Querying Graph-Structured Data

Thomas Neumann

Technische Universität München

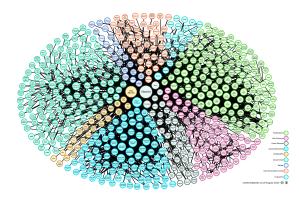
November 4, 2016

ТШТ

Motivation

Many interesting data sets of a graph structure.

- very flexible
- easy to model
- but difficult to query
- often very large
- no obvious structure
- how to store and process?

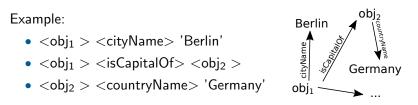


Linked Open Data cloud is use. Contains data sets with billions of entries.

Graph-structured data

One way to model graph-structured data is to use RDF (Resource Description Framework).

- conceptually a directed graph with edge labels
- each edge represents a fact (triple in RDF notation)
- triples have the form (subject, predicate, object)



Everything is encoded as triples, queries operate on triples.

SPARQL Protocol and RDF Query Language

All capitals in Europe:

```
SELECT ?capital ?country
WHERE {
    ?x <cityName> ?capital.
    ?x <isCapitalOf> ?y.
```

```
?y <countryName> ?country.
```

```
?y <isInContinent> <Europe>.
```

```
• querying via pattern matching in RDF graph
```

- queries are sets of triple patterns
- variable occurrences imply joins

Problem: huge graph, many variable bindings possible

}

How to process SPARQL queries?

- we could use a (relational) database
- load the graph as triples into a table
- patterns form filters and joins
- produces the correct answer
- but very inefficient
- the database does not "understand" the graph structure
- a specialized RDF engine is more efficient
- I will talk about RDF-3X here (open source)

Indexing RDF Graphs

Primary data structure: clustered B⁺-trees

- stores triples in lexicographical order
- allows for good compression (differences are small)
- sequential disk accesses, fast lookups

Example: Sort order (S,P,O), triple pattern: $(obj_1, pred, ?x)$ \Rightarrow Read range $(obj_1, pred, -\infty)$ - $(obj_1, pred, \infty)$ in B⁺-tree

Which sort order to choose?

- index is heavily compressed, space consumption not that critical
- 3! = 6 possible Orderings $\Rightarrow 6$ B⁺-trees
- always the 'right' sort order available, efficient merge joins

e.g. ?x <cityName> ?capital.?x <isCapitalOf> ?y. \Rightarrow (cityName,?x,?capital)_{PSO} \bowtie (isCapitolOf,?x,?y)_{PSO}

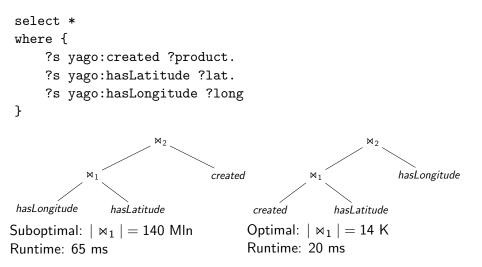
Runtime Improvements

RDF-3X uses many techniques to improve runtime performance:

- compressed B-trees reduce size and improve I/O performance
- exhaustive indexing often allows for cheap merge joins
- sideways information passing skips over large parts of the data
- works on compressed/encoded data as much as possible

Optimize performance and minimize disk I/O.

Indexing is Not Enough



Query optimization has a huge impact, sometimes orders of magnitudes.

Thomas Neumann

Querying Graph-Structured Data

Traditional estimating :

- estimates for individual predicates and joins
- combined assuming independence
- statistical synopses

Not well suited for RDF data

Why are Standard Histograms not Enough?

Some number from the Yago data set:

$sel(\sigma_{P=isCitizenOf})$	$1.06 * 10^{-4}$
$sel(\sigma_{O=United_States})$	$6.41 * 10^{-4}$
$\mathit{sel}(\sigma_{P=isCitizenOf\land \mathcal{O}=United_States})$	$4.86 * 10^{-5}$
$sel(\sigma_{P=isCitizenOf}) * sel(\sigma_{O=United_States})$	$6.80 * 10^{-8}$

- independence assumption does not hold
- leads to severe underestimation
- multi-dimensional histograms would help (expensive)
- looking at individual triples is not enough

For RDF data, correlation is the norm!

Why is Correlation a Problem?

ТШП

Correlation occurs across triples:

- some triples are closely related
- independence does not hold

Very common:

- soft functional dependencies
- if we know bind triple pattern, the others become unselective
- not captured by attribute histograms

Example Triples

 $< o_1 > <$ title> "The Tree and I". $< o_1 > <$ author> <R. Pecker>.

$$< o_1 > <$$
author $> <$ D. Owl $>$.

$$< o_1 > <$$
year $>$ "1996".

