
Latency Hiding in Tree Lookups
using Out Of Order Execution

Lukas Karnowski

November 28, 2017

1 / 28

Table of contents

Introduction

Adaptive Radix Tree

Out Of Order Execution

Implementation in the ART

Evaluation

Bibliography / Image Sources

2 / 28

Table of contents

Introduction

Adaptive Radix Tree

Out Of Order Execution

Implementation in the ART

Evaluation

Bibliography / Image Sources

3 / 28

Latendy Hiding in Tree Lookups
using Out Of Order Execution
What the . . . ?

Latency Hiding
in Tree Lookups
using Out Of Order Execution

4 / 28

Latendy Hiding in Tree Lookups
using Out Of Order Execution
What the . . . ?

Latency Hiding

in Tree Lookups
using Out Of Order Execution

4 / 28

Latendy Hiding in Tree Lookups
using Out Of Order Execution
What the . . . ?

Latency Hiding
in Tree Lookups

using Out Of Order Execution

4 / 28

Latendy Hiding in Tree Lookups
using Out Of Order Execution
What the . . . ?

Latency Hiding
in Tree Lookups
using Out Of Order Execution

4 / 28

Table of contents

Introduction

Adaptive Radix Tree

Out Of Order Execution

Implementation in the ART

Evaluation

Bibliography / Image Sources

5 / 28

Adaptive Radix Tree

Adaptive Rradix Tree

Whats so special?
I Improved radix tree (or prefix tree)
I Dynamically adjusts node size
I Can compress paths

6 / 28

Adaptive Radix Tree

Adaptive Rradix Tree

Whats so special?

I Improved radix tree (or prefix tree)
I Dynamically adjusts node size
I Can compress paths

6 / 28

Adaptive Radix Tree

Adaptive Rradix Tree

Whats so special?
I Improved radix tree (or prefix tree)

I Dynamically adjusts node size
I Can compress paths

6 / 28

Adaptive Radix Tree

Adaptive Rradix Tree

Whats so special?
I Improved radix tree (or prefix tree)
I Dynamically adjusts node size

I Can compress paths

6 / 28

Adaptive Radix Tree

Adaptive Rradix Tree

Whats so special?
I Improved radix tree (or prefix tree)
I Dynamically adjusts node size
I Can compress paths

6 / 28

Example radix tree

ε

A

AN

AND ANT ANY

AR

ARE ART

1st Letter

2nd Letter

3rd Letter

Leaf Nodes

7 / 28

Different node types

I Node4
I Node16
I Node48
I Node256

Example Node4:

Keys (1B each) Pointer (8B each)
0 13 42 255 Ptr to 0 Ptr to 13 Ptr to 42 Ptr to 255

Lookup using findChild()

8 / 28

Different node types

I Node4
I Node16
I Node48
I Node256

Example Node4:

Keys (1B each) Pointer (8B each)
0 13 42 255 Ptr to 0 Ptr to 13 Ptr to 42 Ptr to 255

Lookup using findChild()

8 / 28

Different node types

I Node4
I Node16
I Node48
I Node256

Example Node4:

Keys (1B each) Pointer (8B each)
0 13 42 255 Ptr to 0 Ptr to 13 Ptr to 42 Ptr to 255

Lookup using findChild()

8 / 28

Lookup algorithm

1 l ookup (node , key , depth) :
2 i f node == NULL
3 r e t u r n NULL
4 i f i s L e a f (node)
5 i f l e a fMat che s (node , key , depth)
6 r e t u r n node
7 r e t u r n NULL
8 // . . .
9 next = f i n d C h i l d (node , key [depth])

10 r e t u r n lookup (next , key , depth+1)

9 / 28

Lookup algorithm

1 l ookup (node , key , depth) :
2 i f node == NULL
3 r e t u r n NULL
4 i f i s L e a f (node)
5 i f l e a fMat che s (node , key , depth)
6 r e t u r n node
7 r e t u r n NULL
8 // . . .
9 next = f i n d C h i l d (node , key [depth])

10 r e t u r n lookup (next , key , depth+1)

9 / 28

Lookup algorithm

ε

A

AN

AND ANT ANY

AR

ARE ART

1st Letter

2nd Letter

3rd Letter

Leaf Nodes

10 / 28

Table of contents

Introduction

Adaptive Radix Tree

Out Of Order Execution

Implementation in the ART

Evaluation

Bibliography / Image Sources

11 / 28

What is Out Of Order Execution?

