Introduction

Prof. Alfons Kemper & Alexander van Renen
Chair for Database Systems (I3)
www.db.in.tum.de

TU München / Garching
[kemper,renen]@in.tum.de
Lecture

- Web page of the lecture: see TUMonline

 www-db.in.tum.de/teaching/ws1819/DBSandere

- IN4714:
 - Part of the module Geodatabases (BV470015)
 - Duration: 2V SWS
 - Credits: 2 ECTS
Schedule

• 2 hours weekly
• Wednesdays, 4.45 – 6.15 p.m.
• Exam (closed book): Date not fixed yet
• BV470015: 60 minutes
• IN4714: 40 minutes
• Minimum number of points: 50%
Teaching

• Questions during class are very welcome
• Reading material for preparation
• Beforehand distributed / embedded excercises
• Discussion of problems / solutions on the whiteboard

→ interactive class !!
Overview

- Database Design
 - E/R-Modeling
 - UML-Modeling
- Relational Data Model
- Relational Query Language SQL
- Data Integrity
Overview (cont.)

• Physical Data Organization
 • B-Trees
 • Hashing
• Query Execution
• Transaction Management
• (Main Memory Databases, NoSQL Databases, Data Warehouses, …)

→ Preparation for Geodatabases, Andreas Donaubauer, starting December 2018
Material used

Slides of Prof. Kemper:

www-db.in.tum.de/teaching/bookDBMSeinf

and Prof. Neumann:

www-db.in.tum.de/teaching/ws1415/grundlagen

(both in German)
Literature (in German)

Alfons Kemper und André Eickler
Datenbanksysteme: Eine Einführung
10. Auflage (2015)
(older Editions are also ok)
Oldenbourg Verlag, München
(~ 50 Euros)

www-db.in.tum.de/teaching/bookDBMSseinf
Associated Workbook

Alfons Kemper und Martin Wimmer
Übungsbuch Datenbanksysteme
3. Auflage (2011)
(older Editions are also ok)
Oldenbourg Verlag, München
(~ 35 Euros)
Additional Material

www-db.in.tum.de/teaching/bookDBMSeinf

- Slides
- Videos of lectures
- Data to build own databases
- Programming examples for
 - IBM DB2
 - Oracle
 - MS SQL Server
Additional Material

- Many useful database tools
- A SQL webinterface based on HyPer

http://hyper-db.com/interface.html
A. Silberschatz, H. F. Korth und S. Sudarshan
codex.cs.yale.edu/avi/db-book/db6/slide-dir/

R. Elmasri, S.B. Navathe
Fundamentals of Database Systems, 6th edition, Addison-Wesley, 2010. (also available in German)

R. Ramakrishnan, J. Gehrke
http://pages.cs.wisc.edu/~dbbook/
J.D. Ullmann, J. Widom
infolab.stanford.edu/~ullman/fcdb.html

MOOCS
• Self paced mini courses, Stanford
 class.stanford.edu/courses/DB/2014/SelfPaced/about
• Datenmanagement mit SQL, HPI
 open.hpi.de/courses/sql (in German)
MOOCS (cont.), Lectures online

- Informationssysteme/ Einführung in Datenbanksysteme, Uni Saarland
 infosys.uni-saarland.de/datenbankenlernen/ (partly in German)

- Lecture online
 ETHZ, D. Kossmann, spring 2014:
 http://www.video.ethz.ch/lectures/d-infk.html
 English slides
Terms

• What is a database system (DBS)?

System to store and manage data

• Why not use a traditional file system?

Reliability and scalability only achievable with high effort
Examples

Traditional application areas:
• business data
• accounting
• administration

... Nowadays a lot broader:
• scientific / medical data
• data mining
• geographical information systems
• web search

...
Databases are the back of many applications:

- web search with Google, Yahoo, ...
- inquiries to Amazon, EBay, ...
- posts in Facebook, Twitter, ...

Many varieties (DBS/Information Retrieval, centralized/decentralized, replicated, etc.)

Databases are used whenever

- data is very precious (→ reliability)
- amount of data is very big (→ scalability)
Examples (cont.)

The big commercial database systems:
- Oracle
- IBM DB2
- Microsoft SQL Server

Some open source database systems:
- PostgreSQL
- MySQL
- MonetDB

Many more, some very specialized (XML, object oriented, data streams, ...)
Why use a database system?

• Avoid redundancy and inconsistency
• Rich (declarative) access to the data
• Security and privacy issues
• Synchronize concurrent data access
• Avoid loss of data
• Recovery after system failures
• Efficiency and scalability

→ Concentrate on your business logic
Abstract layers of a database system

View 1 → Logical Layer → Physical Layer
View 2 → Logical Layer → Physical Layer
... → Logical Layer → Physical Layer
View 3 → Logical Layer → Physical Layer
Abstract layers of a database system (cont.)

View:
describes how a user / program sees the data

Logical layer:
describes how the data is structured

Physical layer:
describes how the data is stored
Abstract layers of a database system (cont.)

DBS decouples applications from the structure and storage of the data:

• **Logical data independency**
 (simple) changes at the logical layer have no influence on the applications

• **Physical data independency**
 changes at the physical layer have no influence on the applications

Implemented in almost all modern database systems
Properties of database systems

Data integrity (consistency)

• Data processing within an application has constraints

→ DBS obeys defined rules and protects automatically from:
 • User errors
 • Programming errors
Declarative query language

- User determines \textit{which} data should be retrieved . . .
 . . . and \textit{not how}

\rightarrow Less error-prone (when querying the data / developing applications)

\rightarrow No knowledge about the interior layers of the DBS necessary
Sophisticated access rights

• Every user can get different rights on the database

→ DBS provides a variety of access control mechanisms to enable security and privacy
Properties of DBSs (cont.)

Multi user concurrency

• If you allow several users at a time to update the data without any control you run into big problems

→ DBS allows concurrent access and avoids side effects
Error handling

• DBS can restore its state consistently in case of a system failure

→ Therefore log files are held and managed by the DBS
Properties of DBSs (cont.)

Efficiency and scalability

- DBSs are designed for efficiently handling very large data volumes and a very high number of users.

→ In DBSs techniques for scaling with ever higher data volumes are integrated.

Typically: 100 GB (Gigabyte) – transactional Daten (even express versions)
up to EB (Exabyte) maximum data size.
Properties of DBSs (résumé)

- Data integrity
- Declarative query language
- Access rights
- Concurrency control
- Error handling
- Efficiency and scalability
Architecture & Components of a Database System

• Layered architecture
 • User Interface
 • DBMS
 • External Storage
User Interface

-、“Naive“ User
- Expert User
- App-Developer
- DB-admin

DBMS

- DML-Compiler
- DDL-Compiler

- Query Optimizer
- Runtime

- Schema

TA Management
- Recovery

Application
- Ad-hoc Query

Compiler

Management tools

Storage Manager

- Logs
- Indexes
- DB
- Catalogue

External Storage
Next: Data Modeling

„Mini World“

Manual Modeling

Conceptual Schema (ER-Schema)