Why Not Sampling?

- RDF is very unfriendly for sampling
 - no schema
 - one huge "relation"
 - billions of tuples
 - very diverse

Yago sample

<wikicategory_Wilderness_Areas_of_Illinois> rdfs:label "Wilderness Areas of lllinois" . <Telephone_numbers_in_Cameroon> rdfs:label "\u002b237" . <Washington_Park_Race_Track> rdfs:label "Washington Park" . <Seth.R.J.J.J.High_School> rdfs:label "Sett R\u002eJ\u002eJ\u002e High School" . <Tengasu> rdfs:label "Tengasu" . <Immaculate_Heart_Academy> rdfs:label "Immaculate Heart Academy" . <Sion_Switzerland> rdfs:label "Sion\u002c Switzerland" . <wordnet_heroism_104857738> rdfs:label "gallantry" . <I%hoyber_Pakhtunkhwa> rdfs:label "Janos Pap" . <wikicategory_Jan_Smuts> rdfs:label "Jan Smuts"

Sample would have to be huge to be useful.

Capturing Correlations

ТШ

We classify the tuples using *characteristic sets*

- compact data structure
- groups triples by "behavior"
- within a group, triples are more homogeneous
- groups are annotated with occurrence statistics
- allows for deriving estimates for whole query fragments
- captures correlations within tuples and across tuples

Allows for very accurate cardinality estimates.

Characteristic Sets

Observation: nodes are characterized by outgoing edges

$$S_C(s) := \{ p | \exists o : (s, p, o) \in R \}.$$

 $S_C(R) := \{ S_C(s) | \exists p, o : (s, p, o) \in R \}.$

Example

 $< o_1 > < title> "The Tree and I". < o_1 > < author> < R. Pecker>. < < o_1 > < author> < D. Owl>. < o_1 > < year> "1996". < < o_2 > < title> "Emma". < o_2 > < author> < J. Austen>. < < o_2 > < year> "1815". < J. Austen> < hasName> "Jane Austen". < J. Austen> < Steventon>. < < d_2 < d_2$

$$S_C(o_1) = \{title, author, year\}$$

 $S_C(o_2) = \{title, author, year\}$
 $S_C = \{\{title, author, year\}^2, \{hasName, bornIn\}^1\}$

Querying Graph-Structured Data

Estimating Distinct Subjects

We can use characteristic sets for cardinality estimation

 $\begin{array}{ll} \mbox{query:} & \mbox{select distinct ?e} \\ & \mbox{where } \{ \ ?e < \mbox{author} > \ ?a. \ ?e < \mbox{title} > \ ?t. \ \} \\ \mbox{cardinality:} & \ \sum_{S \in \{S \mid S \in \mathcal{S}_C(R) \land \{ \mbox{author}, \mbox{title} \} \subseteq S \} \ count(S) \end{array}$

- the computation is exact! (only for *distinct*, though)
- can estimate a large number of joins in one step
- number of characteristic sets is surprisingly low

Number of Characteristic Sets			
	triples	characteristic sets	
Yago	40,114,899	9,788	
LibraryThing	36,203,751	6,834	
UniProt	845,074,885	613	

Occurrence Annotations

Without distinct we need occurrence annotations

distinct	$ \{s \exists p, o: (s, p, o) \in R \land S_C(s) = S\} $
$\operatorname{count}(p_1)$	$ \{(s, p_1, o) (s, p_1, o) \in R \land S_C(s) = S\} $
$\operatorname{count}(p_2)$	$ \{(s, p_2, o) (s, p_2, o) \in R \land S_C(s) = S\} $

Example

select ?a ?t where { ?e <author> ?a. ?e <title> ?t. }

distinct	author	title	year
1000	2300	1010	1090

Estimate: $1000 * \frac{2300}{1000} * \frac{1010}{1000} = 2323$

• no longer exact, but very accurate in practice

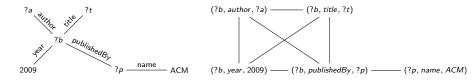
Using Characteristic Sets

- characteristic sets accurately describe individual subjects
- but a query touches more than one subject
- combine characteristics sets to form whole queries

General strategy:

- exploit as much information about correlation as possible
- ignore the joins order ("holistic" estimates)
- avoids "fleeing to ignorance"
- cover the query with characteristic sets

select ?a ?t where { ?b <author>?a. ?b <title>?t. ?b <year>"2009". ?b <publishedBy>?p. ?p <name>"ACM". }