(a+b)+(c+d)

No dependency between (a+b) and (c+d)
→ Can be calculated in parallel

Especially helpful for expensive operations, like memory accesses

12 / 28

What is Out Of Order Execution?

(a+b)+(c+d)

No dependency between (a+b) and (c+d)
→ Can be calculated in parallel

Especially helpful for expensive operations, like memory accesses

12 / 28

What is Out Of Order Execution?

(a+b)+(c+d)

No dependency between (a+b) and (c+d)
→ Can be calculated in parallel

Especially helpful for expensive operations, like memory accesses

12 / 28

Linked List Experiment
One list

Linked List data type:

1 s t r u c t Node {
2 Node ∗ next ;
3 s t d : : u int8_t data [5 6] ;
4 } ;

Iteration:

1 f o r (Node ∗ c u r r = l i s t ;
2 c u r r != n u l l p t r ;
3 c u r r = cur r−>next) {
4 // Empty body
5 }

In Assembler:

1 0x3590 : mov (%rax) ,% rax
2 0x3593 : t e s t %rax ,% rax ; depends on the f i r s t i n s t r .
3 0x3596 : j n e 0 x3590

13 / 28

Linked List Experiment
One list

Linked List data type:

1 s t r u c t Node {
2 Node ∗ next ;
3 s t d : : u int8_t data [5 6] ;
4 } ;

Iteration:

1 f o r (Node ∗ c u r r = l i s t ;
2 c u r r != n u l l p t r ;
3 c u r r = cur r−>next) {
4 // Empty body
5 }

In Assembler:

1 0x3590 : mov (%rax) ,% rax
2 0x3593 : t e s t %rax ,% rax ; depends on the f i r s t i n s t r .
3 0x3596 : j n e 0 x3590

13 / 28

Linked List Experiment
One list

Linked List data type:

1 s t r u c t Node {
2 Node ∗ next ;
3 s t d : : u int8_t data [5 6] ;
4 } ;

Iteration:

1 f o r (Node ∗ c u r r = l i s t ;
2 c u r r != n u l l p t r ;
3 c u r r = cur r−>next) {
4 // Empty body
5 }

In Assembler:

1 0x3590 : mov (%rax) ,% rax
2 0x3593 : t e s t %rax ,% rax ; depends on the f i r s t i n s t r .
3 0x3596 : j n e 0 x3590

13 / 28

Linked List Experiment
Two lists

1 f o r (Node ∗ cu r r 1 = l i s t 1 , ∗ cu r r 2 = l i s t 2 ;
2 cu r r 1 != n u l l p t r && cu r r 2 != n u l l p t r ;
3 cu r r 1 = cur r1−>next , c u r r 2 = cur r2−>next) {
4 // Empty body
5 }

In Assembler:

1 0x3600 : mov (%rax) ,% rax
2 0x3603 : mov (%rdx) ,% rdx ; No dependency !
3 0x3606 : t e s t %rax ,% rax
4 0x3609 : j e 0 x3610
5 0x360b : t e s t %rdx ,% rdx
6 0 x360e : j n e 0 x3600
7 0x3610 : . . .

