Latency Hiding in Tree Lookups
using Out Of Order Execution

Lukas Karnowski

November 28, 2017

1/28

Table of contents TUTI

Introduction

Adaptive Radix Tree

Out Of Order Execution
Implementation in the ART
Evaluation

Bibliography / Image Sources

2/28

Table of contents TUTI

Introduction

3/28

Latendy Hiding in Tree Lookups TUTI

using Out Of Order Execution
What the ...7

4/28

Latendy Hiding in Tree Lookups TUTI

using Out Of Order Execution
What the ...7

Latency Hiding

4/28

Latendy Hiding in Tree Lookups

using Out Of Order Execution
What the ...7

Latency Hiding
n Tree Lookups

4/28

Latendy Hiding in Tree Lookups m

using Out Of Order Execution
What the ...7

Latency Hiding
n Tree Lookups
using Out Of Order Execution

4/28

Table of contents TUTI

Adaptive Radix Tree

5/28

Adaptive Radix Tree TUTI

Adaptive Rradix T ree

6/28

Adaptive Radix Tree TUTI

Adaptive Rradix T ree

Whats so special?

6/28

Adaptive Radix Tree TUTI

Adaptive Rradix T ree

Whats so special?

» Improved radix tree (or prefix tree)

6/28

Adaptive Radix Tree

Adaptive Rradix T ree

Whats so special?
» Improved radix tree (or prefix tree)

» Dynamically adjusts node size

6/28

Adaptive Radix Tree

Adaptive Rradix T ree

Whats so special?
» Improved radix tree (or prefix tree)
» Dynamically adjusts node size

» Can compress paths

6/28

Example radix tree TUTI

15t Letter

2nd | etter

3rd Letter

(AND] (ANT) (ANY) (ARE) (ART) Leaf Nodes

7/28

Different node types TUTI

Node4
Nodel6
Node48
Node256

v

v

v

v

8/28

Different node types

Node4
Nodel6
Node48
Node256

v

v

v

v

Example Node4:

Keys (1B each)

Pointer (8B each)

0]13]42]255

Ptr to 0

Ptr to 13 | Ptr to 42 | Ptr to 255

8/28

Different node types

Node4d
Nodel6
Node48
Node256

v

v

v

v

Example Node4:

Keys (1B each)

Pointer (8B each)

0] 13| 42]255 | Ptrto 0 | Ptrto 13 | Ptr to 42 | Ptr to 255

Lookup using findChild ()

8/28

Lookup algorithm m

9/28

Lookup algorithm

© 0 N O O A W N =

10

lookup (node, key, depth):

if node = NULL
return NULL
if isLeaf(node)
if leafMatches(node, key, depth)
return node
return NULL
next = findChild (node, key[depth])
return lookup(next, key, depth+1)

9/28

Lookup algorithm TUTI

15t Letter

2nd | etter

3rd Letter

(AND] (ANT) (ANY) (ARE) (ART) Leaf Nodes

10/28

Table of contents TUTI

Out Of Order Execution

11/28

What is Out Of Order Execution? TUT

(a+b)+(c+d)

12/28

What is Out Of Order Execution? TUT

(a+b)+(c+d)

No dependency between (a+b) and (c+d)

— Can be calculated in parallel

12/28

What is Out Of Order Execution? TUT

(a+b)+(c+d)

No dependency between (a+b) and (c+d)

— Can be calculated in parallel

Especially helpful for expensive operations, like memory accesses

12/28

Linked List Experiment m

One list
Linked List data type:

1| struct Node {

2| Node #next;

3] std::uint8 t data[56];
4

IE

13/28

Linked List Experiment
One list
Linked List data type:

struct Node {
Node xnext;
std :: uint8 t data[56];

B WN =

IE

Iteration:

for (Node xcurr = list;
curr != nullptr;
curr = curr—>next) {
// Empty body

g b~ W N =

13/28

Linked List Experiment
One list
Linked List data type:

struct Node {
Node xnext;
std :: uint8 t data[56];

B WN =

IE

Iteration:

for (Node xcurr = list;
curr != nullptr;
curr = curr—>next) {
// Empty body

g b~ W N =

In Assembler:

11 0x3590:
2| 0x3593:
31 0x3596:

mov (%rax),%rax
test %rax,%rax
jne 0x3590

'

depends on the

first

instr.

13/28

Linked List Experiment m

Two lists

14 /28

Linked List Experiment m

Two lists
1| for (Node xcurrl = listl , *curr2 = list2;
2 currl = nullptr && curr2 = nullptr;
3 currl = currl—>next, curr2 = curr2—>next) {
4 // Empty body
5

14 /28

Linked List Experiment

Two lists

1| for (Node xcurrl = listl , *curr2 = list2;
2 currl !'= nullptr && curr2 = nullptr;
3 currl = currl—>next, curr2 = curr2—>next) {
4 // Empty body
5
In Assembler:
1/ 0x3600: mov (Yorax),%rax
2| 0x3603: mov (Yordx),%rdx No dependency!
31 0x3606: test %rax,%rax
4/ 0x3609: je 0x3610
5| 0x360b: test %rdx ,%rdx
6/ 0x360e: jne 0x3600
7/ 0x3610:

14 /28

Linked List Experiment m

Results

15 /28

Linked List Experiment

Results

Visited list entries per us

123456 78 9101112
Amount of parallel lists

15/28

Table of contents TUTI

Implementation in the ART

16 /28

Basic idea TUTI

17/28

Basic idea TUTI

Perform multiple lookups at the same time

17/28

Basic idea TUTI

Perform multiple lookups at the same time

This technique is called Group Prefetching

17/28

Basic idea TUTI

Perform multiple lookups at the same time
This technique is called Group Prefetching

Keep track of every lookup

17/28

Tracking each state TUTI

How can we track the state of each lookup?

