

Accessing the Data Indices

Clustered vs. Non-Clustered B-Tree

• clustering is not always possible (or even desireable)

394 / 592

Accessing the Data Indices

Single Index Access Path - Point Query

Exact match query:

select name
from Emp
where eno = 1077

Translation:

Πname(χe:∗x .tid ,name:e.name(Empeno [x ; eno = 1077]))

Alternative translation using d-join:

Πname(Empeno [x ; eno = 1077] χe:∗.tid ,name:e.name(�))

(x: holds ptr to index entry; *: dereference TID, � is a singleton scan)

395 / 592

Accessing the Data Indices

Single Index Access Path - Range Query

Range query:

select name
from Emp
where age ≥ 25 and age ≤ 35

Translation:

Πname(χe:∗x .tid ,name:e.name(Empage [x ; 25 ≤ age; age ≤ 35]))

(Start and Stop condition)

396 / 592

Accessing the Data Indices

Single Index Access Path - Sequential I/O

Turning random I/O into sequential I/O:

Πname(χe:∗tid ,name:e.name(sortx .tid(Empage [x ; 25 ≤ age; age ≤ 35; tid])))

Note: explicit projection the TID attribute of the index within the index
scan.

397 / 592

Accessing the Data Indices

Single Index Access Path - Sorted Output

Query demanding ordered output:

select name, age
from Emp
where age ≥ 25 and age ≤ 35
order by age

Translation:

Πname,age(χe:∗x .tid ,name:e.name(Empage [x ; 25 ≤ age; age ≤ 35]))

Note: output of index scan ordered on its key attributes
This order can be exploited in many ways: e.g.: subsequent merge join

398 / 592

Accessing the Data Indices

Single Index Access Path - Sorted Output (2)

Turning random I/O into sequential I/O requires resort:

Πname,age(sortage(χe:∗tid ,name:e.name(sorttid(Empage [x ; 25 ≤ age; age ≤ 35; tid]))))

Possible speedup of sort by dense numbering:

Πname,age(
sortrank(
χe:∗tid ,name:e.name(
sorttid(
χrank:counter++(
Empage [x ; 25 ≤ age; age ≤ 35; tid])))))

399 / 592

Accessing the Data Indices

Single Index Access Path - Other Predicates

Some predicates not index sargable but still useful as residual predicates:

select name
from Emp
where age ≥ 25 and age ≤ 35 and age 6= 30

Translation:

Πname(χe:∗x .tid ,name:e.name(Empage [x ; 25 ≤ age; age ≤ 35; age 6= 30]))

400 / 592

Accessing the Data Indices

Single Index Access Path - Other Predicates (2)

Non-inclusive bounds:

select name
from Emp
where age > 25 and age < 35

If supported by index:

Πname(χe:∗x .tid ,name:e.name(Empage [x ; 25 < age; age < 35]))

If unsupported:

Πname(χe:∗x .tid ,name:e.name(Empage [x ; 25 ≤ age; age ≤ 35; age 6= 25, age 6= 35]))

Especially for predicates on strings this might be expensive.

401 / 592

Accessing the Data Indices

Single Index Access Path - Ranges

Start and stop conditions are optional:

select name
from Emp
where age ≥ 60

or

select name
from Emp
where age ≤ 20

402 / 592

Accessing the Data Indices

Single Index Access Path - No Range

Full index scan also useful:

select count(*)
from Emp

Also works for sum/avg.
(notion: index only query)

403 / 592

Accessing the Data Indices

Single Index Access Path - No Range (2)

Min/max even more efficient:

select min/max(salary)
from Emp

404 / 592

Accessing the Data Indices

Single Index Access Path - No Range (3)

select name
from Emp
where salary = (select max(salary)

from Emp)

Alternatives: one or two descents into the index.

405 / 592

Accessing the Data Indices

Single Index Access Path - No Range (4)

Full index scan:

select salary
from Emp
order by salary

Translation:
Empsalary

406 / 592

Accessing the Data Indices

Single Index Access Path - String Ranges

Predicate on string attribute:

select name, salary
from Emp
where name ≥ ’Maaa’

Start condition: ′Maaa′ ≤ name

select name, salary
from Emp
where name like ’M%’

Start condition: ′M ′ ≤ name

407 / 592

Accessing the Data Indices

Single Index Access Path

• an access path is a plan fragment with building blocks concerning a
single database items.

• hence, every building block is an access path.

• above plans mostly touch two database items: a relation and an index
on some attribute of that relation.

• if we say that an index concerns the relation that it indexes, such a
fragment is an access path.

• for relational systems, the most general case of an access path uses
several indices to retrieve the tuples of a single relation.

• we will see examples of these more complex access paths in the
following section.

• a query that can be answered solely by accessing indexes is called an
index only query .

408 / 592

Accessing the Data Indices

Single Index Access Path - Complex Predicates

Query with IN:

select name
from Emp
where age in {28, 29, 31, 32}

Take min/max value for start/stop key plus one of the following as the
residual predicate:

• age = 28 ∨ age = 29 ∨ age = 31 ∨ age = 32

• age 6= 30

409 / 592

Accessing the Data Indices

Single Index Access Path - Complex Predicates (2)

A case for the d-join:

select name
from Emp
where salary in {1111, 11111, 111111}

With Sal = {[s : 1111], [s : 11111], [s : 111111]}:

Sal [S] χe:∗tid ,name:e.name(Empsalary [x ; salary = S .s; tid])

• gap skipping/zig-zag skipping

410 / 592

Accessing the Data Indices

Single Index Access Path - Compound Keys

In general an index can have a complex key comprising of key attributes
k1, . . . , kn and data attributes d1, . . . , dm.
Besides a full index scan, the index can be descended to directly search for
the desired tuple(s):
If the search predicate is of the form

k1 = c1 ∧ k2 = c2 ∧ . . . ∧ kj = cj

for some constants ci and some j <= n, we can generate the start and
stop condition

k1 = c1 ∧ . . . ∧ kj = cj .

411 / 592

Accessing the Data Indices

Single Index Access Path - Compound Keys

With ranges things become more complex and highly dependent on the
implementation of the facilities of the B-Tree:

k1 = c1 ∧ k2 ≥ c2 ∧ k3 = c3

Obviously, we can generate the start condition k1 = c1 ∧ k2 ≥ c2 and the
stop condition k1 = c1.
Here, we neglected the condition on k3 which becomes a residual predicate.
However, with some care we can extend the start condition to
k1 = c1 ∧ k2 ≥ c2 ∧ k3 = c3:
we only have to keep k3 = c3 as a residual predicate since for k2 values
larger than c2 values different from c3 can occur for k3.

