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Motivation

Many interesting data sets of a graph structure.

• very flexible

• easy to model

• but difficult to query

• often very large

• no obvious structure

• how to store and
process?
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Linked Open Data cloud is use. Contains data sets with billions of
entries.
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Graph-structured data

One way to model graph-structured data is to use RDF (Resource
Description Framework).

• conceptually a directed graph with edge labels

• each edge represents a fact (triple in RDF notation)

• triples have the form (subject, predicate, object)

Example:

• <obj1 > <cityName> ’Berlin’

• <obj1 > <isCapitalOf> <obj2 >

• <obj2 > <countryName> ’Germany’

Berlin
obj2

is
C
ap
ita
lO
f

obj1

Germany

ci
ty
N
a
m
e

co
u
n
tryN

a
m
e

...

Everything is encoded as triples, queries operate on triples.
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SPARQL Protocol and RDF Query Language

All capitals in Europe:

SELECT ?capital ?country

WHERE {

?x <cityName> ?capital.

?x <isCapitalOf> ?y.

?y <countryName> ?country.

?y <isInContinent> <Europe>.

}

• querying via pattern matching in RDF graph

• queries are sets of triple patterns

• variable occurrences imply joins

Problem: huge graph, many variable bindings possible
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How to process SPARQL queries?

• we could use a (relational) database

• load the graph as triples into a table

• patterns form filters and joins

• produces the correct answer

• but very inefficient

• the database does not “understand” the graph structure

• a specialized RDF engine is more efficient

• I will talk about RDF-3X here (open source)
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Indexing RDF Graphs

Primary data structure: clustered B+-trees

• stores triples in lexicographical order

• allows for good compression (differences are small)

• sequential disk accesses, fast lookups

Example: Sort order (S,P,O), triple pattern: (obj1, pred , ?x)
⇒ Read range (obj1, pred ,−∞)-(obj1, pred ,∞) in B+-tree

Which sort order to choose?

• index is heavily compressed, space consumption not that critical

• 3! = 6 possible Orderings ⇒ 6 B+-trees

• always the ’right’ sort order available, efficient merge joins

e.g. ?x <cityName> ?capital.?x <isCapitalOf> ?y. ⇒
(cityName, ?x , ?capital)PSO B (isCapitolOf , ?x , ?y)PSO
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Runtime Improvements

RDF-3X uses many techniques to improve runtime performance:

• compressed B-trees reduce size and improve I/O performance

• exhaustive indexing often allows for cheap merge joins

• sideways information passing skips over large parts of the data

• works on compressed/encoded data as much as possible

• ...

Optimize performance and minimize disk I/O.
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Indexing is Not Enough

select *

where {

?s yago:created ?product.

?s yago:hasLatitude ?lat.

?s yago:hasLongitude ?long

}

on2

on1

hasLongitude hasLatitude

created

Suboptimal: | on1 | = 140 Mln
Runtime: 65 ms

on2

on1

created hasLatitude

hasLongitude

Optimal: | on1 | = 14 K
Runtime: 20 ms

Query optimization has a huge impact, sometimes orders of magnitudes.
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Cardinality Estimation

Traditional estimating :

• estimates for individual predicates and joins

• combined assuming independence

• statistical synopses

Not well suited for RDF data
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Why are Standard Histograms not Enough?

Some number from the Yago data set:

sel(σP=isCitizenOf) 1.06 ∗ 10−4

sel(σO=United States) 6.41 ∗ 10−4

sel(σP=isCitizenOf∧O=United States) 4.86 ∗ 10−5

sel(σP=isCitizenOf) ∗ sel(σO=United States) 6.80 ∗ 10−8

• independence assumption does not hold

• leads to severe underestimation

• multi-dimensional histograms would help (expensive)

• looking at individual triples is not enough

For RDF data, correlation is the norm!
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Why is Correlation a Problem?

Correlation occurs across triples:

• some triples are closely related

• independence does not hold

Very common:

• soft functional dependencies

• if we know bind triple pattern,
the others become unselective

• not captured by attribute
histograms

Example Triples

< o1 > <title> ”The Tree and I”.
< o1 > <author> <R. Pecker>.
< o1 > <author> <D. Owl>.
< o1 > <year> ”1996”.
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Why Not Sampling?

RDF is very unfriendly
for sampling

• no schema

• one huge ”relation”

• billions of tuples

• very diverse

Yago sample

<wikicategory Wilderness Areas of Illinois> rdfs:label ”Wilderness Areas of
Illinois” .

