Improvement of Bloomfilters:
A Rank and Selected Based Quotient Filter

Matthias Bungeroth
Chair for Database Systems - Tum

16th January 2018

Structure

Tasks
m Filters in general
m Bloom-filter
m Rank and Selected Based Quotient Filter
m Couting Rank and Selected Based Quotient Filter

Filters in general TUTI

Filters

m Can be configured with a false-positive-rate 6 and n the element
count to insert

m Implements method insert
m Implements method query that returns true or false

Filters in general

Counting-filters

m Implements method query that returns count

Bloom-Filter

A Bloom-filter is a couple (B, H).
With B a bit-vector and H a set of hash-functions.

Empty Bloom-Filter with H={ hy(x) , ha(x) }

slot| 0|1|2|3|4|5|6|7

Insert a and b with
hi(a) =1,h(a) =5
hi(b) = 3, ho(b) = 5

slot | 0|1|2|3|4|5|6|7

Counting-Bloom-Filter

A Bloom-filter is a couple (B, H).
With B a vector of counters and H a set of hash-functions.

slot| 0 |[1|2| 3 | 4 |5| 6 |7

Rank and Selected Based Quotient Filter

Filters

m Spilts hash in hy (homeslot) and hy (remainder)
m Remainders are stored in homeslot if possible.

Rank and Selected Based Quotient Filter Tm

Filters

m occupied[x] =1 <= Jycs: ho(y) = x

® Yy s ho(x) < ho(y) = h1(x) is stored in an earlier slot than
hi(y)

m If hy(x) is stored in slot s, then hy(x) < s and there are no unused
slots between slot hy(x) and slot s, inclusive.

m runends[b]=1 <= slot b contains the last remainder in a run.

S is a set of elements that have been inserted.

slot 0 1 2 3 4 5 6 7
occupied 0 0 0 0 0 0 0 0
runend 0 0 0 0 0 0 0 0
remainders 0 0 0 0 0 0 0 0

Rank and Selected Based Quotient Filter

Filters

slot 0 1 2 3 4 5 6 7
occupied 0 0 0 0 0 0 0 0
runend 0 0 0 0 0 0 0 0
remainders | 0 0 0 0 0 0 0 0

h1(a) =0

Rank and Selected Based Quotient Filter

Insert-example

slot 0

occupied

runend

OO o w
OO O~
oo o v,

ojo|olNd

o|o|ol—

remainders

(el elNelie)
(el elNelRN|

ho(
h,

a)=0
o(b) =0

Rank and Selected Based Quotient Filter

Insert-example

slot

occupied

runend

(el N el NeliF
[l el

oO|Oo|lo|Ww

o|o|oiNd

remainders

[l el elie)

ol o|o| N

Rank and Selected Based Quotient Filter

Insert-example

slot

occupied

runend

(el N el NeliF
[l el

remainders

ol o|o| N

[l el elie)

ho(C) =0
ho(d) = 0
ho(e) =1

Rank and Selected Based Quotient Filter

Insert-example

occupied

oo o v,

(el elNelie)
(el elNelRN|

Rank and Selected Based Quotient Filter

Rank and Select

RANK (B, i) = 3"j_o BJjl (Ammount of set bits in B upto postion /)

SELECT(B, i) = (Index of the ith set bit in B)

Rank and Selected Based Quotient Filter

Insert-example

occupied

[elelNelyé,]

(el elNelie)

(el elNelN|

Rank and Selected Based Quotient Filter

Insert-example

N
w
N

slot

occupied

runend

[l el

remainders

[l el elie)
ol o|o| N

ho(f) =4
RANK (occupied, 4) = 2
SELECT (runend,2) = 4

Rank and Selected Based Quotient Filter

Insert-example

slot 0 1
occupied
runend 0 0
remainders

ho(f) = 4

RANK (occupied, 4) = 2
SELECT (runend,2) = 4

w

o

BN

[l el elie)

ol o|o| N

Rank and Selected Based Quotient Filter

Insert-example

slot 0 1 2 3 4 5 6 7

occupied 0 0 1 0 0 0

runend 0 0 0 1 0 0

remainders 1(f)] O 0
ho(g) =0

RANK (occupied,0) = 1
SELECT (runend, 1) =3

Rank and Selected Based Quotient Filter

Insert-example

slot 0 1 2 3 4 5 6 7

occupied 0 0 1 0 0 0

runend 0 0 0 0 1 0

remainders 0 1(f)] O
ho(g) =0

RANK (occupied,0) = 1
SELECT (runend, 1) =3

Rank and Selected Based Quotient Filter

Insert-example

slot 0 1 2 3 4 5 6 7

occupied 0 0 1 0 0 0

runend 0 0 0 0 1 0

remainders 1(f)] O
ho(9) =0

RANK (occupied,0) = 1
SELECT (runend, 1) =3

Rank and Selected Based Quotient Filter Tm

Runend of slot

SELECT (runend, RANK (occupied, slot))

Returns corresponding runnend bit to a slot if occupied|[slot]=1.