412 / 592

Accessing the Data Indices

Single Index Access Path - Compound Keys (2)

If closed ranges are specified for a prefix of the key attributes as in

a1 ≤ k1 ≤ b1 ∧ . . . ∧ aj ≤ kj ≤ bj

we can generate the start key k1 = a1 ∧ . . . ∧ kj = aj , the stop key
k1 = b1 ∧ . . . ∧ kj = bj , and

a2 ≤ k2 ≤ b2 ∧ . . . ∧ aj ≤ kj ≤ bj

as the residual predicate.
If for some search key attribute kj the lower bound aj is not specified, the
start condition can not contain kj and any kj+i .
If for some search key attribute kj the upper bound bj is not specified, the
stop condition can not contain kj and any kj+i .

413 / 592

Accessing the Data Indices

Single Index Access Path - Improvements

Two further enhancements of the B-Tree functionality possibly allow for
alternative start/stop conditions:

• The B-Tree implemenation allows to specify the order (ascending or
descending) for each key attribute individually.

• The B-Tree implementation implements forward and backward scans

414 / 592

Accessing the Data Indices

Single Index Access Path - Improvements (2)

Consider search predicate:

haircolor = ’blond’ and height between 180 and 190

and index on
sex, haircolor, height

There are only the two values male and female available for sex.
Rewrite:

(sex = ’m’ and haircolor = ’blond’ and height

between 180 and 190) or (sex = ’f’ and haircolor =

’blond’ and height between 180 and 190)

Improvement: determine rewrite at query execution time in conjunction
with gap skipping.

415 / 592

Accessing the Data Indices

Multi Index Access Path - Example

Query:

select *
from Camera
where megapixel > 5 and distortion < 0.05

and noise < 0.01
zoomMin < 35 and zoomMax > 105

Indexes on all attributes

416 / 592

Accessing the Data Indices

Multi Index Access Path - Example (2)

Translation:

((((
Cameramegapixel [c ; megapixel > 5; tid]
∩

Cameradistortion[c ; distortion < 0.05; tid])
∩

Cameranoise [c ; noise < 0.01; tid])
∩

CamerazoomMin[c; zoomMin < 35; tid])
∩

CamerazoomMax [c ; zoomMax > 105; tid])

Then dereference

• Notion: index and-ing/and merge (bitmap index)

417 / 592

Accessing the Data Indices

Multi Index Access Path - Combining

Questions:

• In which order do we intersect the TID sets resulting from the index
scans?

• Do we really apply all indexes before dereferencing the TIDs?

The answer to the latter question is clearly “no”, if the next index scan is
more expensive than accessing the records in the current TID list.
It can be shown that the indexes in the cascade of intersections are
ordered on increasing (fi − 1)/ci terms where fi is the selectivity of the
index and ci its access cost.
Further, we can stop as soon as accessing the original tuples in the base
relation becomes cheaper than intersecting with another index and
subsequently accessing the base relation.

418 / 592

Accessing the Data Indices

Multi Index Access Path - Combining (2)

Index-oring (or merge):

select *
from Emp
where yearsOfEmployment ≥ 30

or age ≥ 65

Translation:

EmpyearsOfEmployment [c ; yearsOfEmployment ≥ 30; tid]∪Empage [c ; age ≥ 65; tid]

Attention: duplicates
Optimal translation of complex boolean expressions? Factorization?

419 / 592

Accessing the Data Indices

Multi Index Access Path - Combining (3)

Index differencing:

select *
from Emp
where yearsOfEmployment 6= 10

and age ≥ 65

Translation:

Empage [c ; age ≥ 65; tid]\EmpyearsOfEmployment [c ; yearsOfEmployment = 10; tid]

420 / 592

Accessing the Data Indices

Multi Index Access Path - Combining (3)

Non-restrictive index sargable predicates (more than half of the index has
to be read):

select *
from Emp
where yearsOfEmployment ≤ 5

and age ≤ 60

Then

EmpyearsOfEmployment [c ; yearsOfEmployment ≤ 5; tid]\Empage [c ; age > 60; tid]

could be more efficient than

EmpyearsOfEmployment [c ; yearsOfEmployment ≤ 5; tid]∩Empage [c; age ≤ 60; tid]

421 / 592

Accessing the Data Indices

Indices and Join

1. speed up joins by index exploitation

2. make join a general index processing operation

(intersection is similar to join (for sets))

422 / 592

Accessing the Data Indices

Indices and Join (2)

Turn map

χe:∗tid ,name:e.name(Empsalary [x ; 25 ≤ age ≤ 35; tid])

into d-join

Empsalary [x ; 25 ≤ age ≤ 35; tid] χe:∗tid ,name:e.name(�)

or even join

Empsalary [x ; 25 ≤ age ≤ 35] x .tid=e.tidEmp[e]

Variants: sorting at different places (by plan generator)

• pro: flexibility

• contra: large search space

423 / 592

Accessing the Data Indices

Indices and Join (3)

Query:

select name,age
from Person
where name like ’R%’ and age between 40 and 50

Translation:

Πname,age(
Empage [a; 40 ≤ age ≤ 50; TIDa, age]

TIDa=TIDn

Empname [n; name ≥′ R ′; name <′ S ′; TIDn, name])

424 / 592

Accessing the Data Indices

Indices and Join (4)

The query

select *
from Emp e, Dept d
where e.name = ‘Maier’ and e.dno = d.dno

can be directly translated to

σe.name=′′Maier ′′(Emp[e]) e.dno=d .dnoDept[d]

425 / 592

Accessing the Data Indices

Indices and Join (5)

If there are indexes on Emp.name and Dept.dno, we can replace
σe.name=′′Maier ′′(Emp[e]) by an index scan as we have seen previously:

χe:∗x .tid(Empname [x ; name =′′ Maier ′′])

426 / 592

Accessing the Data Indices

Indices and Join (6)

With a d-join:

Empname [x ; name =′′ Maier ′′] χe:∗x .tid(�)

Abbreviate Empname [x ; name =′′ Maier ′′] by Ei

Abbreviate χe:∗x .tid(�) by Ea.

427 / 592

Accessing the Data Indices

Indices and Join (7)

Use index on Dept.dno:

Ei Ea Deptdno [y ; y .dno = dno]

Dereference TIDs (index nested loop join):

Ei Ea Deptdno [y ; y .dno = dno; dtid : y .tid] χu:∗dtid(�)

Abbreviate Deptdno [y ; y .dno = dno; dtid : y .tid] by Di

Abbreviate χu:∗dtid(�) by Da

Fully abbreviated, the expression then becomes

Ei Ea Di Da

428 / 592

Accessing the Data Indices

Indices and Join - Performance Improvements

Optimizations: sorting the outer of a d-join is useful under several
circumstances since it may

• turn random I/O into sequential I/O and/or

• avoid reading the same page twice.

In our example expression:

429 / 592

Accessing the Data Indices

Indices and Join - Performance Improvements (2)

• We can sort the result of expression Ei on TID in order to turn random
I/O into sequential I/O, if there are many employees named ”Maier”.

• We can sort the result of the expression Ei Ea on dno for two
reasons:

I If there are duplicates for dno, i.e. there are many employees named
”Maier” in each department, then this guarantees that no index page
(of the index Dept.dno) has to be read more than once.