18/28

Tracking each state

How can we track the state of each lookup?

node(node) {}

1| struct GPState {

2| std::uint8 t key[8];

3 Node *node;

4

5 unsigned depth = 0;

6 /] ..

7 bool finished = false;
8

o GPState() : node(nullptr) {}
10| GPState(Node xnode)

11| };

18/28

The actual lookup algorithm TUTI

19 /28

The actual lookup algorithm

1| void lookupGP (std::vector<GPState> &states) {

2| while (/% not all finished =/) {

3 // Loop over every state

4 for (auto &state : states) {

5 if (state.finished)

6 continue;

7

8 // Perform the normal lookup algorithm step

) if (state.node = NULL || isLeaf(state.node)) {
10 state.finished = true;

11 continue;

12 }

13 state.node = xfindChild (state.node,

14 state.key[state.depth]);
15 state.depth++;

16 }

|}

18| }

19/28

Benchmarking TUTI

20/28

Benchmarking TUTI

» TPC-H benchmark (see e.g. HyperDB Webinterface)

20/28

Benchmarking TUTI

» TPC-H benchmark (see e.g. HyperDB Webinterface)

» Joining lineitem with orders

20/28

Benchmarking TUTI

» TPC-H benchmark (see e.g. HyperDB Webinterface)
» Joining lineitem with orders

» lineitem has foreign key to orders

20/28

Benchmarking TUTI

v

TPC-H benchmark (see e.g. HyperDB Webinterface)

Joining lineitem with orders

v

v

lineitem has foreign key to orders

v

Creating an index on orders

20/28

Benchmarking TUTI

v

TPC-H benchmark (see e.g. HyperDB Webinterface)

Joining lineitem with orders

v

v

lineitem has foreign key to orders

v

Creating an index on orders

v

Iterating the tuples in 1ineitem and performing a lookup in
the ART for orders (with multiple keys using GP)

20/28

Benchmarking TUTI

» TPC-H benchmark (see e.g. HyperDB Webinterface)
» Joining lineitem with orders

» lineitem has foreign key to orders

» Creating an index on orders

> |terating the tuples in 1lineitem and performing a lookup in
the ART for orders (with multiple keys using GP)

» Amount of parallel lookups is called Group Size

20/28

Benchmarking Results TUTI

Ordered

21/28

Benchmarking Results
Ordered
107

4.5

| Regular

Lookups per pus
w
ot

2.5

1 2 3 4 5 6 7 8 9 10 11 12
Group Size

21/28

Benchmarking Results TUTI

Unordered

22/28

Benchmarking Results
Unordered

-10?

2,

| Regular

Lookups per pus

0.5
20 o1

22 93 94 95 96 9T 98
Group Size

22/28

My reaction m

23/28

Table of contents TUTI

Evaluation

24 /28

Lessons learned? Tum

Group Prefetching ...

25 /28

Lessons learned? Tum

Group Prefetching ...

» ... increases Performance, but not as much as seen in the
Linked List experiment

25 /28

Lessons learned? Tum

Group Prefetching ...

» ... increases Performance, but not as much as seen in the
Linked List experiment

» ... gives about 200% speed increase

25 /28

Lessons learned? Tum

Group Prefetching ...

» ... increases Performance, but not as much as seen in the
Linked List experiment

» ... gives about 200% speed increase

» ... is always useful, when lookup keys are known in advance
(e.g. during a Join)

25 /28

Lessons learned? Tum

Group Prefetching ...

» ... increases Performance, but not as much as seen in the
Linked List experiment

> ... gives about 200% speed increase

» ... is always useful, when lookup keys are known in advance
(e.g. during a Join)

» ... can be adjusted using the Group Size variable. Concrete

value changes speed increase
— perfect value depends on use case and hardware

25 /28

Lessons learned? Tum

Group Prefetching ...

» ... increases Performance, but not as much as seen in the
Linked List experiment

> ... gives about 200% speed increase

» ... is always useful, when lookup keys are known in advance
(e.g. during a Join)

» ... can be adjusted using the Group Size variable. Concrete

value changes speed increase
— perfect value depends on use case and hardware

Out Of Order Execution is quite cool

25 /28

Latency Hiding in Tree Lookups TUTI

using Out Of Order Execution

Q& A

26 /28

Table of contents TUTI

Bibliography / Image Sources

27 /28

) W &

TUTI

Viktor Leis, Alfons Kemper, Thomas Neumann. The Adaptive
Radix Tree: ARTful Indexing for Main-Memory Databases.
2013.

Onur Kocberber, Babak Falsafi, Boris Grot. Asynchronous
Memory Access Chaining. 2015.

Agner Fog. Optimizing software in C++. 2017.

Andrew S. Tanenbaum, Todd Austin. Structured Computer
Organization. Pearson, 2013.

http://i0.kym-cdn.com/entries/icons/mobile/000/
001/007/WAT. jpg

28 /28

http://i0.kym-cdn.com/entries/icons/mobile/000/001/007/WAT.jpg
http://i0.kym-cdn.com/entries/icons/mobile/000/001/007/WAT.jpg

	Introduction
	Adaptive Radix Tree
	Out Of Order Execution
	Implementation in the ART
	Evaluation
	Bibliography / Image Sources