Rank and Selected Based Quotient Filter

Query
runend = SELECT (runend, RANK (occupied, slot))
slot 0 1 2 3 4 5 6 7
occupied 0 0 1 0 0 0
runend 0 0 0 0 1 0
remainders hi(f)] O
s = rankSelect (h0(x))
do{

if remainders([s] = h1(x) then
return true;
s = s-1;

}while(s>h0(x) and !runend[s]);
return false;

Rank and Selected Based Quotient Filter Tm

Improvement of runtime

m Linar runtime of Query and Insert cause by the Rank and Select
operation

m Can be improved to 0(1) with offsets.

Rank and Selected Based Quotient Filter Tm

Offsets

m O, = rankSelect(i) — i
m Only defined if and only if occupied][i] = 1
m Only saved for every 64th slot

m To ensure every offset is defined runnend and occupied bits are
inserted

m Save flag to check if element was inserted into a 64th slot

Rank and Selected Based Quotient Filter

Improvment of cache efficeny

m Currently all data is stored in different arrays

m Data can be reorganized into blocks

64

64

r-64

offset

used

occupieds

runends

remainders

Rank and Selected Based Quotient Filter Tm

Counting

The Rank and Selected Based Quotient Filter counts unary.

slot
occupied
runend
remainders

(el elNelRN|

Counting Rank and Selected Based Quotient FilteTUT]

Counter encoding

m Encoded counters for elements can be added

slot 0 2 3 4
occupied 0

]
0

runend 0

remainders 5

[elelNelyé,]
(el elNelie)
[elNelNelRN|

ol oo
ol oo

Counting Rank and Selected Based Quotient FilteTUT]

Counter encoding

Count Encoding Rules
1 X none
2 X, X none
Forx=0
3 X, X, X none
>3 X,C_1,...,C0, X, X V¢ #X
Vici-1 G # X
Forx #0
> 2 X,Ci_1,...,Cp, X x>0
Ci_1 <X
Vici-1 G # X

Ve, # X

Counting Rank and Selected Based Quotient FilteTUT]

Counter encoding

For x ## 0 and count C > 3:
C-3asc/_q,...,cinbase 2" — 2 where symbols are
1,2,...,x—1,x+1,...,2" — 1 and attach a zero to front if ¢, > x.

For x = 0 and count C > 4:
C—4ascp_q,...,cpinbase 2" — 1 where symbols are 1,2,...,2" — 1.

Evaluation
Rank and Selected Based Quotient Filter variants

m Runtime
m Space consumption

Evaluation
Runtime

m Random inserts
m Queries on inserted elements
m Random queries

Evaluation

Rank and Selected Based Quotient Filter variants

Configuration | Operations RSQF no | RSQF nb | RSQF
0 = 0.001 Random insert 20s <5ms <2ms
n= 10000 Query on inserted elements 20s <5ms <2ms
Random query(100% load) 0.1s <1ms <0.5ms
6 = 0.0001 Random insert / 1.4s 3.7s
n = 10000000 | Query on inserted elements / 1.8s 5.3s
Random query(100% load) / 0.7s 0.6s
0 = 0.001 Random insert / 43s 15s
n = 100000000 | Query on inserted elements / 52s 17s
Random query(100% load) / 8.2s 7.3s

Evaluation TUT

Rank and Selected Based Quotient Filter compared to Bloomfilter

Configuration | Operations(in million per second) | BF | RSQF
(r=4)
6 = 0.01 Random insert 2.9 6.0
n = 10000000 | Query on inserted elements 3.2 7.6
Random query(100% load) 12.7 12.0
(r=8)
6 = 0.00001 Random insert 1.6 8.8
n = 10000000 | Query on inserted elements 1.8 6.6
Random query(100% load) 12.26 | 25.7
(r=16)
6 = 0.000001 Random insert 1.1 4.7
n = 100000000 | Query on inserted elements 1.3 5.0
Random query(100% load) 10.0 10.4

Evaluation
Rank and Selected Based Quotient Filter variants

Millions per second

O =N WHoo NO©O

—=—random inserts RSQF r=16

g

g

lookups RSQF r=16
lookups BF
random inserts BF

—8—=—8 5 55 5

20

Il Il Il Il Il
30 40 50 60 70 8
Loadfactor in %

0

Millions per second

50

40

30

20

10

0

random lookups BF

—=—random lookups RSQF

i

Loadfactor in %

| | | | | | |
0 10 20 30 40 50 60 70

|
80 9

0

Evaluation
Space-analysis

Space-Consumption for n = 100000000

‘g ——RSQF r=16
| —— RSQFr=8
800 1 | ~ RSQFr=4
— BF
600 =
m
= \
400{
200
2 4 6 8 10

Evaluation
Space-analysis

Space-Consumption for 6 = 0.00001

mm

Space-Consumption for 6 = 0.00000001

—RSQFr=16 —RSQF r =32
RSQF r=8 — BF
8 i
RSQF r=4 80
— BF
6 60 |
Q Q
s s
4 40 |
21 20
0 0
0 2 4 6 8 10 0 2 4 6 8 10
n 108 n 108

Evaluation TUT

Counting-filter

Operations(in million per second) | CBF | CQF(r=8)
Random insert 7.9 13.5
Random lookup 7.7 9.6

Table showing average runtime of 1000 000 000 operations each for a
CQF/ CBF configured with § = 0.0001 ,n = 2000

Thanks for your attention.

Any Questions?

Implementation....