I If additionally Dept.dno is a clustered index or Dept is an index-only
table contained in Dept.dno then large parts of the random I/O can
be turned into sequential I/O.

I If the result of the inner is materialized (see below), then only one
result needs to be stored. Note that sorting is not necessary but
grouping would suffice to avoid duplicate work.

• We can sort the result of the expression Ei Ea Di on dtid for the
same reasons as mentioned above for sorting the result of Ei on TID.

430 / 592

Accessing the Data Indices

Indices and Join - Temping the Inner

Typically, many employees will work in a single department and possibly
several of them are called ”Maier”.
For everyone of them, we can be sure that there exists at most one
department.
Let us assume that referential intregrity has been specified.
Then there exists exactly one department for every employee.
We have to find a way to rewrite the expression

Ei Ea Deptdno [y ; y .dno = dno; dtid : y .rid]

such that the mapping dno −→ dtid is explicitly materialized (or, as one
could also say, cached).

431 / 592

Accessing the Data Indices

Indices and Join - Temping the Inner (2)

Use χmat :

Ei Ea χmat
tid :(Deptdno [y ;y .dno=dno]).tid(�)

432 / 592

Accessing the Data Indices

Indices and Join - Temping the Inner (3)

If we further assume that the outer (Ei Ea) is sorted on dno, then it
suffices to remember only the TID for the latest dno.
We define the map operator χmat,1 to do exactly this.
A more efficient plan could thus be

sortdno(Ei Ea) χmat,1
dtid :(Deptdno [y ;y .dno=dno]).tid(�)

where, strictly speaking, sorting is not necessary: grouping would suffice.

433 / 592

Accessing the Data Indices

Indices and Join - Temping the Inner (4)

Consider: e1 e2

The free variables used in e2 must be a subset of the variables (attributes)
produced by e1, i.e. F(e2) ⊆ A(e1).
Even if e1 does not contain duplicates, the projection of e1 on F(e2) may
contain duplicates.
If so, materialization could pay off.
However, in general, for every binding of the variables F(e2), the
expression e2 may produce several tuples.
This means that using χmat is not sufficient.

434 / 592

Accessing the Data Indices

Indices and Join - Temping the Inner (5)

The query

select *
from Emp e, Wine w
where e.yearOfBirth = w.year

has the usual suspects as plans.
Assume we have only wines from a few years.
Then, it might make sense to consider the following alternative:

Wine[w] σe.yearOfBirth=w .year (Emp[e])

Problem: scan Emp once for each Wine tuple
Duplicates in Wine.year: scan Emp only once per Wine.year value

435 / 592

Accessing the Data Indices

Indices and Join - Temping the Inner (6)

The memox operator performs caching:

Wine[w] memox(σe.yearOfBirth=w .year (Emp[e]))

Sorting still beneficial:

sortw .year (Wine[w]) memox1(σe.yearOfBirth=w .year (Emp[e]))

436 / 592

Accessing the Data Indices

Indices and Join - Temping the Inner (7)

Things can become even more efficient if there is an index on
Emp.yearOfBirth:

sortw .year (Wine[w])
memox1(EmpyearOfBirth[x ; x .yearOfBirth = w .year] χe:∗(x .tid)(�))

437 / 592

Accessing the Data Indices

Indices and Join - Temping the Inner (8)

Indexes on Emp.yearOfBirth and Wine.year.
Join result of index scans.
Since the index scan produces its output ordered on the key attributes, a
simple merge join suffices (and we are back at the latter):

EmpyearOfBirth[x] merge
x .yearOfBirth=y .yearWineyear [y]

438 / 592

Accessing the Data Indices

Remarks on Access Path Generation

Side-ways information passing
Consider R R.a=S.bS

• min/max for restriction on other join argument

• full projection on join attributes (leads to semi-join)

• bitmap representation of the projection

439 / 592

Accessing the Data Counting the Number of Accesses

From Cardinalities to Costs

Given: number of TIDs to dereference
Question: disk access costs?
Two step solution:

1. estimate number of pages to be accessed

2. estimate costs for accessing these pages

440 / 592

Accessing the Data Counting the Number of Accesses

Parameters

Given a set of k TIDs after an index access:
How many pages do we have to access to dereference them?

Let R be the relation for which we have to retrieve the tuples. Then we
use the following abbreviations

N |R| number of tuples in the relation R
m ||R|| number of pages on which tuples of R are stored
B N/m number of tuples per page
k number of (distinct) TIDs for which tuples have to be retrieved

We assume that the tuples are uniformely distributed among the m pages.
Then, each page stores B = N/m tuples. B is called blocking factor .

441 / 592

Accessing the Data Counting the Number of Accesses

Special Cases

Let us consider some border cases.
If k > N − N/m or m = 1, then all pages are accessed.
If k = 1 then exactly one page is accessed.

442 / 592

Accessing the Data Counting the Number of Accesses

General Case

The answer to the general question will be expressed in terms of

• buckets (pages in the above case) and

• items contained therein (tuples in the above case).

Later on, we will also use extents, cylinders, or tracks as buckets and
tracks or sectors/blocks as items.

443 / 592

Accessing the Data Counting the Number of Accesses

Different Settings

Outline:

1. random/direct access
1.1 items uniformly distributed among the buckets

1.1.1 request k distinct items
1.1.2 request k non-distinct items

1.2 non-uniform distribution of items among buckets

2. sequential access

Always: uniform access probability

444 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct

Additional assumption:
The probability that we request a set with k items is

1(N
k

)
for all of the (

N

k

)
possibilities to select a k-set.
[Every k-set is accessed with the same probability.]

445 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (2)

Theorem (Waters/Yao)

Consider m buckets with n items each. Then there is a total of N = nm
items. If we randomly select k distinct items from all items then the
number of qualifying buckets is

YN,m
n (k) = m ∗ YN

n (k) (17)

where YN
n (k) is the probability that a bucket contains at least one item.

446 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (3)

Theorem (Waters/Yao (cont.))

The probability is

YN
n (k) =

{
[1− p] k ≤ N − n
1 k > N − n

where p is the probability that a bucket contains none of the k items. The
following alternative expressions can be used to calculate p:

p =

(N−n
k

)(N
k

) (18)

=
k−1∏
i=0

N − n − i

N − i
(19)

=
n−1∏
i=0

N − k − i

N − i
(20)

447 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (4)

Proof (1): The total number of possibilities to pick the k items from all N
items is (

N

k

)
The number of possibilities to pick k items from all items not contained in
a fixed single bucket is (

N − n

k

)
Hence, the probability p that a bucket does not qualify is

p =

(
N − n

k

)
/

(
N

k

)

448 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (5)

Proof (2):

p =

(N−n
k

)(N
k

)
=

(N − n)! k!(N − k)!

k!((N − n)− k)! N!