14 / 28

Linked List Experiment
Two lists

1 f o r (Node ∗ cu r r 1 = l i s t 1 , ∗ cu r r 2 = l i s t 2 ;
2 cu r r 1 != n u l l p t r && cu r r 2 != n u l l p t r ;
3 cu r r 1 = cur r1−>next , c u r r 2 = cur r2−>next) {
4 // Empty body
5 }

In Assembler:

1 0x3600 : mov (%rax) ,% rax
2 0x3603 : mov (%rdx) ,% rdx ; No dependency !
3 0x3606 : t e s t %rax ,% rax
4 0x3609 : j e 0 x3610
5 0x360b : t e s t %rdx ,% rdx
6 0 x360e : j n e 0 x3600
7 0x3610 : . . .

14 / 28

Linked List Experiment
Two lists

1 f o r (Node ∗ cu r r 1 = l i s t 1 , ∗ cu r r 2 = l i s t 2 ;
2 cu r r 1 != n u l l p t r && cu r r 2 != n u l l p t r ;
3 cu r r 1 = cur r1−>next , c u r r 2 = cur r2−>next) {
4 // Empty body
5 }

In Assembler:

1 0x3600 : mov (%rax) ,% rax
2 0x3603 : mov (%rdx) ,% rdx ; No dependency !
3 0x3606 : t e s t %rax ,% rax
4 0x3609 : j e 0 x3610
5 0x360b : t e s t %rdx ,% rdx
6 0 x360e : j n e 0 x3600
7 0x3610 : . . .

14 / 28

Linked List Experiment
Results

1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

·104

Amount of parallel lists

V
is
ite

d
lis
t
en
tr
ie
s
pe
r
µ
s

15 / 28

Linked List Experiment
Results

1 2 3 4 5 6 7 8 9 10 11 12

2

4

6

8

·104

Amount of parallel lists

V
is
ite

d
lis
t
en
tr
ie
s
pe
r
µ
s

15 / 28

Table of contents

Introduction

Adaptive Radix Tree

Out Of Order Execution

Implementation in the ART

Evaluation

Bibliography / Image Sources

16 / 28

Basic idea

Perform multiple lookups at the same time

This technique is called Group Prefetching

Keep track of every lookup

17 / 28

Basic idea

Perform multiple lookups at the same time

This technique is called Group Prefetching

Keep track of every lookup

17 / 28

Basic idea

Perform multiple lookups at the same time

This technique is called Group Prefetching

Keep track of every lookup

17 / 28

Basic idea

Perform multiple lookups at the same time

This technique is called Group Prefetching

Keep track of every lookup

17 / 28

Tracking each state

How can we track the state of each lookup?

1 s t r u c t GPState {
2 s t d : : u int8_t key [8] ;
3 Node ∗node ;
4

5 uns i gned depth = 0 ;
6 // . . .
7 boo l f i n i s h e d = f a l s e ;
8

9 GPState () : node (n u l l p t r) {}
10 GPState (Node ∗node) : node (node) {}
11 } ;

18 / 28

Tracking each state

How can we track the state of each lookup?

1 s t r u c t GPState {
2 s t d : : u int8_t key [8] ;
3 Node ∗node ;
4

5 uns i gned depth = 0 ;
6 // . . .
7 boo l f i n i s h e d = f a l s e ;
8

9 GPState () : node (n u l l p t r) {}
10 GPState (Node ∗node) : node (node) {}
11 } ;

18 / 28

The actual lookup algorithm

1 vo i d lookupGP (s td : : v e c to r <GPState> &s t a t e s) {
2 wh i l e (/∗ not a l l f i n i s h e d ∗/) {
3 // Loop ove r e v e r y s t a t e
4 f o r (auto &s t a t e : s t a t e s) {
5 i f (s t a t e . f i n i s h e d)
6 con t i nu e ;
7

8 // Perform the normal lookup a l g o r i t hm s t ep
9 i f (s t a t e . node == NULL | | i s L e a f (s t a t e . node)) {

10 s t a t e . f i n i s h e d = t r u e ;
11 con t i nu e ;
12 }
13 s t a t e . node = ∗ f i n d C h i l d (s t a t e . node ,
14 s t a t e . key [s t a t e . depth]) ;
15 s t a t e . depth++;
16 }
17 }
18 }

