Exercise for *Database System Concepts for Non-Computer Scientist* im WiSe 18/19

Alexander van Renen (renen@in.tum.de)
http://db.in.tum.de/teaching/ws1819/DBSandere/?lang=en

Sheet 08

Exercise 1

Answer the following questions on our university database using SQL:

a) Figure out the average semester of the all students.

```sql
select avg(semester * 1.0) from students;
```

d) [Bonus] Calculate how many lectures each student is attending. Students who do not attend any lecture should be included in the result as well (attend_count = 0).

```sql
select avg(semester)
from students s
where exists (
    select *
    from attend a, lectures l, professors p
    where s.studnr = a.studnr
    and a.lecturenr = l.lecturenr
    and l.given_by = p.persnr
    and p.name = 'Sokrates')
```

In this query we need to make sure that each student is only counted once, even if she is attending two lectures by Sokrates. In our solution, the use of *exists* takes care of this. However, we could have also used *distinct* in combination with a sub-query:

```sql
select avg(semester)
from (select distinct s.*
    from Students s, attend a, lectures l, professors p
    where s.studnr = a.studnr
    and a.lecturenr = l.lecturenr
    and l.given_by = p.persnr
    and p.name = 'Sokrates')
```
c) Calculate how many lectures students are attending on average. Students who do not attend any lecture should be reflected in the result as well.

\[
\text{select } \frac{\text{attend_count}}{(\text{student_count} \times 1.000)} \\
\text{from (select count(*) as attend_count from attend) a,} \\
(\text{select count(*) as student_count from students}) s
\]

\[
\text{select } \frac{\text{attend_count}}{\text{cast}(\text{student_count} \text{ as numeric (10,4)})} \\
\text{from (select count(*) as attend_count from attend) a,} \\
(\text{select count(*) as student_count from students}) s
\]

d) [Bonus] Calculate how many lectures each student is attending. Students who do not attend any lecture should be included in the result as well (\text{attend_count} = 0).

In this exercise we have to make sure to include students that do not attend any lecture.

\[
\text{select s. studnr, s.name, (select count(*) from attend a where a. studnr = s. studnr)} \\
\text{from students s;}
\]

Another possible solution would be to use \text{union}. We first calculate the number of attended lectures for each student that does attend a lecture. Then we create a query that produces the student number, student name and a zero for all students that do not attend a lecture. We then simply combine the two results using the \text{union} operator. Note, however, that it is important to only allow students that do not attend any lecture in the second sub-query. Otherwise, duplicates would be possible.

\[
(\text{select s. studnr, s.name, count(*)} \\
\text{from students s, attend a} \\
\text{where s. studnr = a. studnr} \\
\text{group by s. studnr, s.name}) \\
\text{union} \\
(\text{select s. studnr, s.name, 0} \\
\text{from students s} \\
\text{where not exists (select * from attend a where a. studnr = s. studnr)})
\]

A similar approach that takes care of duplicates in a different way is shown in the following query. Here we do not avoid duplicates, but filter them out in a second step, instead.

\[
\text{select x. studnr, x.name, sum(x.cnt)} \\
\text{from (} \\
(\text{select s2. studnr, s2.name, count(*) as cnt} \\
\text{from students s2, attend a} \\
\text{where s2. studnr = a. studnr} \\
\text{group by s2. studnr, s2.name}) \\
\text{union} \\
(\text{select s1. studnr, s1.name, 0 as cnt} \\
\text{from students s1}) \\
) x \\
\text{group by x. studnr, x.name}
\]
As should be clear from this exercise, there are many different ways how a query can be written. As a rule of thumb, shorter queries are often better, because these are easier to understand. That holds for everyone involved: you yourself (when proof-reading your queries in the exam), other people (who read your queries and need to understand them) and the database (which has to execute your queries in an efficient manner).

Exercise 2

Calculate the weighted average grade for the exams of each student. The grades should be weighted by the weeklyhours of the respective lecture. This is similar to the formula used for your degree.

Solution:

```sql
select s.studnr, s.name, sum(t.grade * l.weeklyhours) / sum(l.weeklyhours) 
from test t, students s, lectures l 
where t.studnr = s.studnr 
   and t.lecturenr = l.lecturenr 
group by s.studnr, s.name
```