=
k−1∏
i=0

N − n − i

N − i

449 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (6)

Proof(3):

p =

(N−n
k

)(N
k

)
=

(N − n)! k!(N − k)!

k!((N − n)− k)! N!

=
(N − n)! (N − k)!

N! ((N − k)− n)!

=
n−1∏
i=0

N − k − i

N − i

450 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (7)

Implementation remark:

The fraction m = N/n may not be an integer.
For these cases, it is advisable to have a Gamma-function based
implementation of binomial coeffcients at hand

Evaluation of Yao’s formula is expensive. Approximations are more
efficient to calculate.

451 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (8)

Special cases:

If then YN
m (k) =

n = 1 k/N
n = N 1
k = 0 0
k = 1 B/N
k = N 1

452 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (9)

Let N items be distributed over N buckets such that every bucket contains
exactly one item.
Further let us be interested in a subset of m buckets (1 ≤ m ≤ N).
If we pick k items then the number of buckets within the subset of size m
that qualify is

mYN
1 (k) = m

k

N
(21)

qualify.

453 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (10)
Proof:

YN
1 (k) = (1−

(N−1
k

)(N
k

))

= (1−
(N−1)!

k!((N−1)−k)!

N!
k!(N−k)!

)

= (1− (N − 1)!k!(N − k)!

N!k!((N − 1)− k)!
)

= (1− N − k

N
)

= (
N

N
− N − k

N
)

=
N − N + k

N

=
k

N

454 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (11)

Approximation of Yao’s formula (1):

p ≈ (1− k/N)n

[Waters]

455 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (12)

Approximation of Yao’s formula (2):

YN,m
n (k) can be approximated by:

m ∗ [(1− (1− 1/m)k)+
(1/(m2b) ∗ k(k − 1)/2 ∗ (1− 1/m)k−1)+
(1.5/(m3b4) ∗ k(k − 1)(2k − 1)/6 ∗ (1− 1/m)k−1)]

[Whang, Wiederhold, Sagalowicz]

456 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (13)

Approximation of Yao’s formula (3):

YN,m
n (k) ≈

k if k < m

2
k+m

3 if m
2 ≤ k < 2m

m if 2m ≤ k

[Bernstein, Goodman, Wong, Reeve, Rothnie]

457 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Distinct (14)

Upper and lower bounds for p:

plower = (1− k

N − n−1
2

)n

pupper = ((1− k

N
) ∗ (1− k

N − n + 1
))n/2

for n = N/m.
Dihr and Saharia claim that the maximal difference resulting from the use
of the lower and the upper bound to compute the number of page accesses
is 0.224—far less than a single page access.

458 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct

Lemma
Let S be a set with |S | = N elements. Then, the number of multisets with
cardinality k containing only elements from S is(

N + k − 1

k

)

Proof: For a prove we just note that there is a bijection between the
k-multisets and the k-subsets of a N + k − 1-set.
We can go from a multiset to a set by f with

f ({x1 ≤ . . . ≤ xk}) = {x1 + 0 < x2 + 1 < . . . < xk + (k − 1)}

and from a set to a multiset via g with

g({x1 < . . . < xk}) = {x1 − 0 ≤ x2 − 1 ≤ . . . ≤ xk − (k − 1)}

459 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (2)

Theorem (Cheung)

Consider m buckets with n items each. Then there is a total of N = nm
items. If we randomly select k not necessarily distinct items from all items,
then the number of qualifying buckets is

Cheung
N,m
n (k) = m ∗ CheungNn (k) (22)

where
CheungNn (k) = [1− p̃] (23)

460 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (3)

Theorem (Cheung (cont.))

with the following equivalent expressions for p̃:

p̃ =

(N−n+k−1
k

)(N+k−1
k

) (24)

=
k−1∏
i=0

N − n + i

N + i
(25)

=
n−1∏
i=0

N − 1− i

N − 1 + k − i
(26)

461 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (4)

Proof(1):
Eq. 24 follows from the observation that the probability that some bucket

does not contain any of the k possibly duplicate items is
(N−n+k−1

k)
(N+k−1

k)
.

462 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (5)

Proof(2):
Eq. 25 follows from

p̃ =

(N−n+k−1
k

)(N+k−1
k

)
=

(N − n + k − 1)! k!((N + k − 1)− k)!

k!((N − n + k − 1)− k)! (N + k − 1)!

=
(N − n − 1 + k)! (N − 1)!

(N − n − 1)! (N − 1 + k)!

=
k−1∏
i=0

N − n + i

N + i

463 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (6)

Proof(3):
Eq. 26 follows from

p̃ =

(N−n+k−1
k

)(N+k−1
k

)
=

(N − n + k − 1)! k!((N + k − 1)− k)!

k!((N − n + k − 1)− k)! (N + k − 1)!

=
(N + k − 1− n)! (N − 1)!

(N + k − 1)! (N − 1− n)!

=
n−1∏
i=0

N − n + i

N + k − n + i

=
n−1∏
i=0

N − 1− i

N − 1 + k − i

464 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (7)

Approximation for p̃:

(1− n/N)k

[Cardenas]

465 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (8)

Estimate for the number of distinct values in a bag:

Corollary

Let S be a k-multiset containing elements from an N-set T . Then the
number of distinct items contained in S is

D(N, k) =
Nk

N + k − 1
(27)

if the elements in T occur with the same probability in S.

466 / 592

Accessing the Data Counting the Number of Accesses

Direct, Uniform, Non-Distinct (9)

Model switching:

YN,m
n (Distinct(N, k)) ≈ Cheung

N,m
n (k)

[for n ≥ 5]

467 / 592

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct

So far:

1. every page contains the same number of records, and

2. every record is accessed with the same probability.

Now:

Model the distribution of items to buckets by m numbers ni (for
1 ≤ i ≤ m) if there are m buckets.
Each ni equals the number of records in some bucket i .

468 / 592

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (2)

The following theorem is a simple application of Yao’s formula:

Theorem (Yao/Waters/Christodoulakis)

Assume a set of m buckets. Each bucket contains nj > 0 items
(1 ≤ j ≤ m). The total number of items is N =

∑m
j=1 nj . If we lookup k

distinct items, then the probability that bucket j qualifies is

WN
nj

(k , j) = [1−
(N−nj

k

)(N
k

)] (= YN
nj

(k)) (28)

and the expected number of qualifying buckets is

WN,m
nj

(k) :=
m∑
j=1

WN
nj

(k , j) (29)

469 / 592

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (3)

The product formulation in Eq. 20 of Theorem 2 results in a more efficient
computation:

Corollary

If we lookup k distinct items, then the expected number of qualifying
buckets is

WN,m
nj

(k) =
m∑
j=1

(1− pj) (30)

with

pj =

{ ∏nj−1
i=0

N−k−i
N−i k ≤ nj

0 N − nj < k ≤ N
(31)

470 / 592

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (4)

If we compute the pj after we have sorted the nj in ascending order, we
can use the fact that

pj+1 = pj ∗
nj+1−1∏
i=nj

N − k − i

N − i
.

