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Adaptive Rradix T ree

Whats so special?
» Improved radix tree (or prefix tree)
» Dynamically adjusts node size

» Can compress paths
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Example Node4:

Keys (1B each)

Pointer (8B each)

0] 13| 42]255 | Ptrto 0 | Ptrto 13 | Ptr to 42 | Ptr to 255

Lookup using findChild ()
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Lookup algorithm

© 0 N O O A W N =

10

lookup (node, key, depth):

if node = NULL
return NULL
if isLeaf(node)
if leafMatches(node, key, depth)
return node
return NULL
next = findChild (node, key[depth])
return lookup(next, key, depth+1)
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What is Out Of Order Execution? TUT

(a+b)+(c+d)

No dependency between (a+b) and (c+d)

— Can be calculated in parallel

Especially helpful for expensive operations, like memory accesses

12/28



Linked List Experiment m

One list
Linked List data type:

1| struct Node {

2| Node #next;

3] std::uint8 t data[56];
4

IE

13/28



Linked List Experiment
One list
Linked List data type:

struct Node {
Node xnext;
std :: uint8 t data[56];

B WN =

IE

Iteration:

for (Node xcurr = list;
curr != nullptr;
curr = curr—>next) {
// Empty body

g b~ W N =

13/28



Linked List Experiment
One list
Linked List data type:

struct Node {
Node xnext;
std :: uint8 t data[56];

B WN =

IE

Iteration:

for (Node xcurr = list;
curr != nullptr;
curr = curr—>next) {
// Empty body

g b~ W N =

In Assembler:

11 0x3590:
2| 0x3593:
31 0x3596:

mov (%rax),%rax
test %rax,%rax
jne  0x3590

'

depends on the

first

instr.
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5
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Linked List Experiment

Two lists

1| for (Node xcurrl = listl , *curr2 = list2;
2 currl !'= nullptr && curr2 = nullptr;
3 currl = currl—>next, curr2 = curr2—>next) {
4 // Empty body
5
In Assembler:
1/ 0x3600: mov (Yorax),%rax
2| 0x3603: mov (Yordx),%rdx No dependency!
31 0x3606: test  %rax,%rax
4/ 0x3609: je 0x3610
5| 0x360b: test %rdx ,%rdx
6/ 0x360e: jne 0x3600
7/ 0x3610:
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Linked List Experiment

Results

Visited list entries per us

123456 78 9101112
Amount of parallel lists
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Tracking each state

How can we track the state of each lookup?

node(node) {}

1| struct GPState {

2| std::uint8 t key[8];

3 Node *node;

4

5 unsigned depth = 0;

6 /] ..

7 bool finished = false;
8

o GPState() : node(nullptr) {}
10| GPState(Node xnode)

11| };
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The actual lookup algorithm

1| void lookupGP (std::vector<GPState> &states) {

2| while (/% not all finished =/) {

3 // Loop over every state

4 for (auto &state : states) {

5 if (state.finished)

6 continue;

7

8 // Perform the normal lookup algorithm step

) if (state.node = NULL || isLeaf(state.node)) {
10 state.finished = true;

11 continue;

12 }

13 state.node = xfindChild (state.node,

14 state.key[state.depth]);
15 state.depth++;

16 }

|}

18| }
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Benchmarking TUTI

» TPC-H benchmark (see e.g. HyperDB Webinterface)
» Joining lineitem with orders

» lineitem has foreign key to orders

» Creating an index on orders

> |terating the tuples in 1lineitem and performing a lookup in
the ART for orders (with multiple keys using GP)

» Amount of parallel lookups is called Group Size
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Benchmarking Results
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Lessons learned? Tum

Group Prefetching ...

» ... increases Performance, but not as much as seen in the
Linked List experiment

> ... gives about 200% speed increase

» ... is always useful, when lookup keys are known in advance
(e.g. during a Join)

» ... can be adjusted using the Group Size variable. Concrete

value changes speed increase
— perfect value depends on use case and hardware

Out Of Order Execution is quite cool
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