19 / 28

The actual lookup algorithm

1 vo i d lookupGP (s td : : v e c to r <GPState> &s t a t e s) {
2 wh i l e (/∗ not a l l f i n i s h e d ∗/) {
3 // Loop ove r e v e r y s t a t e
4 f o r (auto &s t a t e : s t a t e s) {
5 i f (s t a t e . f i n i s h e d)
6 con t i nu e ;
7

8 // Perform the normal lookup a l g o r i t hm s t ep
9 i f (s t a t e . node == NULL | | i s L e a f (s t a t e . node)) {

10 s t a t e . f i n i s h e d = t r u e ;
11 con t i nu e ;
12 }
13 s t a t e . node = ∗ f i n d C h i l d (s t a t e . node ,
14 s t a t e . key [s t a t e . depth]) ;
15 s t a t e . depth++;
16 }
17 }
18 }

19 / 28

Benchmarking

I TPC-H benchmark (see e.g. HyperDB Webinterface)
I Joining lineitem with orders
I lineitem has foreign key to orders
I Creating an index on orders
I Iterating the tuples in lineitem and performing a lookup in

the ART for orders (with multiple keys using GP)
I Amount of parallel lookups is called Group Size

20 / 28

Benchmarking

I TPC-H benchmark (see e.g. HyperDB Webinterface)

I Joining lineitem with orders
I lineitem has foreign key to orders
I Creating an index on orders
I Iterating the tuples in lineitem and performing a lookup in

the ART for orders (with multiple keys using GP)
I Amount of parallel lookups is called Group Size

20 / 28

Benchmarking

I TPC-H benchmark (see e.g. HyperDB Webinterface)
I Joining lineitem with orders

I lineitem has foreign key to orders
I Creating an index on orders
I Iterating the tuples in lineitem and performing a lookup in

the ART for orders (with multiple keys using GP)
I Amount of parallel lookups is called Group Size

20 / 28

Benchmarking

I TPC-H benchmark (see e.g. HyperDB Webinterface)
I Joining lineitem with orders
I lineitem has foreign key to orders

I Creating an index on orders
I Iterating the tuples in lineitem and performing a lookup in

the ART for orders (with multiple keys using GP)
I Amount of parallel lookups is called Group Size

20 / 28

Benchmarking

I TPC-H benchmark (see e.g. HyperDB Webinterface)
I Joining lineitem with orders
I lineitem has foreign key to orders
I Creating an index on orders

I Iterating the tuples in lineitem and performing a lookup in
the ART for orders (with multiple keys using GP)

I Amount of parallel lookups is called Group Size

20 / 28

Benchmarking

I TPC-H benchmark (see e.g. HyperDB Webinterface)
I Joining lineitem with orders
I lineitem has foreign key to orders
I Creating an index on orders
I Iterating the tuples in lineitem and performing a lookup in

the ART for orders (with multiple keys using GP)

I Amount of parallel lookups is called Group Size

20 / 28

Benchmarking

I TPC-H benchmark (see e.g. HyperDB Webinterface)
I Joining lineitem with orders
I lineitem has foreign key to orders
I Creating an index on orders
I Iterating the tuples in lineitem and performing a lookup in

the ART for orders (with multiple keys using GP)
I Amount of parallel lookups is called Group Size

20 / 28

Benchmarking Results
Ordered

1 2 3 4 5 6 7 8 9 10 11 12

2.5

3

3.5

4

4.5

·104

Regular

Group Size

Lo
ok
up

s
pe
r
µ
s

21 / 28

Benchmarking Results
Ordered

1 2 3 4 5 6 7 8 9 10 11 12

2.5

3

3.5

4

4.5

·104

Regular

Group Size

Lo
ok
up

s
pe
r
µ
s

21 / 28

Benchmarking Results
Unordered

20 21 22 23 24 25 26 27 28

0.5

1

1.5

2

·104

Regular

Group Size

Lo
ok
up

s
pe
r
µ
s

22 / 28

Benchmarking Results
Unordered

20 21 22 23 24 25 26 27 28

0.5

1

1.5

2

·104

Regular

Group Size

Lo
ok
up

s
pe
r
µ
s

22 / 28

My reaction

23 / 28

Table of contents

Introduction

Adaptive Radix Tree

Out Of Order Execution

Implementation in the ART

Evaluation

Bibliography / Image Sources

24 / 28

Lessons learned?