471 / 592

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (5)

Many buckets: statistics too big. Better: Histograms

Corollary

For 1 ≤ i ≤ L let there be li buckets containing ni items. Then, the total
number of buckets is m =

∑L
i=1 li and the total number of items in all

buckets is N =
∑L

i=1 lini . For k randomly selected items the number of
qualifying buckets is

WN,m
nj

(k) =
L∑

i=1

liYN
nj

(k) (32)

472 / 592

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (6)

Distribution function. The probability that x ≤ nj items in a bucket j
qualify, can be calculated as follows:

• The number of possibilities to select x items in bucket nj is(
nj

x

)
• The number of possibilites to draw the remaining k − x items from

the other buckets is (
N − nj

k − x

)
• The total number of possibilities to distributed k items over the

buckets is (
N

k

)
This shows the following:

473 / 592

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (7)

Theorem
Assume a set of m buckets. Each bucket contains nj > 0 items
(1 ≤ j ≤ m). The total number of items is N =

∑m
j=1 nj . If we lookup k

distinct items, then the probability that x items in bucket j qualify is

XN
nj

(k , x) =

(nj
x

) (N−nj
k−x

)(N
k

) (33)

Further, the expected number of qualifying items in bucket j is

XN,m
nj

(k) =

min(k,nj)∑
x=0

xXN
nj

(k, x) (34)

In standard statistics books the probability distribution XN
nj

(k, x) is called
hypergeometric distribution.

474 / 592

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (8)

Let us consider the case where all nj are equal to n. Then, we can
calculate the average number of qualifying items in a bucket. With
y := min(k, n) we have

XN,m
nj

(k) =

min(k,n)∑
x=0

xXN
n (k, x)

=

min(k,n)∑
x=1

xXN
n (k, x)

=
1(N
k

) y∑
x=1

x

(
n

x

)(
N − n

k − x

)

475 / 592

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (9)

XN,m
nj

(k) =
1(N
k

) y∑
x=1

x

(
n

x

)(
N − n

k − x

)

=
1(N
k

) y∑
x=1

(
x

1

)(
n

x

)(
N − n

k − x

)

=
1(N
k

) y∑
x=1

(
n

1

)(
n − 1

x − 1

)(
N − n

k − x

)

=

(n
1

)(N
k

) y−1∑
x=0

(
n − 1

0 + x

)(
N − n

(k − 1)− x

)
= . . .

(cont.)

476 / 592

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (10)

XN,m
nj

(k) = . . .

=

(n
1

)(N
k

)(n − 1 + N − n

0 + k − 1

)
=

(n
1

)(N
k

)(N − 1

k − 1

)
= n

k

N
=

k

m

477 / 592

Accessing the Data Counting the Number of Accesses

Direct, Non-Uniform, Distinct (11)

Let us consider the even more special case where every bucket contains a
single item. That is, N = m and ni = 1. The probability that a bucket
contains a qualifying item reduces to

XN
1 (k , x) =

(1
x

) (N−1
k−1

)(N
k

)
=

(N−1
k−1

)(N
k

)
=

k

N
(=

k

m
)

Since x can then only be zero or one, the average number of qualifying
items a bucket contains is also k

N .

478 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits

When estimating seek costs, we need to calculate the probability
distribution for the distance between two subsequent qualifying cylinders.
We model the situation as a bitvector of length B with b bits set to one.
Then, B corresponds to the number of cylinders and a one indicates that a
cylinder qualifies.
[Later: Vector of Buckets]

479 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (2)

Theorem
Assume a bitvector of length B. Within it b ones are uniformly
distributed. The remaining B − b bits are zero. Then, the probability
distribution of the number j of zeros

1. between two consecutive ones,

2. before the first one, and

3. after the last one

is given by

BBb (j) =

(B−j−1
b−1

)(B
b

) (35)

480 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (3)

Proof:
To see why the formula holds, consider the total number of bitvectors
having a one in position i followed by j zeros followed by a one.
This number is (

B − j − 2

b − 2

)
We can chose B − j − 1 positions for i .
The total number of bitvectors is (

B

b

)
and each bitvector has b − 1 sequences of the form that a one is followed
by a sequence of zeros is followed by a one.

481 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (4)

Hence,

BBb (j) =
(B − j − 1)

(B−j−2
b−2

)
(b − 1)

(B
b

)
=

(B−j−1
b−1

)(B
b

)
Part (1) follows.
To prove (2), we count the number of bitvectors that start with j zeros
before the first one.
There are B − j − 1 positions left for the remaining b − 1 ones.
Hence, the number of these bitvectors is

(B−j−1
b−1

)
and part (2) follows.

Part (3) follows by symmetry.

482 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (5)

We can derive a less expensive way to calculate formula for BBb (j) as
follows.
For j = 0, we have BBb (0) = b

B .
If j > 0, then

BBb (j) =

(B−j−1
b−1

)(B
b

)
=

(B−j−1)!
(b−1)!((B−j−1)−(b−1))!

B!
b!(B−b)!

=
(B − j − 1)! b!(B − b)!

(b − 1)!((B − j − 1)− (b − 1))! B!

483 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (6)

BBb (j) =
(B − j − 1)! b!(B − b)!

(b − 1)!((B − j − 1)− (b − 1))! B!

= b
(B − j − 1)! (B − b)!

((B − j − 1)− (b − 1))! B!

= b
(B − j − 1)! (B − b)!

(B − j − b)! B!

=
b

B − j

(B − j)! (B − b)!

(B − b − j)! B!

=
b

B − j

j−1∏
i=0

(1− b

B − i
)

This formula is useful when BBb (j) occurs in sums over j .

484 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (7)

Corollary

Using the terminology of Theorem 8, the expected value for the number of
zeros

1. before the first one,

2. between two successive ones, and

3. after the last one

is

BBb =
B−b∑
j=0

jBBb (j) =
B − b

b + 1
(36)

485 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (8)

Proof:

B−b∑
j=0

j

(
B − j − 1

b − 1

)
=

B−b∑
j=0

(B − (B − j))

(
B − j − 1

b − 1

)

= B
B−b∑
j=0

(
B − j − 1

b − 1

)
−

B−b∑
j=0

(B − j)

(
B − j − 1

b − 1

)

= B
B−b∑
j=0

(
b − 1 + j

b − 1

)
− b

B−b∑
j=0

(
B − j

b

)

= B
B−b∑
j=0

(
b − 1 + j

j

)
− b

B−b∑
j=0

(
b + j

b

)

486 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (9)

B−b∑
j=0

j

(
B − j − 1

b − 1

)
= B

B−b∑
j=0

(
b − 1 + j

j

)
− b

B−b∑
j=0

(
b + j

b

)

= B

(
(b − 1) + (B − b) + 1

(b − 1) + 1

)
− b

(
b + (B − b) + 1

b + 1

)
= B

(
B

b

)
− b

(
B + 1

b + 1

)
= (B − b

B + 1

b + 1
)

(
B

b

)
With

B − b
B + 1

b + 1
=

B(b + 1)− (Bb + b)

b + 1

=
B − b

b + 1

the claim follows.