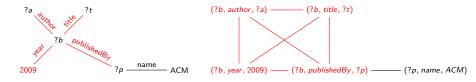
RDF query graph

traditional query graph

• we cover the query with characteristic sets

ТШ

select ?a ?t where { ?b <author>?a. ?b <title>?t. ?b <year>"2009". ?b <publishedBy>?p. ?p <name>"ACM". }



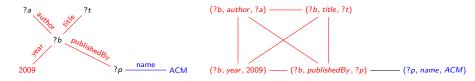
RDF query graph

traditional query graph

- we cover the query with characteristic sets
- prefer large sets over small sets

ТЛ

select ?a ?t where { ?b <author>?a. ?b <title>?t. ?b <year>"2009". ?b <publishedBy>?p. ?p <name>"ACM". }



RDF query graph

traditional query graph

- we cover the query with characteristic sets
- prefer large sets over small sets
- assume independence for the rest

Challenges of SPARQL query optimization

Query Optimization:

Challenges of SPARQL query optimization

Query Optimization:

 $\begin{array}{c|c} & \text{Query Compilation} \\ (\text{dominated by query optimization}) \end{array} \Rightarrow \begin{array}{c} \text{Query Execution} \\ & \text{Potential} \\ & \text{RDF-3X} \\ \text{Virtuoso 7} \\ & 1.3 \text{ s} \end{array} \qquad \begin{array}{c|c} 2 \text{ s} \\ & 384 \text{ s} \end{array}$

Challenges of SPARQL query optimization

Query Optimization:

	Query Compilation		Query Execution
	(dominated by query optimization)		
RDF-3X	78 s		2 s
Virtuoso 7	1.3 s		384 s
(next slides)	1.2 s		2 s

We ran a query with 17 joins on YAGO dataset (100 Mln triples)

ТШП

Why does it happen?

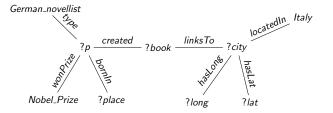
Properties of the model:

- RDF is a very verbose format
- TPC-H Q5: 5 joins in SQL vs 26 joins in SPARQL (assuming a triple store storage)
- Dynamic Programming (RDF-3X) becomes too expensive

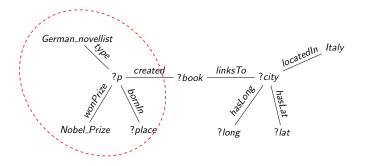
Properties of the data:

- Lots of correlations, including structural
- If an entity has a LastName, it is likely to have a FirstName
- Greedy Algorithm (Virtuoso) often makes wrong choices in the beginning

Combining Estimation and Optimization Given a SPARQL query:

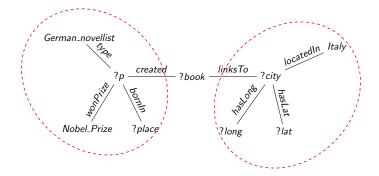


Combining Estimation and Optimization Given a SPARQL guery:



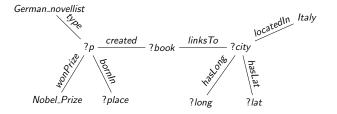
• How to optimize star-shaped subqueries?

Combining Estimation and Optimization Given a SPARQL query:



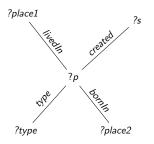
- How to optimize star-shaped subqueries?
- How to capture selectivities between subqueries?

Combining Estimation and Optimization Given a SPARQL query:



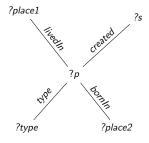
- How to optimize star-shaped subqueries?
- How to capture selectivities between subqueries?
- How to optimize arbitrary-shaped queries?

Optimizing star-shaped subqueries

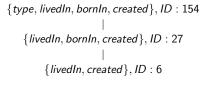


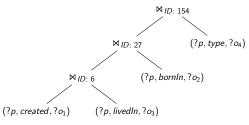
- {*type*, *livedIn*, *bornIn*, *created*} \rightarrow 1025 entities
- Characteristic Set
 - Count all distinct Char.Sets with number of occurrences
 - Accurate estimation of cardinalities of star-shaped queries

Optimizing star-shaped subqueries



- {*type*, *livedIn*, *bornIn*, *created*} \rightarrow 1025 entities
- Characteristic Set
 - Count all distinct Char.Sets with number of occurrences
 - Accurate estimation of cardinalities of star-shaped queries
- One step beyond: what is the rarest subset of the given CS?
 - {*type*, *livedIn*, *bornIn*} \rightarrow 13304 entities
 - {*type*, *livedIn*, *created*} \rightarrow 6593 entities
 - {*type*, *bornIn*, *created*} \rightarrow 6800 entities
 - {*livedIn*, *bornIn*, *created*} → 2399 entities
- type is not present in the rarest subset; we want to join it the last