<Telephone numbers in Cameroon> rdfs:label ”\u002b237” .
<Washington Park Race Track> rdfs:label ”Washington Park” .
<Seth R.J.J. High School> rdfs:label ”Sett R\u002eJ\u002eJ\u002e High

School” .
<Tengasu> rdfs:label ”Tengasu” .
<Immaculate Heart Academy> rdfs:label ”Immaculate Heart Academy” .
<Sion, Switzerland> rdfs:label ”Sion\u002c Switzerland” .
<wordnet heroism 104857738> rdfs:label ”gallantry” .
<Khyber Pakhtunkhwa> rdfs:label ”Khyber\u002dPakhtunkhwa” .
<J%C3%A1nos Pap> rdfs:label ”Janos Pap” .
<wikicategory Jan Smuts> rdfs:label ”Jan Smuts” .
...

Sample would have to be huge to be useful.
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Capturing Correlations

We classify the tuples using characteristic sets

• compact data structure

• groups triples by ”behavior”

• within a group, triples are more homogeneous

• groups are annotated with occurrence statistics

• allows for deriving estimates for whole query fragments

• captures correlations within tuples and across tuples

Allows for very accurate cardinality estimates.
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Characteristic Sets
Observation: nodes are characterized by outgoing edges

SC (s) := {p|∃o : (s, p, o) ∈ R}.
SC (R) := {SC (s)|∃p, o : (s, p, o) ∈ R}.

Example

< o1 > <title> ”The Tree and I”. < o1 > <author> <R. Pecker>.
< o1 > <author> <D. Owl>. < o1 > <year> ”1996”.
< o2 > <title> ”Emma”. < o2 > <author> <J. Austen>.
< o2 > <year> ”1815”. <J. Austen> <hasName> ”Jane Austen”.
<J. Austen> <bornIn> <Steventon>.

SC (o1) = {title, author , year}

SC (o2) = {title, author , year}

SC = {{title, author , year}2, {hasName, bornIn}1}
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Estimating Distinct Subjects
We can use characteristic sets for cardinality estimation

query: select distinct ?e
where { ?e <author> ?a. ?e <title> ?t. }

cardinality:
∑

S∈{S |S∈SC (R)∧{author ,title}⊆S} count(S)

• the computation is exact! (only for distinct, though)

• can estimate a large number of joins in one step

• number of characteristic sets is surprisingly low

Number of Characteristic Sets

triples characteristic sets
Yago 40,114,899 9,788
LibraryThing 36,203,751 6,834
UniProt 845,074,885 613
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Occurrence Annotations

Without distinct we need occurrence annotations

distinct |{s|∃p, o : (s, p, o) ∈ R ∧ SC (s) = S}|
count(p1) |{(s, p1, o)|(s, p1, o) ∈ R ∧ SC (s) = S}|
count(p2) |{(s, p2, o)|(s, p2, o) ∈ R ∧ SC (s) = S}|
. . . . . .

Example

select ?a ?t where { ?e <author> ?a. ?e <title> ?t. }

distinct author title year

1000 2300 1010 1090

Estimate: 1000 ∗ 2300
1000 ∗

1010
1000 = 2323

• no longer exact, but very accurate in practice
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Using Characteristic Sets

• characteristic sets accurately describe individual subjects

• but a query touches more than one subject

• combine characteristics sets to form whole queries

General strategy:

• exploit as much information about correlation as possible

• ignore the joins order (”holistic” estimates)

• avoids ”fleeing to ignorance”

• cover the query with characteristic sets

Thomas Neumann Querying Graph-Structured Data 17 / 32



Example

select ?a ?t where { ?b <author>?a. ?b <title>?t. ?b <year>”2009”.
?b <publishedBy>?p. ?p <name>”ACM”. }

?b

?a ?t

2009 ?p ACM

author tit
le

ye
ar

publishedBy
name

(?b, author, ?a) (?b, title, ?t)

(?b, year, 2009) (?b, publishedBy, ?p) (?p, name, ACM)

RDF query graph traditional query graph

• we cover the query with characteristic sets

• prefer large sets over small sets

• assume independence for the rest
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Challenges of SPARQL query optimization

Query Optimization:

Query Compilation ⇒ Query Execution
(dominated by query optimization)

RDF-3X 78 s 2 s
Virtuoso 7 1.3 s 384 s

(next slides) 1.2 s 2 s

We ran a query with 17 joins on YAGO dataset (100 Mln triples)
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Why does it happen?

Properties of the model:

• RDF is a very verbose format

• TPC-H Q5: 5 joins in SQL vs 26 joins in SPARQL (assuming a triple
store storage)

• Dynamic Programming (RDF-3X) becomes too expensive

Properties of the data:

• Lots of correlations, including structural

• If an entity has a LastName, it is likely to have a FirstName

• Greedy Algorithm (Virtuoso) often makes wrong choices in the
beginning

Thomas Neumann Querying Graph-Structured Data 20 / 32



Combining Estimation and Optimization
Given a SPARQL query:

?p

German novellist

Nobel Prize ?place

?book ?city

Italy

?long ?lat

type
w
on
P
riz
e bornIn

created linksTo
loca

ted
In

ha
sL
on
g hasL

at

• How to optimize star-shaped subqueries?