487 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (10)

Corollary

Using the terminology of Theorem 8, the expected total number of bits
from the first bit to the last one, both included, is

Btot(B, b) =
Bb + b

b + 1
(37)

488 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (11)

Proof:
We subtract from B the average expected number of zeros between the
last one and the last bit:

B − B − b

b + 1
=

B(b + 1)

b + 1
− B − b

b + 1

=
Bb + B − B + b

b + 1

=
Bb + b

b + 1

489 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (12)

Corollary

Using the terminology of Theorem 8, the number of bits from the first one
and the last one, both included, is

B1-span(B, b) =
Bb − B + 2b

b + 1
(38)

490 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (13)

Proof (alternative 1):
Subtract from B the number of zeros at the beginning and the end:

B1-span(B, b) = B − 2
B − b

b + 1

=
Bb + B − 2B + 2b

b + 1

=
Bb − B + 2b

b + 1

491 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Bits (14)

Proof (alternative 2):
Add the number of zeros between the first and the last one and the
number of ones:

B1-span(B, b) = (b − 1)BBb + b

= (b − 1)
B − b

b + 1
+

b(b + 1

b + 1

=
Bb − b2 − B + b + b2 + b

b + 1

=
Bb − B + 2b

b + 1

492 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Applications for Bitvector Model

• If we look up one record in an array of B records and we search
sequentially, how many array entries do we have to examine on
average if the search is successful?

• Let a file consist of B consecutive cylinders. We search for k different
keys all of which occur in the file. These k keys are distributed over b
different cylinders. Of course, we can stop as soon as we have found
the last key. What is the expected total distance the disk head has to
travel if it is placed on the first cylinder of the file at the beginning of
the search?

• Assume we have an array consisting of B different entries. We
sequentially go through all entries of the array until we have found all
the records for b different keys. We assume that the B entries in the
array and the b keys are sorted. Further all b keys occur in the array.
On the average, how many comparisons do we need to find all keys?

493 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Buckets

Theorem (Yao)

Consider a sequence of m buckets. For 1 ≤ i ≤ m, let ni be the number of
items in a bucket i . Then there is a total of N =

∑m
i=1 ni items. Let

ti =
∑i

l=0 ni be the number of items in the first i buckets. If the buckets
are searched sequentially, then the probability that j buckets that have to
be examined until k distinct items have been found is

CN,mni
(k, j) =

(tj
k

)
−
(tj−1

k

)(N
k

) (39)

Thus, the expected number of buckets that need to be examined in order
to retrieve k distinct items is

CN,mni
(k) =

m∑
j=1

jCN,mni
(k , j) = m −

∑m
j=1

(tj−1

k

)(N
k

) (40)

494 / 592

Accessing the Data Counting the Number of Accesses

Sequential: Vector of Buckets (2)

The following theorem is very useful for deriving estimates for average
sequential accesses under different models [Especially: the above theorem
follows].

Theorem (Lang/Driscoll/Jou)

Consider a sequence of N items. For a batched search of k items, the
expected number of accessed items is

A(N, k) = N −
N−1∑
i=1

Prob[Y ≤ i] (41)

where Y is a random variable for the last item in the sequence that occurs
among the k items searched.

495 / 592

Accessing the Data Disk Drive Costs

Disk Drive Costs for N Uniform Accesses

The goal of this section is to derive estimates for the costs (time) for
retrieving N cache-missed sectors of a segment S from disk.
We assume that the N sectors are read in their physical order on disk.
This can be enforced by the DBMS, by the operating system’s disk
scheduling policy (SCAN policy), or by the disk drive controler.

496 / 592

Accessing the Data Disk Drive Costs

Disk Drive Costs for N Uniform Accesses (2)

Remembering the description of disk drives, the total costs can be
described as

Cdisk = Ccmd + Cseek + Csettle + Crot + Cheadswitch (42)

For brevity, we omitted the parameter N and the parameters describing the
segment and the disk drive on which the segment resides.
Subsequently, we devote a (sometimes tiny) section to each summand.
Before that, we have to calculate the number of qualifying cylinders,
tracks, and sectors.
These numbers will be used later on.

497 / 592

Accessing the Data Disk Drive Costs

Number of Qualifying Cylinder

• N sectors are to be retrieved.

• We want to find the number of cylinders qualifying in extent i .

• Ssec denotes the total number of sectors our segment contains.

• Assume: The N sectors we want to retrieve are uniformly distributed
among the Ssec sectors of the segment.

• Scpe(i) = Li − Fi + 1 denotes the number of cylinders of extent i .

498 / 592

Accessing the Data Disk Drive Costs

Disk Costs: Number of Qualifying Cylinder

The number of qualifying cylinders in exent i is:

Scpe(i) * (1 - Prob(a cylinder does not qualify))

The probability that a cylinder does not qualify can be computed by
deviding the total number of possibilities to chose the N sectors from
sectors outside the cylinder by the total number of possibilities to chose N
sectors from all Ssec sectors of the segment.
Hence, the number of qualifying cylinders in the considered extent is:

Qc(i) = Scpe(i)YSsec

Dzspc(i)(N) = Scpe(i)(1−
(Ssec−Dzspc(i)

N

)(Ssec

N

)) (43)

499 / 592

Accessing the Data Disk Drive Costs

Number of Qualifying Tracks

Let us also calculate the number of qualifying tracks in a partion i .
It can be calculated by

Scpe(i)Dtpc(1− Prob(a track does not qualify))

The probability that a track does not qualify can be computed by dividing
the number of ways to pick N sectors from sectors not belonging to a track
divided by the number of possible ways to pick N sectors from all sectors:

Qt(i) = Scpe(i)DtpcYSsec

Dzspt(i)
(N) = Scpe(i)Dtpc(1−

(Ssec−Dzspt(i)
N

)(Ssec

N

)) (44)

500 / 592

Accessing the Data Disk Drive Costs

Number of Qualifying Tracks (2)

Just for fun, we calculate the number of qualifying sectors of an extent in
zone i . It can be approximated by

Qs(i) = Scpe(i)Dzspc(i)
N

Ssec
(45)

Since all Scpe(i) cylinders are in the same zone, they have the same
number of sectors per track and we could also use Waters/Yao to
approximate the number of qualifying cylinders by

Qc(i) = YScpe(i)Dzspc(Szone(i)),Scpe(i)
Dzspc(Szone(i)) (Qs(i)) (46)

If Qs(i) is not too small (e.g. > 4).

501 / 592

Accessing the Data Disk Drive Costs

Command Costs

The command costs Ccmd are easy to compute. Every read of a sector
requires the execution of a command. Hence

Ccmd = NDcmd

estimates the total command costs.