Group Prefetching . . .

I . . . increases Performance, but not as much as seen in the
Linked List experiment

I . . . gives about 200% speed increase
I . . . is always useful, when lookup keys are known in advance

(e.g. during a Join)
I . . . can be adjusted using the Group Size variable. Concrete

value changes speed increase
→ perfect value depends on use case and hardware

Out Of Order Execution is quite cool

25 / 28

Lessons learned?

Group Prefetching . . .
I . . . increases Performance, but not as much as seen in the

Linked List experiment

I . . . gives about 200% speed increase
I . . . is always useful, when lookup keys are known in advance

(e.g. during a Join)
I . . . can be adjusted using the Group Size variable. Concrete

value changes speed increase
→ perfect value depends on use case and hardware

Out Of Order Execution is quite cool

25 / 28

Lessons learned?

Group Prefetching . . .
I . . . increases Performance, but not as much as seen in the

Linked List experiment
I . . . gives about 200% speed increase

I . . . is always useful, when lookup keys are known in advance
(e.g. during a Join)

I . . . can be adjusted using the Group Size variable. Concrete
value changes speed increase
→ perfect value depends on use case and hardware

Out Of Order Execution is quite cool

25 / 28

Lessons learned?

Group Prefetching . . .
I . . . increases Performance, but not as much as seen in the

Linked List experiment
I . . . gives about 200% speed increase
I . . . is always useful, when lookup keys are known in advance

(e.g. during a Join)

I . . . can be adjusted using the Group Size variable. Concrete
value changes speed increase
→ perfect value depends on use case and hardware

Out Of Order Execution is quite cool

25 / 28

Lessons learned?

Group Prefetching . . .
I . . . increases Performance, but not as much as seen in the

Linked List experiment
I . . . gives about 200% speed increase
I . . . is always useful, when lookup keys are known in advance

(e.g. during a Join)
I . . . can be adjusted using the Group Size variable. Concrete

value changes speed increase
→ perfect value depends on use case and hardware

Out Of Order Execution is quite cool

25 / 28

Lessons learned?

Group Prefetching . . .
I . . . increases Performance, but not as much as seen in the

Linked List experiment
I . . . gives about 200% speed increase
I . . . is always useful, when lookup keys are known in advance

(e.g. during a Join)
I . . . can be adjusted using the Group Size variable. Concrete

value changes speed increase
→ perfect value depends on use case and hardware

Out Of Order Execution is quite cool

25 / 28

Latency Hiding in Tree Lookups
using Out Of Order Execution

Q & A

26 / 28

Table of contents

Introduction

Adaptive Radix Tree

Out Of Order Execution

Implementation in the ART

Evaluation

Bibliography / Image Sources

27 / 28

Viktor Leis, Alfons Kemper, Thomas Neumann. The Adaptive
Radix Tree: ARTful Indexing for Main-Memory Databases.
2013.

Onur Kocberber, Babak Falsafi, Boris Grot. Asynchronous
Memory Access Chaining. 2015.

Agner Fog. Optimizing software in C++. 2017.

Andrew S. Tanenbaum, Todd Austin. Structured Computer
Organization. Pearson, 2013.

http://i0.kym-cdn.com/entries/icons/mobile/000/
001/007/WAT.jpg

28 / 28

http://i0.kym-cdn.com/entries/icons/mobile/000/001/007/WAT.jpg
http://i0.kym-cdn.com/entries/icons/mobile/000/001/007/WAT.jpg

	Introduction
	Adaptive Radix Tree
	Out Of Order Execution
	Implementation in the ART
	Evaluation
	Bibliography / Image Sources