• How to capture selectivities between subqueries?

• How to optimize arbitrary-shaped queries?
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Optimizing star-shaped subqueries

?p

?place1

?type ?place2

?s

livedIn

ty
pe

bornIn

cr
ea
te
d

• {type, livedIn, bornIn, created} → 1025 entities

• Characteristic Set
• Count all distinct Char.Sets with number of

occurrences
• Accurate estimation of cardinalities of

star-shaped queries

• One step beyond: what is the rarest subset of
the given CS?

• {type, livedIn, bornIn} → 13304 entities
• {type, livedIn, created} → 6593 entities
• {type, bornIn, created} → 6800 entities
• {livedIn, bornIn, created} → 2399 entities

• type is not present in the rarest subset; we
want to join it the last
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Example

{type, livedIn, bornIn, created}, ID : 154

{livedIn, bornIn, created}, ID : 27

{livedIn, created}, ID : 6

onID: 154

onID: 27

onID: 6

(?p, created , ?o1) (?p, livedIn, ?o3)

(?p, bornIn, ?o2)

(?p, type, ?o4)
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Properties of the algorithm

• Linear time, top-down, greedy

• Does not assume independence between predicates (unlike bottom-up
greedy)
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Cardinality estimates in arbitrary queries

?p

Thomas Mann

German novellist

Nobel Prize ?place

Zurich

?city

Lübeck

Germany

?long

10◦ E

?lat

53◦ N

type

w
on
P
riz
e livedIn

bornIn
loca

ted
In

ha
sL
on
g hasL

at

• How to estimate the cardinality of this query?

• Two subqueries depend on each other: every person is likely to have
one birthplace in the data

• Just multiplying their frequencies is a big underestimation

• We will construct a lightweight statistics of the dataset

• Count how frequently these two star-shaped subgraphs appear
together
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Characteristic Pairs

• Characteristic Pair: Two Characteristic Sets that appear connected
via an edge in the dataset

• Identifying CP: one scan over the data once the Char.Sets are
computed

• In the worst case, the number of CP grows quadratically with
different Char.Sets

• But we are only interested in very frequent ones

• If the pair is rare, the independence assumption holds
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Char.Pairs: Estimating the cardinalities

select distinct ?s ?o
where { ?s p1 ?x1.

?s p2 ?x2.
?s p3 ?o.
?o p4 ?y1. }

• {Si} ← Char.Sets with {p1, p2, p3}
• {S ′i } ← Char.Sets with {p4}
• Form all the Char.Pairs between {Si}

and {S ′i }
• Get their counts, sum up
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Outline

Given a SPARQL query:

?p

German novellist

Nobel Prize ?place

?book ?city

Italy

?long ?lat

type
w
on
P
riz
e bornIn

created linksTo
loca

ted
In

ha
sL
on
g hasL

at

• How to optimize star-shaped subqueries?

• How to capture selectivities between subqueries?

• How to optimize arbitrary-shaped queries?
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Query simplification

?p

?P1

German novellist

Nobel Prize ?place

?book ?city

?P2

Italy

?long ?lat

type

w
on
P
riz
e bornIn

created

created
s1

linksTo

linksTo
s2

loca
ted

In

ha
sL
on
g hasL

at

• We start with identifying optimal plans for subqueries

• Now, we remove them from the SPARQL query graph, and run the
Dynamic Programming algo

• We know the selectivities between the subqueries

Entities Partial Plan Cost

{P1} (wonPrize on type) on bornIn 3000
{P2} (locatedIn on hasLong) on hasLat 5000
{book} IndexScan(P = linksTo, S =?book) 4500
{P1, book} ((wonPrize on type) on bornIn) on wrote 7500

. . . . . . . . .
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Compile and Runtime for YAGO

Query Size (number of joins)
total runtime (optimization time)

Algo [10, 20) [20, 30) [30, 40) [40, 50]

DP 7745(7130) - - -
DP-CS 65767(65223) - - -
Greedy 857 (133) 1236 (413) 2204 (838) 4145 (1194)

HSP 1025 (2) 3189 (3) 4102 (4) 10720 (5)
Char.Pairs 660 (150) 967 (315) 1211 (348) 2174 (890)
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Other Challenges

• complex paths (transitivity etc.)

• complex aggregates

• updates

• transactions

• ...

Many hard problems, need careful analysis and tests.

Thomas Neumann Querying Graph-Structured Data 31 / 32



Conclusion

Graph Data Processing is hard

• complex, not schema, correlations, etc.

• requires efficient storage and indexing

• query optimization is essential

• powerful techniques pay off very quickly

Many interesting problems still open.

Thomas Neumann Querying Graph-Structured Data 32 / 32