502 / 592

Accessing the Data Disk Drive Costs

Seek Costs

• often the dominant part of the costs

• we look at several alternatives from less to more precise models

503 / 592

Accessing the Data Disk Drive Costs

Seek Costs - Upper Bound

The first cylinder we have to visit requires a random seek with cost
Dseekavg. (Truely upper bound: Dfseek(Dcyl − 1))
After that, we have to visit the remaining Qc(i)− 1 qualifying cylinders.
The segment spans a total of Sclast(Sext)− Scfirst(1) + 1 cylinders.
Let us assume that the first qualifying cylinder is the first cylinder and the
last qualifying cylinder is the last cylinder of the segment.
Then, applying Qyang’s Theorem 1 gives us the upper bound

Cseek(i) ≤ (Qc(i)− 1)Dfseek(
Sclast(Sext)− Scfirst(1) + 1

Qc(i)− 1
)

after we have found the first qualifying cylinder.

504 / 592

Accessing the Data Disk Drive Costs

Seek Costs - Illustration

︸︷︷︸

Ξ

︸︷︷︸

Ξ

︸︷︷︸

Ξ

︸ ︷︷ ︸

Scpe

︸ ︷︷ ︸

Scpe

︸ ︷︷ ︸

Scpe

...

...
seek ∆gap ...

505 / 592

Accessing the Data Disk Drive Costs

Seek Costs - Steps

Steps:

1. Estimate for Cseekgap

2. Estimates for Cseekext(i)

506 / 592

Accessing the Data Disk Drive Costs

Seek Costs - Interextent Costs
The average seek cost for reaching the first qualifying cylinder is Dseekavg.
How far within the first extent are we now? We use Corollary 4 to derive
that the number of non-qualifying cylinders preceding the first qualifying
one in some extent i is

BScpe(i)
Qc (i) =

Scpe(i)− Qc(i)

Qc(i) + 1
.

The same is found for the number of non-qualifying cylinders following the
last qualifying cylinder. Hence, for every gap between the last and the first
qualifying cylinder of two extents i and i + 1, the disk arm has to travel
the distance

∆gap(i) := BScpe(i)
Qc (i) + Scfirst(i + 1)− Sclast(i)− 1 + BScpe(i+1)

Qc (i+1)

Using this, we get

Cseekgap = Dseekavg +
Sext−1∑
i=1

Dfseek(∆gap(i))

507 / 592

Accessing the Data Disk Drive Costs

Seek Costs - Intraextent Costs (2)

Let us turn to Cseekext(i). We first need the number of cylinders between
the first and the last qualifying cylinder, both included, in extent i . It can
be calculated using Corollary 6:

Ξext(i) = B1-span(Scpe(i),Qc(i))

Hence, Ξ(i) is the minimal span of an extent that contains all qualifying
cylinders.

508 / 592

Accessing the Data Disk Drive Costs

Seek Costs - Intraextent Costs

Using Ξ(i) and Qyang’s Theorem 1, we can derive an upper bound for
Cseekext(i):

Cseekext(i) ≤ (Qc(i)− 1)Dfseek(
Ξ(i)

Qc(i)− 1
) (47)

Alternatively, we could formulate this as

Cseekext(i) ≤ (Qc(i)− 1)Dfseek(BScpe(i)
Qc (i)) (48)

by applying Corollary 4.

509 / 592

Accessing the Data Disk Drive Costs

Seek Costs - Intraextent Costs (2)

A seemingly more precise estimate for the expected seek cost within the
qualifying cylinders of an extent is derived by using Theorem 8:

Cseekext(i) = Qc(i)

Scpe(i)−Qc (i)∑
j=0

Dfseek(j + 1)BScpe(i)
Qc (i) (j) (49)

510 / 592

Accessing the Data Disk Drive Costs

Settle Costs

The average settle cost is easy to calculate. For every qualifying cylinder,
one head settlement takes place:

Csettle(i) = Qc(i)Drdsettle (50)

511 / 592

Accessing the Data Disk Drive Costs

Rotational Delay

Let us turn to the rotational delay.
For some given track in zone i ,
we want to read the Qt(i) qualifying sectors contained in it.
On average, we would expect that the read head is ready to start reading
in the middle of some sector of a track.
If so, we have to wait for 1

2 Dzscan(Szone(i)) before the first whole sector
ocurs under the read head.
However, due to track and cylinder skew, this event does not occur after a
head switch or a cylinder switch.
Instead of being overly precise here, we igore this half sector pass by time
and assume we are always at the beginning of a sector.
This is also justified by the fact that we model the head switch time
explicitly.

512 / 592

Accessing the Data Disk Drive Costs

Rotational Delay (2)

Assume that the head is ready to read at the beginning of some sector of
some track.
Then, in front of us is a — cyclic, which does not matter — bitvector of
qualifying and non-qualifying sectors.
We can use Corollary 5 to estimate the total number of qualifying and
non-qualifying sectors that have to pass under the head until all qualifying
sectors have been seen.
The total rotational delay for the tracks of zone i is

Crot(i) = Qt(i) Dzscan(Szone(i)) Btot(Dzspt(Szone(i)),Qspt(i))

where Qspt(i) =WSsec,Dzspt(Szone(i))
1 (N) = Dzspt(Szone(i)) N

Ssec
is the expected

number of qualifying sectors per track in extent i . In case Qspt(i) < 1, we
set Qspt(i) := 1.

513 / 592

Accessing the Data Disk Drive Costs

Rotational Delay (3)

A more precise model is derived as follows.
We sum up for all j the product of (1) the probability that j sectors in a
track qualify and (2) the average number of sectors that have to be read if
j sectors qualify.
This gives us the number of sectors that have to pass the head in order to
read all qualifying sectors.
We only need to multiply this number by the time to scan a single sector
and the number of qualifying tracks.
We can estimate (1) using Theorem 7. For (2) we again use Corollary 5.

Crot(i) = Scpe(i) Dtpc Dzscan(Szone(i))

∗
min(N,Dzspt(Szone(i)))∑

j=1

X Ssec

Dzspt(Szone(i))(N, j) Btot(Dzspt(Szone(i)), j)

514 / 592

Accessing the Data Disk Drive Costs

Rotational Delay (4)

Yet another approach:
Split the total rotational delay into two components:

1. Crotpass(i) measures the time needed to skip unqualifying sectors

2. Crotread(i) that for scanning the qualifying sectors

Then

Crot =
Sext∑
i=1

Crotpass(i) + Crotread(i)

where the total transfer cost of the qualifying sectors can be estimated as

Crotread(i) = Qs(i) Dzscan(Szone(i))

515 / 592

Accessing the Data Disk Drive Costs

Rotational Delay (5)

Let us treat the first component (Crotpass(i)).
Assume that j sectors of a track in extent i qualify.
The expected position on a track where the head is ready to read is the
middle between two qualifying sectors.
Since the expected number of sectors between two qualifying sectors is
Dzspt(Szone(i))/j , the expected number of sectors scanned before the first
qualifying sector comes under the head is

