Seminar:
Techniques for implementing main memory databases

Text analysis: TF-IDF

Dao Thuy Ngan Tran
Technische Universitat Munchen
Fakultat fur Informatik

Lehrstuhl fur Datenbanksysteme
Garching, 17. Oktober 2017

Base Model

TF-IDF as a model

A full text search is performed on a document collection, with each term (token) in a query
weighted according to the Term Frequency and the Inverse Document Frequency.

TF (Term Frequency) IDF (Inverse Document Frequency)
|s determined per token and per document |s determined per token over the whole
document collection

3 out of 5 documents in this collection

There are 4 occurrences of this token in contain this token
this document E> IDF is log(5/3)

=> TF is 4

A

Text analysis: TF-IDF | Dao Thuy Ngan Tran | thuy.tran@tum.de

mailto:thuy.tran@tum.de

TF and IDF as heuristics

Term Frequency
A term is simply weighted proportional to the number of times it appears in a document. If a document
contains the term many times, we can assume that the document is relevant for our search because it

might be just about the specific topic of the term.

Inverse Document Frequency
A term that occurs only in few documents, it might be a specific term to this query and is given a higher
weight for the search. On the other side, common words like ,the’, ,and’, etc. should not be assigned a

high weight for the search. Similar to Shannon’s expected amount of information.

Text analysis: TF-IDF | Dao Thuy Ngan Tran | thuy.tran@tum.de

mailto:thuy.tran@tum.de

Computing the TF-IDF vector (1)

Query: ,data and programming languages”

Indexing
All documents in the sample document collection are indexed as followed:
Document: ,SQL is a query language, which is used for accessing data bases.”
Resulting index: <[, sq1*, 11,

[,,is", 21,

[,a“, 11,

[,,language”, 1],

[,which, 1“],

[,,used”, 11,

[, for*, 11,

[,,accessing”, 11,

[,data“, 1]>

> Term frequencies can be easily obtained from the index

Text analysis: TF-IDF | Dao Thuy Ngan Tran | thuy.tran@tum.de

mailto:thuy.tran@tum.de

Computing the TF-IDF vector (2)

obtain idf
for each token do
count = 0;
for each document in collection do
if(document_index contains token)
count++;
idf = log(collection_size/count);

compute tf-idf
for each token do
idf = get_idf(token);
for each document in collection do
tf_idf += get_tf(token, document) x idf

tf-idf vector

The a possible resulting tf-idf vector could look like this:

<[,data”, 27.7536], I[,lanquage”, 14.1661], [,programming*, 14.16611, [, and",
36.7368]>

Text analysis: TF-IDF | Dao Thuy Ngan Tran | thuy.tran@tum.de 6

mailto:thuy.tran@tum.de

Extended Ranking Model

Lehrstuhl fir Datenbanksysteme
Fakultat fur Informatik
Technische Universitat Miinchen

Improving TF-IDF

What are drawbacks of the just presented TF-IDF base model?
 long documents tend to achieve a higher term frequency count
» the term frequency increases linearly

* the term frequencies within a document are independent from another

Text analysis: TF-IDF | Dao Thuy Ngan Tran | thuy.tran@tum.de

mailto:thuy.tran@tum.de

Lehrstuhl fir Datenbanksysteme
Fakultat fur Informatik
Technische Universitat Minchen

Two TF factors

Relative Intra-Document TF

Compute a TF that is normalized by the average TF of the document: RITF = TF/avgTF (D)
In order to bound the factor to 1, BRITF = RITF/1+RITF is used.

This factor rewards documents which seem to be more specific about a query term.

Length Regularized TF

Normalize TF by taking document length into account:

LRTF =TF *ld(1 + avgDocument length/Document length)

In order to bound the factor to 1, BLRTF = LRTF/I+LRTF is used.

This factor punishes long documents.

Combining the two factors

We want both properties, so our modified TF should consist of both factors.
ITFF =w * BRITF + (I-w) * BLRTF with w as 2/(1+ld(1 + query length))

The main property of w should be its proportional increase to the query length.

Text analysis: TF-IDF | Dao Thuy Ngan Tran | thuy.tran@tum.de

mailto:thuy.tran@tum.de

Lehrstuhl fir Datenbanksysteme
Fakultat fur Informatik
Technische Universitat Miinchen

Modifying IDF

Average elite set term frequency

Distinguish between term specific documents and only mentioning documents:
AEF = collection_ tf/df

We want an function proportionally increasing to inverse term density bounded to 1.
Thus, new_|IDF is IDF * (AEF/1+AEF)

Text analysis: TF-IDF | Dao Thuy Ngan Tran | thuy.tran@tum.de

10

mailto:thuy.tran@tum.de

Lehrstuhl fir Datenbanksysteme
Fakultat fur Informatik
Technische Universitat Minchen

Using modified TF-IDF for ranking of documents

Each document is assigned a score representing the similarity to the query.

Similarity score
for each document 1n collection do
simScore = 0;
for each token in query do
simScore += tff % new_idf

The document(s) with the highest similarity score to the query should be returned.

Text analysis: TF-IDF | Dao Thuy Ngan Tran | thuy.tran@tum.de

11

mailto:thuy.tran@tum.de

User-based TF-IDF

Lehrstuhl fir Datenbanksysteme
Fakultat fur Informatik
Technische Universitat Minchen

TF-IDuF

* Another weighting scheme based on TF-IDF

* The computation remains the same - only the document collection changes

 term weights are determined according to the user’s personal document collection
* the actual search is still performed on the public document collection

* recently downloaded documents of user weighted higher

 hybrid schema for practical use

Text analysis: TF-IDF | Dao Thuy Ngan Tran | thuy.tran@tum.de

13

mailto:thuy.tran@tum.de

Thank you for your attention!