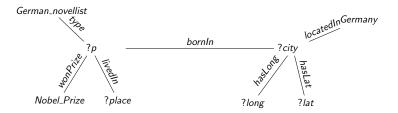


Querying Graph-Structured Data

Properties of the algorithm

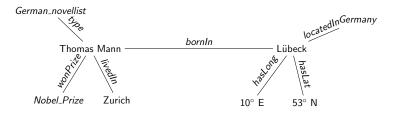
- Linear time, top-down, greedy
- Does not assume independence between predicates (unlike bottom-up greedy)

Cardinality estimates in arbitrary queries



- How to estimate the cardinality of this query?
- Two subqueries depend on each other: every person is likely to have one birthplace in the data
- Just multiplying their frequencies is a big underestimation

Cardinality estimates in arbitrary queries



- How to estimate the cardinality of this query?
- Two subqueries depend on each other: every person is likely to have one birthplace in the data
- Just multiplying their frequencies is a big underestimation
- We will construct a lightweight statistics of the dataset
- Count how frequently these two star-shaped subgraphs appear together

Characteristic Pairs

ТШ

- Characteristic Pair: Two Characteristic Sets that appear connected via an edge in the dataset
- Identifying CP: one scan over the data once the Char.Sets are computed
- In the worst case, the number of CP grows quadratically with different Char.Sets
- But we are only interested in very frequent ones
- If the pair is rare, the independence assumption holds

Char.Pairs: Estimating the cardinalities

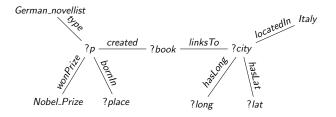
select distinct ?s ?o

where {

- ?s p₁ ?x₁. ?s p₂ ?x₂. ?s p₃ ?o. ?o p₄ ?y₁. }
- $\{S_i\} \leftarrow \text{Char.Sets with } \{p_1, p_2, p_3\}$
- $\{S'_i\} \leftarrow \text{Char.Sets with } \{p_4\}$
- Form all the Char.Pairs between {S_i} and {S'_i}
- Get their counts, sum up

Outline

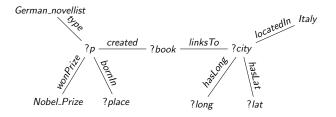
Given a SPARQL query:



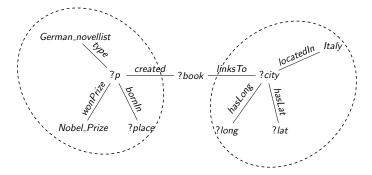
- How to optimize star-shaped subqueries?
- How to capture selectivities between subqueries?

Outline

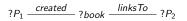
Given a SPARQL query:



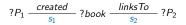
- How to optimize star-shaped subqueries?
- How to capture selectivities between subqueries?
- How to optimize arbitrary-shaped queries?



• We start with identifying optimal plans for subqueries



- We start with identifying optimal plans for subqueries
- Now, we remove them from the SPARQL query graph, and run the Dynamic Programming algo



- We start with identifying optimal plans for subqueries
- Now, we remove them from the SPARQL query graph, and run the Dynamic Programming algo
- We know the selectivities between the subqueries

Entities	Partial Plan	
$\{P_1\}$	(wonPrize ⋈ type) ⋈ bornIn	3000
$\{P_2\}$	(locatedIn ⋈ hasLong) ⋈ hasLat	5000
{book}	IndexScan(P = linksTo, S = ?book)	4500
$\{P_1, book\}$	((wonPrize ⋈ type) ⋈ bornIn) ⋈ wrote	7500

Thomas Neumann

Querying Graph-Structured Data

29 / 32

Compile and Runtime for YAGO

	Query Size (number of joins)			
	total runtime (optimization time)			
Algo	[10, 20)	[20, 30)	[30, 40)	[40, 50]
DP	7745(7130)	-	-	-
DP-CS	65767(65223)	-	-	-
Greedy	857 (133)	1236 (413)	2204 (838)	4145 (1194)
HSP	1025 (2)	3189 (3)	4102 (4)	10720 (5)
Char.Pairs	660 (150)	967 (315)	1211 (348)	2174 (890)

٦Π

Other Challenges

- complex paths (transitivity etc.)
- complex aggregates
- updates
- transactions
- ...

Many hard problems, need careful analysis and tests.

Conclusion

Graph Data Processing is hard

- complex, not schema, correlations, etc.
- requires efficient storage and indexing
- query optimization is essential
- powerful techniques pay off very quickly

Many interesting problems still open.