Dzspt(Szone(i))

2j

516 / 592

Accessing the Data Disk Drive Costs

Rotational Delay (6)

The expected positions of j qualifying sectors on the same track is such
that the number non-qualifying sectors between two successively qualifying
sectors is the same.
Hence, after having read a qualifying sector

Dzspt(Szone(i))
j unqualifying

sectors must be passed until the next qualifying sector shows up.
The total number of unqualifying sectors to be passed if j sectors qualify
in a track of zone i is

Ns(j , i) =
Dzspt(Szone(i))

2j
+ (j − 1)

Dzspt(Szone(i))− j

j

517 / 592

Accessing the Data Disk Drive Costs

Rotational Delay (7)

Using again Theorem 7, the expected rotational delay for the unqualifying
sectors then is

Crotpass(i) = Scpe(i) Dtpc Dzscan(Szone(i))

∗
min(N,Dzspt(Szone(i)))∑

j=1

X Ssec

Dzspt(Szone(i))(N, j)Ns(j , i)

518 / 592

Accessing the Data Disk Drive Costs

Head Switch Costs

The average head switch cost is equal to the average number of head
switches that occur times the average head switch cost.
The average number of head switch is equal to the number of tracks that
qualify minus the number of cylinders that qualify since a head switch
does not occur for the first track of each cylinder.
Summarizing

Cheadswitch =
Sext∑
i=1

(Qt(i)− Qc(i)) Dhdswitch (51)

where Qt is the average number of tracks qualifying in an extent.

519 / 592

Accessing the Data Disk Drive Costs

Discussion

We neglected many problems in our disk access model:

• partially filled cylinders,

• pages larger than a block,

• disk drive’s cache,

• remapping of bad blocks,

• non-uniformly distributed accesses,

• clusteredness,

• and so on.

Whereas the first two items are easy to fix, the rest is not so easy.

520 / 592

Accessing the Data Selectivity Estimations

Selectivity Estimations

• previous slides assume that we ”know” how many tuples qualify

• but this has to be estimated somehow

• similar for join ordering algorithms etc.

• cardinalities (and thus selectivities) are fundamental for query
optimization

• we will now look at deriving some estimations

521 / 592

Accessing the Data Selectivity Estimations

Examples

SQL examples for typical selectivity problems:

• select *
from rel r
where r.a=10

• select *
from rel r
where r.b>2

• select *
from rel1 r1,rel2 r2
where r1.a=r2.b

The different problems require different approaches.

522 / 592

Accessing the Data Selectivity Estimations

Heuristic Estimations

Some commonly used selectivity estimations:
predicate selectivity requirement

A = c 1/|D(A)| if index on A
1/10 otherwise

A > c (max(A)− c)/(max(A)−min(A)) if index on A, interpol.
1/3 otherwise

A1 = A2 1/max(|D(A1)|, |(D(A2)|) if index on A1 and A2

1/|D(A1)| if index on A1 only
1/|D(A2)| if index on A2 only
1/10 otherwise

Note: Without further statistics, |D(A)| is typically only known (easily
estimated) if A is a key or there is an index on A.

523 / 592

Accessing the Data Selectivity Estimations

Using Histograms

• selectivity can be calculated easily by looking at the real data

• not feasible, therefore look at aggregated data

• histograms partition the data values into buckets

A histogram HA : B → N over a relation R partitions the domain of the
aggregated attribute A into disjoint buckets B, such that

HA(b) = |{r |r ∈ R ∧ R.A ∈ b}|

and thus
∑

b∈B HA(b) = |R|.

Choosing B is very important, as we will see on the next slides.

524 / 592

Accessing the Data Selectivity Estimations

Using Histograms (2)
A rough histogram might look like this:

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
ar

di
na

lit
ie

s

Domain

525 / 592

Accessing the Data Selectivity Estimations

Using Histograms (3)

Given a histogram, we can approximate the selectivities as follows:

A = c
∑

b∈B:c∈b HA(b)∑
b∈B HA(b)

A > c

∑
b∈B:c∈b

max(b)−c
max(b)−min(b)

HA(b)+
∑

b∈B:min(b)>c HA(b)∑
b∈B HA(b)

A1 = A2

∑
b1∈B1,b2∈B2,b

′=b1∩b2:b′ 6=∅
max(b′)−min(b′)
max(b1)−min(b1)

HA1
(b1) max(b′)−min(b′)

max(b2)−min(b2)
HA2

(b2)∑
b1∈B1

HA1
(b1)

∑
b2∈B2

HA2
(b2)

526 / 592

Accessing the Data Selectivity Estimations

Using Histograms - Remarks

• estimations on previous slide can be improved

• in particular, the A = c case is only a rough approximation

• requires more information

• if we interpret the histogram as a density function, P(A = c) = 0!

• a reasonable upper bound, though

• the A > c case is more sound

• A1 = A2 assumes independence etc.

527 / 592

Accessing the Data Selectivity Estimations

Building Histograms

• the buckets chosen greatly affect the overall quality

• histogram does not discern items within one bucket

• therefore: try to put items into different buckets

• how to choose the buckets?

• typical constraint: histogram size. n buckets (fixed)

• for a given set of data items, find a good histogram with n buckets

• additional constraint: data distribution is unknown (real data)

528 / 592

Accessing the Data Selectivity Estimations

Building Histograms - Equiwidth
Partitions the domain into buckets with a fixed width

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
ar

di
na

lit
ie

s

Domain

529 / 592

Accessing the Data Selectivity Estimations

Building Histograms - Equiwidth (2)

Advantages:

• easy to compute

• bucket boundaries can be computed (require no space)

Disadvantages:

• samples the domain uniformly

• does not handle skewed data well

• skew can lead to very uneven buckets

• greater estimation error in large buckets

• particular bad for zipf-like distributions

530 / 592

Accessing the Data Selectivity Estimations

Building Histograms - Equidepth
Chooses the buckets to contain the same number of items

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

C
ar

di
na

lit
ie

s

Domain

531 / 592

Accessing the Data Selectivity Estimations

Building Histograms - Equidepth (2)

Advantages:

• adopts to data distribution

• reduces maximum error

Disadvantages:

• more involved (sort or similar)

• both boundaries and depth have to be stored (ties)

Very common histogram building technique

532 / 592

Accessing the Data Selectivity Estimations

Building Histograms - Interpolation

• data is usually not completely random

• can we increase accuracy by interpolation?

• either within buckets (common) or instead of buckets (uncommon)

• histogram is a density function, not continuous, hard to interpolate

• use the equivalent distribution function instead

• very good for estimating A > c

533 / 592

Accessing the Data Selectivity Estimations

Discussion

• estimations more complex in practice

• potentially different goals: maximum vs. average error

• histograms for derived values

• histogram convolution

• handling correlations

• multi-dimensional histograms

• cardinality estimators (sketches, MIPS etc.)

